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Abstract: Deep neural networks (DNNs) have been revolutionizing various 3D processing fields, such as 
autonomous driving and augmented reality. They also have a great potential to facilitate building information 
modeling (BIM) based on 3D scanned data, a process known as Scan-to-BIM. Several studies have 
investigated the potential of DNNs to improve the Scan-to-BIM pipeline. However, most of the existing 
studies are high-level overviews of DNN applications. In this study, an in-depth investigation of the DNNs’ 
capacities in improving 3D reconstruction, object detection, and object parametrization, which serve as the 
core components of Scan-to-BIM, is provided. Our investigation is performed by reviewing the most relevant 
studies of the computer vision and construction literatures to gain a comprehensive view of both the state- 
of-the-art processing methods of scanned data, as well as the progress of automated BIModeling using 
Industry Foundation Class (IFC) objects. Based on the reviewed state-of-the-art studies, current challenges 
and limitations are discussed to identify further avenues for research. 
 
Keywords: Deep Neural Networks (DNN); Industry Foundation Classes (IFC); Building Information 
Modeling (BIM); Object classification; Scan-to-BIM 

1 INTRODUCTION 

With the emergence of building information modeling (BIM), there has been a surge of interest in harnessing 
digital technology in the Architecture, Engineering, and Construction and Facilities Management (AEC/FM) 

domain. BIM and its representation schemas, such as Industry Foundation Classes (IFC), enable AEC 
stakeholders to store and share various types of building information in a more efficient and integrated 
manner. BIM can also be enriched with various data sources, e.g., Internet of Things (IoT) sensors, to be 
applied in advanced Digital Twin’s (DT) applications (Pan and Zhang 2021; Turner et al. 2020; Boje et al. 
2020). For roughly two decades, the methods used to create BIM models has been addressed in the 
literature (Volk, Stengel, and Schultmann 2014). Early methods mostly relied on manual modeling and 
beyond their requiring labor-intensive procedures, they also require expert knowledge (Tang et al. 2010). 
In recent years, with the advancement of computer vision-based (CV) methods, various methods have been 
introduced to automatically create BIM models (M. Huang, Ninić, and Zhang 2021). The CV methods not 
only help achieve more cost-effective BIModeling solutions, they also greatly support the modeling task 
(Bloch and Sacks 2018). These methods can be used to construct BIM from scanned data (Bosché et al. 
2015). The creation of models using scanned data, e.g., point cloud (PC), has become popular because 
the BIModeling can be effectively performed using this data source without any prior information (M. Huang, 
Ninić, and Zhang 2021). The methods that apply scanned data to construct BIM are mostly known as Scan- 
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to-BIM methods. In recent years, several studies have provided comprehensive reviews of the DNN 
applications in BIM related projects (Czerniawski and Leite 2020; Zabin et al. 2022; 2022). However, most 
of the reviews related to the application of DNNs for Scan-to-BIM are limited, providing only an overview. 
Thus, this study aims to provide an in-depth review of the studies related to the use of DNNs for Scan-to- 
BIM to facilitate the identification of possible research avenues for more efficient BIModeling using DNNs. 

2 CATEGORIES OF SCAN-TO-BIM SOLUTIONS 

Typically, the procedure of Scan-to-BIM is comprised of four main sub-tasks, namely, data collection, 
point cloud registration (i.e., 3D reconstruction), object detection, and, BIModeling (i.e., semantic 
enrichment) (Czerniawski and Leite 2020). Figure 1 provides an illustration of the mentioned sub-tasks for 
a scene of the ScanNet dataset (Dai et al. 2017). As shown in Figure 1, the scanning task is first 
performed to collect the 3D information (i.e., points) of the scene. The 3D point sets are then registered in 
respect to each other to reconstruct a 3D scene from the collected data. The 3D reconstructed scene is 
then used for the 3D object detection task. Lastly, the BIM is created using the detected objects of the 
scenes. 
 

 
Figure 1: Procedure of Scan-to-BIM for a scene of the ScanNet dataset (Dai et al. 2017). 

 

Scan-to-BIM solutions have been widely developed using various methods. The methods can be broadly 
categorized as rule-based (Jung et al. 2018) or machine learning (ML)-based methods (B. Wang et al. 
2022). The rule-based methods can be considered as conventional approaches where the BIModel is 
created by detecting a set of primitives from the scanned data in the first stage. The primitives are 
analyzed by a set of rules to join or disjoin them and to construct the elements. Despite reasonable 
performances, rule-based methods lack high adaptability in different data structures and require extensive 
user interventions (Bloch and Sacks 2018). ML methods provide more efficient BIModeling solutions by 
transforming the conventional procedure of the Scan-to-BIM process into an automated and seamless 
one. The ML methods mainly rely on DNNs, such as feed-forward or recurrent neural networks, which can 
learn discriminative features from data, to automatically perform various tasks, such as 3D object 
detection, and PC registration. However, the DNNs come with their own challenges, such as relying on 
large scale labeled datasets for the supervision (Beyer and Dai 2022), and a high computational burden 
(Emunds et al. 2022). In this study, we mainly focus on reviewing the advancements and challenges of 
DNN methods for 3D data interpretation and understanding, which can be applied for the Scan-to-BIM 
task. To achieve this, we reviewed the related studies for each of the Scan-to-BIM sub-tasks in the 
construction and CV literature, as most of the DNN-based Scan-to-BIM methods are inspired by the 
related CV studies. 

2.1 Datasets 

One of the major concerns regarding the utilization of DNNs is the requirement of annotated data. It is 



3 

 

 

vital for DNNs to achieve promising performance in 3D reconstruction tasks (Dai et al. 2017). In recent 
years, various datasets have been introduced in the literature to facilitate the application of 3D 
understanding. The datasets can be broadly categorized as synthetic-based or scanned-based. 

Synthetic datasets are mostly constructed by manual modeling (Zhao and Vela 2019; Koo, Jung, and Yu 
2021), or artificial intelligence (AI)-simulation engines (Puig et al. 2018; Szot et al. 2021). For example, 
the manual modeling scheme is used in (Koo, Jung, and Yu 2021) to collect 824 IFC-based objects of 
walls and doors and to annotate them based on their sub-types (e.g., generic wall, wall with openings). 
More comprehensive non-IFC datasets, such as Structured3D (Zheng et al. 2020) provide synthetic 
images of 3,500 scenes from multiple rooms with various objects. InteriorNet (W. Li et al. 2018) 
introduces a CAD- based synthetic dataset that contains millions of interior layouts and furniture models. 
House3D (Y. Wu et al. 2018) is a volumetric synthetic dataset with 45,000 annotated scenes with various 
types of objects. Moreover, several studies address 3D dataset creation for industrial scenes using the 
manual modeling scheme. For example, a bridge component modeling is performed in (Zhao and Vela 
2019) to construct the annotated training dataset for 3D object classification. Despite the considerable 
progress in the creation of synthetic datasets, their capacity to represent real world cluttered scenes is 
questionable. 

Scanned-based datasets can be created using mobile and terrestrial scanning devices. In the 
construction literature, most of the introduced datasets are created using terrestrial laser scanners (Yin et 
al. 2021; Agapaki and Brilakis 2021) due to their geometrical accuracy for BIModeling (Esfahani et al. 
2021; Xiong et al. 2013). However, most of the developed datasets are not publicly accessible. In the CV 
literature, a few datasets are publicly available for the tasks of point cloud registration and 3D object 
classification. For instance, ScanNet (Dai et al. 2017) uses RGB-D images to represent 1,500 scenes in a 
mesh format with camera pose information, CAD models, and label annotations. The RGB-D sensors are 
used in several other datasets, such as Depth V2 (Silberman et al. 2012) and Matterport3D (Chang et al. 
2017), for 3D mesh-based representations of indoor environments. Panoramic RGB images are also 
applied in the Stanford 2D-3D-S dataset (Armeni et al. 2017) to represent the 3D mesh information of six 
large indoor scenes. Table 1 compares the prominent 3D datasets’ creation methods and their parametric 
attributes. 

Table 1: Comparison of well-known 3D indoor datasets. 
 

Dataset Type CAD models Data Type # of Scenes 

ScanNet (Dai et al. 2017) Scanned 296 Mesh 1506 
Matterport3D (Chang et al. 2017) Scanned N/A Mesh 2056 
SUN3D (Xiao, Owens, and Torralba 2013) Scanned N/A PC 254 
Scan2CAD (Avetisyan et al. 2019) Scanned 3049 Mesh 1506 
OpenRooms (Z. Li et al. 2020) Scanned 2500 Mesh 1068 
Depth v2 (Silberman et al. 2012) Scanned N/A RGB-D N/A 
Hypersim (Roberts et al. 2021) Synthetic N/A RGB-D N/A 
3D-FRONT (Fu et al. 2021) Synthetic 13151 Mesh 18968 
SceneNet (Handa et al. 2016) Synthetic 57 Mesh 57 
InteriorNet (W. Li et al. 2018) Synthetic N/A RGB-D N/A 
House-3D (Y. Wu et al. 2018) Synthetic N/A RGB-D 45K 
Structured3D (Zheng et al. 2020) Synthetic N/A 3D layout 3500 

 

2.2 Point Cloud Registration 

Matching 3D geometry has been a long-standing work in progress and it has numerous applications, such 
as 3D reconstruction, object retrieval, and object pose estimation (Zeng et al. 2017). In this study, we 
mainly focus on geometric registration of RGB-D data because after the prevalence of using handheld 3D 
scanning sensors with low-density depth sensors, more studies have focused on extracting robust 
semantic and geometric feature descriptors. The reason for this is that the visual information provided by 
RGB sensors, provides the opportunity to extract semantic features along with geometric features and 
perform more effective point-set registration. Figure 2 shows the general pipeline of the geometric 
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matching task for most of the methods that use RGB-D sensors in the registration task. Considering two 
sets of point clouds with the RGB data, denoted as Input and Reference, the main assumption for 
geometric registration and matching is that the Input is transformed from the Reference by a spatial (e.g., 
rigid) transformation. Thus, the aim of geometric registration is to calculate the transformation such that 
the mean-squared error of the two sets’ alignment converges to zero (Pomerleau, Colas, and Siegwart 
2015). More specifically, the 3D- registration approaches mostly use a feature extractor to extract 
meaningful semantic and geometric descriptors, which enables the methods to improve the 
transformation estimation task. This is because estimating rigid transformation can be challenging in 
various scenarios, such as in low overlaps and different densities scenarios (Qin et al. 2022; X. Huang, 
Mei, and Zhang 2020). 
 

 

 
Reference 

 

Figure 2: The general overview of the geometric matching pipeline. 
 

Early approaches extract simple feature descriptors to find visual correspondences among RGB data, 
such as using corners for stereo matching (Moravec 1981), geometric primitives (Rabbani et al. 2007) 
and local 3D geometric descriptors as geometric features (Johnson and Hebert 1999; Rusu, Blodow, and 
Beetz 2009). However, considering the point cloud registration challenges, such as low density and 
partial overlap problems, obtaining best alignment between point sets is difficult using these conventional 
methods. In recent years, plenty of DNNs-based methods have attempted to extract robust feature 
descriptors using visual features (Dusmanu et al. 2019; DeTone, Malisiewicz, and Rabinovich 2018; El 
Banani, Gao, and Johnson 2021; Yi et al. 2016) and geometrical features (Choy et al. 2016; Deng, Birdal, 
and Ilic 2018; Bai et al. 2020). The visual descriptors, extracted by the DNNs, typically contain abstract 
semantic features from the visual information of the input RGB pixels, which can be used to estimate 
reliable correspondence points. For instance, Choy et al. (2016) applied a supervised recurrent neural 
network (RNN) to learn 3D geometric shapes from a collection of synthetic images (Choy et al. 2016). In 
(Deng, Birdal, and Ilic 2018) an autoencoder-based method is proposed to learn 3D local descriptors in 
an unsupervised manner. Additionally, a 3D feature detector and descriptor is proposed in (Bai et al. 
2020) which uses a fully convolutional neural network (FCNN). Regarding the learning of invariant visual 
features using geometric transformation, CNN models are applied for both local feature detectors and 
descriptors (Yi et al. 2016; Dusmanu et al. 2019). (DeTone, Malisiewicz, and Rabinovich 2018) addressed 
the problem of correspondence estimation in multiple-view images by proposing a self-supervised point 
detector and descriptor. In addition, a number of studies applied RGB-D data for extracting visual 
descriptors (Zeng et al. 2017; Xiao, Owens, and Torralba 2013). Although using the DNNs showed 
promising performance, a number of challenges still exist in the geometric registration tasks, such as high 
dimensional parameter space (W. Chen et al. 2022), reliance of the state-of-the-art methods on labeled 
data (El Banani, Gao, and Johnson 2021), poor performance on low-textured spaces (Z. Chen et al. 
2022) , and complexities of transformation of the scans with partial or limited overlap (Qin et al. 2022; Sun 
et al. 2022). 

Transformer Optimization 

Input 

Feature Extractor + 
Correspondence 

estimation 

Outlier 

Removal 

Feature Extractor 
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2.3 3D-Object Detection 

3D-object detection is a preliminary stage for various downstream tasks, such as semantic enrichment 
(Werbrouck et al. 2020) and CAD-based element fitting (Kuo et al. 2020). The aim of 3D object detection 
is to determine the type and location of various objects based on scanned data (Charles R. Qi et al. 
2019). Figure 3 illustrates the results of object detection on a 3D scene from the ScanNet dataset (Dai et 
al. 2017). 

 
 
 
 
 
 
 
 
 

Chair Desk Door 

 

 

 

 

 

 
 

 
Figure 3: Example of 3D-object detection using a ScanNet dataset scene (Dai et al. 2017) a) Input point 

cloud b) Object detection result. 
 

 

Object detection from scanned data differs from object detection using other data sources (e.g., RGB 
images) due to the disorderedness (i.e., irregular) of the point clouds. Considerable efforts have been 
made for automatic 3D-object detection in outdoor and indoor scenes using DNNs (H. Wang et al. 2022; 
Liang et al. 2019). In this study, the indoor-based 3D-object detection and classification methods were 
focused. These methods can be broadly categorized as either projection-based or raw PC-based analysis 
methods. Projection-based methods mostly convert the scanned data into a regular data structure, such 
as images (B. Wang et al. 2022) and voxels (Song and Xiao 2016). Several studies have investigated the 
projection- based methods for IFC object classification. For instance, multi-view convolutional neural 
networks (MVCNN) (Su et al. 2015), which performs a bird’s eye view projection on PC, is applied in 
(Koo, Jung, and Yu 2021; Park and Ergan 2022; Park, Ergan, and Feng 2021) to recognize and classify 
IFC objects in indoor environments. These projection-based methods enable DNN architectures, such as 
convolutional neural networks (CNNs) to directly process the scene information and achieve reasonable 
results. For example, the state-of-the-art performance for IFC MVCNN object classification was reported 
in (Emunds et al. 2021). However, a loss of information, such as dimensions and geometric structures, is 
inevitable in these projection methods. 

The raw PC-based approach includes methods that directly perform object detection using the raw point 
sets collected from the scene (Charles R. Qi et al. 2018; 2019; Shi, Wang, and Li 2019). Early studies in 
this area were inspired by Standford University’s PointNet network (Charles R Qi et al. 2017) and its 
variations (Charles Ruizhongtai Qi et al. 2017; Jiang et al. 2019) to estimate an object’s bounding box 
using a hierarchical DNN architecture for raw points analysis. For instance, Point R-CNN (Shi, Wang, and 
Li 2019) applies a region pooling strategy to extract features from a group of points and then estimate the 
3D bounding boxes. Fast Point R-CNN (Y. Chen et al. 2019) further enhanced the Point R-CNN pipeline 
by using the voxel-based representation in the framework’s warm-up stage (i.e., pre-training). More recent 
studies use probabilistic estimation (Meyer et al. 2019), voting strategy (Charles R. Qi et al. 2019), and 
attention mechanism (Liu et al. 2021) to extract features from a group of points. LaserNet (Meyer et al. 

(a) (b) 
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2019) estimates a probabilistic distribution for each point using a fully CNN architecture, and then fuses 
the distributions to construct 3D bounding boxes of the objects. VoteNet (Charles R. Qi et al. 2019) and 
ImVotenet (Charles R. Qi et al. 2020) use Hough transform (Ballard 1981) as a voting strategy to detect 
3D objects based on the DNN predictions for the point sets. Group-Free (Liu et al. 2021) deploys an 
attention mechanism to group point sets and then detect objects within the groups. The aforementioned 
studies show remarkable efforts in the improvement of point grouping strategies, which is a core 
component of the 3D- object detection. However, various concerns remain, such as sensitivity to the 
foreground and irrelevant point sets and high memory requirements for large point set processing, which 
are discussed in these very recent studies (H. Wang et al. 2022; Agapaki and Brilakis 2021; Xie et al. 
2021; Zhang et al. 2022). The reconstruction of BIM from scanned data requires both plane and complex 
object detection. DNN- based object detection is a major step toward the creation of a rich BIModel from 
scanned data of a cluttered scene containing complex objects. However, plane objects (e.g., ceiling, floor, 
and walls) must still be detected for accurate geometric modeling. Plane object detection has been used 
for semi-automated Scan- to-BIM solutions for many years. Random sample consensus (RANSAC) 
(Fischler and Bolles 1981) and region growing-based methods (Adams and Bischof 1994; Vieira and 
Shimada 2005) are among the commonly used approaches for plane object detection. RANSAC is a 
lightweight method that uses randomly selected points from the point sets to perform primitive fitting. 
RANSAC’s procedure of primitive fitting is straightforward. However, the accuracy of the fitting outcome is 
not guaranteed and can be incomplete due to various noise effects. To tackle this issue, advanced 
methods attempt to control the fitting procedure of primitives by using different strategies. For instance, a 
B-splines geometric representation algorithm is used in (Rausch and Haas 2021) to fit the primitives to 
the point sets more effectively. A quantization strategy is used in (Shao et al. 2021) to smooth the point 
sets and improve the fitting outcome. A primitive fitting strategy based on the vector normal is applied in 
(Schnabel, Wahl, and Klein 2007) to improve the fitting outcome. These methods considerably succeeded 
in improving the primitive fittings. However, extensive hyper-parameter tuning/selection is a typical 
requirement of these methods. Region growing is another well-known approach to detect plane objects by 
segmenting the point set (Ning et al. 2009; Deschaud and Goulette 2010; Vo et al. 2015). Region 
growing-based methods also achieved reasonable results for plane object detection. However, high 
computational burden and sensitivity to noise are notable drawbacks of these approach (Teboul et al. 
2010; Boulaassal et al. 2007). To address these limitations, one approach is to use graph-based DNNs 
(Landrieu and Boussaha 2019; Landrieu and Simonovsky 2018). Graph-based DNNs are able to consider 
geometrical structure and object relations in 3D-object detection, which is critical for accurate plane object 
detection (Kim and Kim 2021). 

2.4 Semantic Enrichment and BIModeling 

Despite showing increasingly improved results for DNN-based methods for 3D reconstruction and 3D-
object detection, the semantic enrichment of the reconstructed scene remains a fundamental limitation for 
DNN- based Scan-to-BIM methods. One way to address this is to retrieve a set of parametric BIM-based 
objects from a stored dataset and fit them to the detected objects of the scene. If the parametric objects 
successfully match with the objects of the scene, a full parametric BIM can be replaced. However, the 
successful alignment and fitting of parametric objects is a challenge. A great number of rule-based 
methods have been proposed in the literature to address the problem of fitting parametric elements to 
scanned data (Romero- Jarén and Arranz 2021; Yang et al. 2019; Jung et al. 2018; Bassier and 
Vergauwen 2020; K. Wu, Shi, and Ahmed 2020; Thomson and Boehm 2015). Typically, these methods 
rely on handcrafted geometric features for the fitting task, e.g., features based on point pairs (Drost and 
Ilic 2012). However, these handcrafted features severely limit the feasible application of rule-based 
methods for various reconstructed scenes with different shapes and levels of complexity (Bloch and 
Sacks 2018). 

More recently, DNNs have been applied for the task of parametric object fitting. Unlike the rule-based 
methods, DNNs are capable of explicitly learning geometric features from the scanned data (Avetisyan et 
al. 2019). A number of studies attempted to parametrize 3D scenes using pre-stored CAD databases 
(Gümeli, Dai, and Nießner 2022; Siddiqui et al. 2021; Manni et al. 2021). For instance, (Siddiqui et al. 
2021) proposed a joint embedding framework, in which the objects of the scanned data and CAD 
database were both mapped to a common embedding space. Similar CAD-based objects were then 
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substituted to the objects of the scanned data to form a complete parametric model. The joint embedding 
approach has also been used in the backbone of other DNN-based object parameterization methods 
(Gümeli, Dai, and Nießner 2022; Dahnert et al. 2019). Moreover, the possibility of harnessing the joint 
embedding approach to a parametrized scanned scene using IFC elements is discussed in (Emunds et 
al. 2022). To provide a better description of the joint embedding approach which parametrizes the 
detected objects in the scanned data, Figure 4 provides a generic illustration of this process using 
ScanNet (Dai et al. 2017) and IFCNet (Emunds et al. 2021) dataset samples. Overall, the DNNs show a 
great potential to robustly perform semantic enrichment and parametrize the objects in the scanned data. 
However, the DNN-based methods remain at their infancy due to the lack of large-scale parametric 
datasets and challenges of processing low- texture geometric objects (Beyer and Dai 2022). 

 

 
 
(b) 

 

Figure 4: A generic framework, adapted from (Avetisyan et al. 2019; Emunds et al. 2022), for semantic 
enrichment of a scene using ScanNet dataset (Dai et al. 2017). a) the scanned data b) the pre-stored 

parametric dataset. 

3 CONCLUSIONS 

In this paper, we investigated the application of deep neural networks (DNNs) for BIModeling from 
scanned data, i.e., Scan-to-BIM. We focused on three sub-tasks of the Scan-to-BIM, namely point cloud 
registration and 3D reconstruction, object and plane detections, and BIM object fitting. Our paper 
reviewed the most relevant studies in both computer vision and construction literature to provide a better 
overview of the state- of-the-art research in the 3D interpretation of scanned data. Moreover, the current 
challenges of the state- of-the-art studies were discussed in detail for each sub-task of Scan-to-BIM. 

According to the reviewed studies, many efforts have been made to achieve robust registration of point 
sets with low density and noise problems, which is generally more prevalent in handheld sensors 
compared to terrestrial laser scanners (TLSs). Performing robust registration using DNNs makes it 
possible to use handheld sensors instead of the TLS for accurate 3D reconstruction, which is the 
backbone of BIModeling from scanned data. The performance of DNNs is also promising for object 
detection and semantic enrichment tasks. Although a handful of methods took advantage of the DNNs to 
enhance their Scan-to- BIM pipelines, the construction community still heavily relies on conventional 
methods. As described in detail at the end of each section in this paper, future work will help to broaden 
access to the opportunities of DNN usage for more effective BIModeling from scanned data. 

DNN 

Joint embedding space 

(a) 

DNN 
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