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Abstract: The advances in image capture technology have made it easier and more affordable to collect 

images and videos. Thus, most construction site are now equipped with surveillance cameras that 

continuously capture visual data which contain valuable information that can be used to assess the four 

main on-site construction processes: safety monitoring, progress monitoring, productivity monitoring and 

quality control. Computer vision algorithms and techniques are the most suitable tools to extract meanings 

(such as object location) from these data. The computer vision technique that has advanced the most and 

is the most used in the industry is object detection. This review aims to present the use of object detection 

to assess the four on-site construction processes and identify the challenges and opportunities that need 

to be addressed to correctly deploy and use this solution. Among the initial results there is a lack of research 

on object detection applied to quality control and the biggest challenges that object detection techniques 

face are the data acquisition, the construction environment and the limited hardware. 
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1 INTRODUCTION 
 

During the construction phase of a project many workers perform various activities concurrently using 

various tools and equipment. To ensure that activities are performed safely and on schedule, effective 

monitoring needs to be performed. However, when a construction site is large, such monitoring is time 

consuming and requires high skills, which leads to high cost. It is claimed that in construction sites, around 

400,000 images are taken for a typical commercial building project of approximately 750,000 sq. ft (Han et 

Golparvar-Fard 2017). With the advent of surveillance cameras (CCTV) used on construction sites and the 

development of mobile technologies (such as smartphones and tablets), this number will only rise. 

Moreover, the fact that surveillance cameras are continuously capturing images from the construction site, 

useful information regarding construction progress, compliance to safety rules or activity time of 

construction equipment/workers can be captured. With the development of computer vision techniques and 

their expansion across diverse industries, researchers in the construction industry are applying these 

techniques to automate the extraction of the previously mentioned information and help construction 

management team members in their decision-making tasks. 

The goals of this report are to review the use of object-detection techniques in on-site construction 
processes such as safety, progress, productivity monitoring and quality control and identify the challenges 
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and opportunities that can affect the deployment of such techniques in construction sites. The paper is 
structured as follows: 1) Discussion around the two types of object-detection techniques, 2) Methodology 
of the review, 3) Analysis of the collected data, and 4) Discussion about the application of object detection 
and challenges and opportunities. 

 

2 BACKGROUND 
 

Object detection is a technique that performs both classification and localization. Object detection is done 

first, to identify the types/classes of objects present in an image, then localization is done by drawing a 

bounding box around each of the classified objects. The methods used to perform object detection can be 

divided into two categories: traditional and deep learning methods. Traditional methods are based on 

handcrafted features such as color and shape, but objects can also be detected based on their motion 

within the scene. Deep learning methods can be categorized into one-stage and two-stage detectors. 
 

2.1 Traditional methods 
 

2.1.1 Motion-Based Methods 
 

The main technique that is used for motion-based object detection is background subtraction. The purpose 

of background subtraction is to detect a moving object in a scene. To achieve this, the image is divided into 

a foreground that contains the moving object and a background that contains no moving objects. If the pixel 

wise (i.e., the calculation is performed pixel-by-pixel) difference between the background image and current 

frame exceeds a certain threshold, the pixel is considered as being a part of the foreground. This method 

can be affected by dynamic backgrounds and variation of illumination (Piccardi 2004). 
 

2.1.2 Methods Based on Feature Extraction 
 

Object detection based on feature extraction aims to recognize and localize a type of object (e.g., human, 

vehicle, etc.) by extracting specific feature representations of the object in the image. The two main image 

features that are extracted are colors and shapes. For shapes, the histogram of oriented gradients (HOG) 

descriptor has been used to describe the appearance and shape of an object where a histogram of gradient 

orientation or a histogram of edge orientation is computed. The concatenation of these histograms forms 

the representation (Dalal et Triggs 2005). The other shape features that have been used to identify the 

presence of the object in an image are the Haar-like features (Papageorgiou, Oren et Poggio 1998). 

Color features have been used to recognize objects that are easily identifiable by their color (e.g., hardhat, 

safety vest). Swain and Ballard (1991) demonstrated that the color histogram is robust, easy to compute 

and that it is invariant to rotation and translation. Yet it is affected by variations in illumination. 

2.2 Deep learning methods 
 

2.2.1 Two-Stage Detectors 
 

The R-CNN (Girshick et al. 2014) algorithm proposes regions in the image using a high-capacity 

convolutional neural network (CNN) that includes all possible object candidates. Then, the feature vectors 

of each region are extracted using a CNN to identify the object present in the proposed regions. Fast R- 

CNN (Girshick 2015) trains in the same network a detector and a bounding box regressor which reduce 

computation. Thus, Fast R-CNN can detect objects faster than R-CNN. Faster R-CNN (Ren et al. 2016) 

has been proposed to resolve the main issue of Fast R-CNN which is the region proposal computation. 

(Ren et al. 2016) developed a Region Proposal Network (RPN) which shares the extracted features with 

the detector network to enable cost-free region proposals. It provides improved accuracy and speed. 
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2.2.2 One-Stage Detectors 

 

YOLO (You Only Look Once) (Redmon et al. 2016) as a one-stage detector can detect full-image objects 

in real-time. It performs the regression in grid regions and extracts features using CNN. In 2017, YOLOv2 

(YOLO9000) was released (Redmon et Farhadi 2017). Its main advancements are 1) batch normalization 

(BN) that accelerates convergence and helps to regularize the model, 2) high-resolution classifier, and 3) 

use of anchor boxes. In 2018, YOLOv3 was released (Redmon et Farhadi 2018) with these improvements: 

1) multi-label classifier, 2) three different scale feature maps to predict bounding boxes, and 3) deeper 

backbone named Darknet53. In 2020, Alexey Bochkovskiy et al. introduced YOLOv4 which uses data 

augmentations and post-process methods to improve performance (Bochkovskiy, Wang et Liao 2020). 

As another one-stage detector, Single-Shot Detector (SSD) (Liu et al. 2016) takes advantage of the 

regression of YOLO and the anchor approach of the Faster R-CNN. 

 

3 REVIEW METHODOLOGY 
 

To identify relevant academic publications, two major databases were (i.e., Scopus and Web of Science) 

used in this research. These databases offer an extensive collection of academic resources and provide 

adequate tools to find relevant references. Moreover, one can export a large amount of structured data for 

analysis. The search keywords included the main on-site construction processes, namely, safety, progress, 

productivity monitoring and quality control. The main search was performed through Title, Abstract and 

Keywords and included the following keywords: ("computer vision" OR "object detection" OR "object 

recognition") AND ("construction"). Thus, it was possible to identify a wide number of articles relevant to 

the topic. To refine the search on each of the construction processes, a secondary search was performed 

using these keywords: ("computer vision" OR "object recognition" OR "object detection" OR "Faster R- 

CNN" OR "YOLO*" OR "Mask R-CNN" OR "Fast R-CNN" OR "R-CNN" OR "CNN") AND (type of on-site 

process (safety, progress, productivity, quality)). 
 

The initial search identified 482 articles. From this, the relevant articles were selected based on the following 

criteria: (1) the main source of data comes from images and/or videos; (2) the framework developed in the 

article uses an object-detection algorithm; (3) the method does not use additional 3D data, such as point 

cloud; and (4) research focuses on on-site construction processes. By applying the mentioned criteria, the 

final number of relevant articles to be used for the analysis was 56. 

 

4 DATA OVERVIEW 
 

Table 1 list the journals in which identified articles were published. The journal of Automation in 

Construction holds the most articles. The number of publications regarding object detection in 

construction has significantly increased over time. There has been a burst of publication since 2016-2017, 

as shown in Figure 1. It is speculated that the fast development of Deep Learning methods, the increase 

in computational power, the data availability and the sharing of frameworks and packages from Deep 

Learning researchers (e.g., Tensorflow (2015), Pytorch (2016)) have initiated this burst. 
 

 
Figure 1: Publications per year across construction processes 
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Table 1: List of the most represented journals and conferences 

 

Journal title Number of articles 

Automation in Construction 19 

Journal of Computing in Civil Engineering 9 

Advanced Engineering Informatics 4 

Journal of Construction Engineering and Management 4 

IEEE Access 2 

Remote Sensing 2 

Engineering, Construction and Architectural Management 2 

Conference title  

ISARC - International Symposium on Automation and Robotics in Construction 

and Mining 

3 

EG-ICE, European Group for Intelligent Computing in Engineering 1 

 

The relevant papers were grouped based on the following four construction processes: Safety, Progress, 

Productivity monitoring and Quality control. Figure 2a shows the distribution of papers in each category. 

Safety and productivity monitoring are the two categories where object detection has been the most used. 

Quality control could greatly benefit from object detection; however, very few papers focus on it. 

 

The average publication year of the papers that used traditional object detection is around 2015, whereas 

those that used deep learning is around 2020. Figure 3 visualizes the use of various traditional and deep 

learning object-detection methods through the years. The results demonstrate that after 2017 very few 

traditional methods were used, which coincides with the arrival of more robust deep learning techniques. 

Moreover, after the release of YOLOv3 in 2018, the YOLO model family was the most used due to its 

robustness and its capacity to perform fast and accurate object detection. From 2018 to 2022, the YOLO 

model family was the most used with 15 papers followed by Faster R-CNN, Mask R-CNN and SSD. 

 

 

Figure 2: a) Number of papers per on-site construction process, b) Proportion of real-time object detection 
per type of process 

 

 
Figure 3: Object-detection techniques used from 2009 to 2022 
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Some methods provided by the different papers are not necessarily in real-time. Indeed, it is best to have 

real-time insights when decisions need to be made quickly. Real-time object detection is needed for safety, 

productivity monitoring and quality control. For progress monitoring, the reviewed papers showed that real- 

time detection is not a necessity because most of the techniques were not in real-time or did not mention 

that they were, as shown in Figure 2b. 
 

The target objects that are detected in each article can be grouped into 9 categories. Each type of 

monitoring has its own set of target object. In safety monitoring, the most targeted objects are 

person/workers and PPE to ensure that workers are following the safety rules, but in some cases 

construction vehicles need to be detected in the case of collision. Similarly, progress and productivity 

monitoring target person/workers. However, they also target material, construction equipment, and 

building elements to provide quality information on how productive the workforce and construction 

vehicles such as excavator are, but also which type of material or building elements have been added. 

Quality control is mainly focused on materials. Figure 4 shows the distribution of detected objects for each 

type of monitoring. 
 

 
Figure 4: Distribution of types of detected objects for each type of monitoring 

 

5. APPLICATION OF OBJECT DETECTION IN THE CONSTRUCTION INDUSTRY 
 

5.1 Safety Monitoring 
 

For safety monitoring, object-detection techniques have mainly been used to detect safety hazard scenarios 

and violation of safety rules. Safety hazard scenarios can be divided into two categories: static and dynamic. 

Both of these categories concern two types of objects: workers and PPE. For example, (Mneymneh, Abbas 

et Khoury 2019) proposed a framework to detect workers without helmets that used background subtraction 

and a classifier to identify workers and a color-based classification to detect hardhats. Other vision 

techniques based on Deep Learning have been used to locate workers within complex and dynamic 

environments (e.g., Fang et al. 2018a; Shen et al. 2021; Li et al. 2021a; Kim, Kim et Shchur 2021). 
 

In static hazard scenarios, the focus is on the interaction between the worker and their surroundings. To 

understand interactions between workers and their environment and detect dangerous behavior, (Tang, 

Roberts et Golparvar-Fard 2020) developed a framework that first detected the workers and construction 

objects (such as a ladder, scaffolding) using Faster R-CNN and then used their HOI (Human-Object 

Interaction) recognition model to predict the interaction between worker and tools/equipment. To prevent 

falls from height, object-detection methods have been used to monitor compliance to fall protection system 

and equipment. For example, (Fang et al. 2019) developed a system to detect workers who traverse 

structural supports by identifying the relationship between the worker and structural support to determine 

unsafe behaviors. Similarly, (Fang et al. 2018b) developed a framework based on a Faster R-CNN to detect 

workers and a CNN to identify whether they were wearing their harness. 
 

For dynamic hazard scenarios, the focus is mainly on construction vehicles and moving/falling objects. 

Many of the research projects aim to reduce “struck-by” accidents. (Zhang et al. 2020) proposed a 

framework that detects workers and construction vehicles (such as excavator) using a Faster R-CNN 
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model. Once these objects had been detected, the risk of collision could be evaluated. Similarly, (Kim, Lee 

et Kamat 2020) developed a framework that first detects workers and construction vehicles using YOLOv3 

model and then predicts their trajectory. Thus, the methods mentioned above help to detect the unsafe 

proximity of workers to a dynamic or static hazard. 
 

5.2 Progress Monitoring 
 

Accurate progress monitoring gives useful insights regarding the as-built states of the construction project 

to prevent time and cost overruns. As the process involves the analysis of visual data, efficient automated 

systems can be used to help construction teams reduce reworks and errors (Ekanayake et al. 2021). 

Progress monitoring is performed for interior and exterior construction. 
 

To provide insights as to the progress of interior construction, (Roh, Aziz et Peña-Mora 2011) developed a 

framework that compares as-built photos with an as-planned 3D BIM model in a 3D walk-through model by 

first detecting the material in the as-built photo and then seeing if all the material from the 3D BIM model 

are present in the photo. Similarly, (Deng et al. 2020) proposed a method that detects tiles by extracting 

LBP (Local Binary Pattern) features. The edge coordinate of the detected tiles is then converted from pixel 

to real-world coordinates to transform it into a BIM model. A different approach was used to detect interior 

materials, such as studs, electrical outlets, insulation and three states for drywall sheets (i.e., painted, 

plastered, and installed), which is based on colors and shapes (Hamledari, McCabe et Davari 2017). 
 

Moreover, exterior construction has also greatly benefited from object-detection algorithms to assess 

progress without necessarily comparing visual data with a BIM model. (Hevesi et al. 2021) proposed a two- 

stage method that first detects construction vehicles, construction equipment, resources and materials and 

then evaluates the relationship between these objects to estimate the progress. An alternative method to 

assess progress is to provide adequate information about workforce and equipment using videos. (Zhu, 

Ren et Chen 2017) developed a framework including an object detector based on HOG features and latent 

Support Vector Machine (Felzenszwalb et al. 2010) to identify and track workforce and equipment. 

Comparing as-built images with an as-planned BIM model is also utilized for exterior construction 

monitoring. For example, (Ibrahim et al. 2009) proposed a system that automatically generates work 

packages (groups of small, related tasks in a project) by analyzing construction site videos to detect 

changes. Wang et al. (2021) developed a framework that includes object detection and multi-object tracking 

to locate and acquire temporal information of precast walls. The collected information is then transferred to 

the BIM model and the corresponding walls are matched using the temporal information to assess progress. 
 

5.3 Productivity Monitoring 
 

The term Productivity in the construction industry is defined as being the maximization of an output while 

optimizing the inputs, in which the inputs are workers, equipment and material (Naoum 2016). Thus, vision- 

based techniques, such as object detection, can help automate productivity monitoring by locating workers, 

equipment and describing their interactions and activities. Productivity monitoring can be divided into 

human and equipment/vehicle productivity. 
 

In this example of productivity monitoring, still images from construction sites that show the execution of an 

activity were used by (Luo et al. 2018) to first locate workers and tools using a Faster R-CNN model and 

then to recognize construction activity performed by the workers. Similarly, a zero-shot human-object 

interaction detection algorithm was used with a knowledge graph to extract a visual relationship and update 

construction activity knowledge graphs (Pan et al. 2022). In another study, only detected workers and their 

positional relationships were used to determine the type of activity (Li et al. 2022). Other techniques assess 

productivity by first detecting workers and work objects to determine how much time the workers spend on 

a specific task using their positional relationship (Li et al. 2021b; Li et al. 2022). 
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Assessing productivity of construction equipment and construction vehicles is particularly important for 

earthmoving processes. In a study from (Roberts et Golparvar-Fard 2019), the RetinaNet model was used 

to detect excavators and dump trucks and a FCNT (fully-convolutional network-based tracker) was used to 

track them. Then their trajectories were computed and fed to a hidden Markov model to evaluate the type 

of activities performed, their duration and the transition time between each activity. By using 

photogrammetry techniques and an object-detection algorithm, (Bügler et al. 2014) evaluated the volume 

of excavated soil and generated statistics about equipment activities, such as loading and idle times to 

accurately measure the productivity of construction equipment and vehicles. Moreover, after detecting 

dump trucks and excavators using an R-FCN model, (Kim et al. 2018) used their bounding boxes to 

establish a context reasoning system that could be used as an input for a process simulation software to 

generate reports on productivity and cost analysis. 
 

5.4 Quality control 
 

The construction industry frequently experiences cost and schedule overruns that are mainly due to 

delays in material delivery or reworks. Establishing quality control procedures can help to reduce the 

amount of rework. However, quality control procedures mainly require a large amount of manual labor. 

Thus, computer vision techniques, such as object detection, can be helpful to automate some of the 

related procedures due to their ability to extract spatial and dimensional information. So far, object- 

detection techniques have not really been fully explored for on-site quality control. However, some 

exploratory works have been performed. (Lin et Fang 2011) proposed a system based on geometric 

characteristics of the tile surface to evaluate tile alignment. A mask R-CNN technique and a stereo vision 

camera were used to detect steel bars and generate information such as quantity, spacing, diameter and 

length of steel bars (Kardovskyi et Moon 2021). The low number of publications for object detection 

applied to on-site quality control shows that it is a topic that needs to be further explored in the future, in 

particular, for the proactive detection of non-compliance to quality protocols. 

 

6. CHALLENGES & OPPORTUNITIES 
 

6.1 Data Acquisition Challenges 
 

There is a lack of datasets specific to construction environments. Given that an object-detection algorithm 

requires a repository of visual data, the unavailability of domain datasets causes difficulties in training and 

evaluating these types of algorithms. Therefore, researchers must create their own datasets, which mostly 

results in incomplete datasets, which can cause an overfitting problem for the trained models. Moreover, 

data are mainly gathered in a specific construction site and requiring specific camera settings, all of which 

limits the reuse of datasets. Thus, the trained algorithm cannot be deployed in other construction site 

without being retrained with the data of the new site. 
 

Additionally, maintaining the high quality of input data is challenging. Even if an object-detection algorithm 

has a well-structured architecture and has been trained on well-annotated data, if the inputted data is not 

of high quality (e.g., blurry or having some loose pixels) good results cannot be attained. Therefore, it is 

necessary to use cameras of sufficient quality and to define the specification for camera placement (angles, 

distance from the desired object, etc.). 
 

6.2 Construction Environment Challenges 
 

Construction sites are very dynamic with a multitude of simultaneous activities, which usually translates to 

cluttered backgrounds and occlusions in the camera’s FoV. Thus, object-detection algorithms can be 

affected by a variety of object appearance variations such as viewpoint, scale or posture (for worker 

detection). Moreover, the object-detection systems are generally used to analyze outdoor scenes, which 

make them susceptible to weather conditions and illumination variations. 
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6.3 Performances Issues 

 

For some monitoring tasks, such as safety and productivity monitoring, and quality control, real-time object 

detection is a necessity. This is quite a challenge because currently, most of the algorithms have large 

numbers of parameters which leads to the use of a substantial amount of memory to perform their 

computations and requires a large amount of space in disk storage. It is quite a concern when such an 

object-detection algorithm needs to be deployed on a limited-capacity server (only use CPUs) on a 

construction site or on an embedded system (such as a UAV). Some reviewed papers mentioned that their 

object-detection system worked in real-time but most of them took advantage of GPUs, which accelerates 

inference (predictions), to make that statement. It is not guaranteed that this type of component will be 

available on the machine that is present at the construction site. It is therefore preferable to give the 

inference time on a CPU. Moreover, to reduce the number of parameters of an object-detection model, the 

exploration of a lighter backbone can be done. This can reduce the inference time on the CPU (and GPU). 

Nevertheless, it will impact the precision of the model. The challenge is in finding a trade-off between 

inference time and precision to produce an efficient solution that can be deployed on most machines. 

Reducing the number of parameters of an object-detection model can also reduce the overfitting when the 

number of data is limited and there is a small number of classes to detect. 

 

7. CONCLUSION 
 

Object-detection techniques are very important for visual based framework applied to construction. Indeed, 

these techniques are the basis for the other computer vision techniques such as action recognition, object 

tracking, etc. In this review, the applications of object detection in on-site construction processes were 

explored. Traditional image processing and Deep Learning techniques were discussed as well as the type 

of object detected for each on-site processes and if the developed system perform in real-time. It was 

shown that object-detection algorithms are more used in safety and productivity monitoring, followed by 

progress monitoring. However, for on-site quality control it has not really been explored. Among the different 

Deep Learning techniques, the YOLO family is the most used technique in the construction industry 

because of its robustness and fast inference. 
 

Challenges in implementing object detection for on-site construction processes were identified. One of the 

most important challenges is collecting a sufficient amount of data. The various reviewed papers showed 

that most of the time, researchers needed to collect data on their own which led to not having enough 

annotated data to adequately train and evaluate the developed frameworks. Another important challenge 

is the use of good quality data. Indeed, the dynamic context of a construction site makes it difficult to 

always input good quality images into the developed object-detection method. Also, using object- 

detection methods on construction sites can be affected by the hardware at hand. Indeed, the developed 

methods need to be precise enough but also lightweight enough to be applicable in real conditions. 
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9. APPENDIX 
 

Table : Object-detection techniques and detected object for on-site construction processes 
 

Groups Methods Detected objects References 

Safety monitoring 

 Faster R-CNN Person,PPE (Fan et al., 2020) 
 SSD PPE (Wu et al., 2019) 

Static hazards  
Person,PPE,Const 

equipment 

 

 YOLOv5 (Peng et al., 2021) 
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Faster R-CNN 
Person, PPE, Const 

vehicle 
(Piao et al., 2021) 

Traditional Person, Const vehicle (Hu et al., 2020) 

Mask R-CNN 
Person, PPE, Const 

vehicle 

SSD 
Person, PPE, Const 

vehicle 

Traditional  
Person, Const 
vehicle, vehicle 

(Fang et al., 2020) 

(Xiong et al., 2019) 

(Zhu, Wen et Deng, 2020) 

Dynamic hazards YOLOv3 Person, Const vehicle (Kim, Lee et Kamat, 2020) 

YOLOv3  Const vehicle  (Meng et al., 2020) 

YOLOv2 Person, Const vehicle   (Luo et al., 2020) 

YOLOv3  Const vehicle   (Zeng et al., 2021) 

Faster R-CNN Person, Const vehicle  (Zhang et al., 2020) 

Traditional Person, Const vehicle (Kim, Kim et Kim, 2016) 

YOLACT 
Person, PPE, Const (Kang et al., 2022) 

 vehicle  

Progress monitoring 

 
 

Exterior 
construction 

Traditional Building element (Ibrahim et al., 2009) 

Mask R-CNN Building element  (Wang et al., 2021) 

Const vehicle, 

SSD Person, Const 
equipment 

(Zhang et al., 2018) 

 
 

Interior 
construction 

(Roh, Aziz et Peña-Mora, 
2011) 

(Deng et al., 2020) 

(Hamledari, McCabe et 
Davari, 2017) 

Material 

Material 

Material 

Traditional 

Traditional 

Traditional 

YOLOv3 

Faster R-CNN 

Custom DL model 

YOLOv3 

Person, PPE 

Person 

Person, PPE 

PPE 

Faster R-CNN 

YOLOv4 

Mask R-CNN 

(Nath, Behzadan et Paal, 
2020) 

(Fang et al., 2018a) 

(Shen et al., 2021) 

(Delhi, Sankarlal et Thomas, 
2020) 

(Li et al., 2021a) 

(Son et Kim, 2021) 

(Fang et al., 2019) 

Custom DL model 

CenterNet 

YOLOv5 

YOLOv3 

Traditional 

 
YOLOv4 

Faster R-CNN 

Person, PPE 

Person 

Person, Building 
element 

Person 

Person 

PPE 

PPE 

Person, PPE 

Person, Const 

equipment 

Person, PPE 

(Golcarenarenji et al., 2021) 

(Goh, Tian et Chian, 2022) 

(Li et al., 2022a) 

(Chen et Demachi, 2021) 

(Mneymneh, Abbas et 
Khoury, 2019) 

(Kim, Kim et Shchur, 2021) 

(Fang et al., 2018b) 



 

14 
 
 

 

 

 
 

Custom DL model 
Person, Building 

element 
(Pour Rahimian et al., 2020) 

 Traditional Person, Const vehicle (Zhu, Ren et Chen, 2017) 

 
YOLOv3-SPP 

Const vehicle, Const 
equipment 

(Hevesi et al., 2021) 

Productivity monitoring 

  

YOLOv2 
Person, Tool, 

Material, Const 
equipment 

 

(Pan et al., 2022) 

 Faster R-CNN Person (Li et al., 2022b) 

Human 
productivity CenterNet 

Person, Building 
element 

(Li et al., 2021b) 

  
Faster R-CNN 

Person,Const 
equipment,Const 
vehicle,Material 

 
(Luo et al., 2018) 

 Faster R-CNN Const equipment (Wang et al., 2022) 

 SSD Const vehicle (Wu et al., 2021) 

 
RetinaNet Const vehicle 

(Roberts et Golparvar-Fard, 
2019) 

 R-FCN License plate (Kim et al., 2019) 

 YOLOv3 Const vehicle (Xiao et Kang, 2019) 

 R-FCN Const vehicle (Kim et al., 2018) 

Equipment/vehicle 
productivity 

Traditional Const vehicle (Bügler et al., 2014) 

Traditional Const vehicle (Azar et McCabe, 2013) 

 
Traditional Material 

(Ranaweera, Ruwanpura et 
Fernando, 2013) 

 
Traditional Const vehicle 

(Rezazadeh Azar et McCabe, 
2012a) 

 
Traditional Const vehicle 

(Rezazadeh Azar et McCabe, 
2012b) 

 Traditional Const equipment (Gong et Caldas, 2010) 

 Quality monitoring  

 Mask R-CNN Material (Kardovskyi et Moon, 2021) 

 Traditional Material (Lin et Fang, 2011) 

 


