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Abstract: The demand for new deconstruction and demolition approaches is escalating as structures built 
in 20th century development booms approach their end of life. Rehabilitation and careful deconstruction 
approaches are increasingly economically and environmentally motivating. For example, in Ontario, 
Canada multi-decade efforts to decommission nuclear power plants are challenging teams of engineers, 
researchers, venders, and laborers. In these hazardous scenarios, classical heavy demolition approaches 
are not an option, and the asset owners find that the costly development of novel workflows and 
technologies to plan and undergo these deconstruction operations is the only option. These trends present 
construction researchers with an opportunity to develop technologies and processes to achieve 
deconstruction project goals with improved efficiency, certainty, and safety. This paper presents a modular 
framework for remote human-robot collaboration for waste management in decommissioning and 
demolition. The proposed framework includes robotic platform reality data capture, scan processing (e.g., 
segmentation, surface estimation, and recognition), gamified waste packing in virtual reality (VR), and 
packing plan execution. A comprehensive review of state-of-the-art technologies of each module is explored 
from the standpoint of applicability to deconstruction and demolition. Then, an autonomous robotic platform 
for reality data capture is presented. A reconfigurable semi-automated VR platform for waste packing 
optimization is presented as an example of this process workflow in the context of remote deconstruction 
and demolition. Finally, the ideas of robotic packing plan execution are discussed as future work.  
 

Keywords: 3D scanning, optimization, 3D irregular packing problem, virtual reality, robotics, SLAM, 
gamification, human-robot interaction, robotic bin packing, waste management, nuclear power 
plant 

1 INTRODUCTION 

Recent technological advancements such as enhanced three-dimensional scanning sensors, low-cost 
sensors, and an open-source software community have increased the feasibility of using robotic platforms 
in real-world applications. Historically, this research area has flourished around structural inspection and, 
more recently, construction. However, deconstruction and demolition (D&D) are an important part of the 
infrastructure lifecycle due to the unique challenges they present, including difficult-to-reach areas, 
unknown materials, BIM/as-built discrepancies, and hazardous materials. This paper details a remote 
human-robot collaborative modular framework for D&D activities, with a focus on waste packing 
optimization in nuclear facility decommissioning. The proposed framework includes a robot platform for 
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rapid inspection, a three-dimensional model for data storage and demonstration, and a mixed reality 
platform for waste segmentation and packing optimization. To demonstrate this workflow in the context of 
remote decommissioning and demolition, an autonomous robot platform for rapid data collection and a 
reconfigurable virtual reality platform for waste segmentation and packing optimization are applied to two 
case studies.  

2 LITERATURE REVIEW D&D of nuclear facilities 

Globally, there are currently 443 nuclear reactors in operation as of May 13, 2021. 67.5% of the current 
operational nuclear reactors are older than 30 years, and around 25% are older than 40. According to IEA, 
around one-quarter of the current nuclear capacity in advanced economies is set to be shut down by 2025, 
and around 200 commercial reactors are to be shut down by 2040 [1,2]. The D&D of nuclear power plants 
often involves activities associated with the removal of fuel, safe storage, decontaminating structures and 
components, demolition of the building, and management of resulting waste [3]. There are two main 
decommissioning strategies: Immediate Dismantling (or Early Site Release/'Decon' in the USA) and Safe 
Enclosure ('Safstor') or deferred dismantling. In immediate dismantling, final dismantling or 
decontamination activities can begin within a few months after the facility is shut down. In the Safe 
Enclosure ('Safstor'), the nuclear plant is kept in storage with surveillance for an extended period after all 
fuel is removed from the reactor. The plant can be dismantled once radioactivity has decayed to lower 
levels and the safety risk to workers is substantially reduced [4]. 

Protecting and minimizing the impact on workers and optimizing disposal waste management are two of 
the core objectives of the D&D process [5]. The D&D of NPP presents workplace hazards since it exposes 
workers to hazardous environments and materials. Integrating remote robotic technology into the D&D 
workflow frees workers from physical contact with radiation environments and materials. It has been proven 
to be beneficial for protecting and minimizing the impact on workers. Using robotic technology to perform 
internal inspection, segmentation, and demolition of radioactive components, radioactive waste packing, 
and extensive cleanup activities can significantly reduce worker exposure and maximize worker safety. The 
D&D process also significantly grows radioactive waste inventory. The ability to efficiently and safely treat 
and dispose of radioactive materials has become an essential prerequisite for the nuclear facility D&D 
process [6]. Proactively managing the disposal of radioactive waste (L&ILW) could potentially save millions 
of dollars in D&D costs. 

2.1 Robotic data capture 

Research has demonstrated that robotic mapping systems, including those based on SLAM (Han 2015, 
Charron 2019, Phillips 2019, Palomer 2019) and structure from motion (SFM) (Lattanzi 2015, Khaloo 2018, 
Zhao 2021), are effective in civil engineering infrastructure applications. Robotics, computer vision, and 
data analysis techniques are usually adapted from their respective core research communities. Robotic 
platforms have been employed for tasks such as 3D scanning, mapping, automated defect detection, and 
disaster relief for example. Overall, civil robotics applications have advanced immensely over the past 10 
years, however, they often lag a bit behind dedicated robotics work. This is likely due to the startup costs a 
civil lab faces in order to dedicate personnel and funding to developing the robotic platform. 

Recently, private companies have brought sophisticated reality data capture packages to the market for 
relatively affordable prices. These offerings combine sensors such as light detection and ranging (Lidar), 
cameras, and inertial measurement units (IMU) with self-localization and mapping (SLAM) software to 
produce colorized point clouds of the scanned areas. These packages are often designed to mount on 
robots or handheld. These solutions greatly increase access to robotic data capture for scientists who seek 
to perform robotic scanning at a reasonable cost with a dramatically reduced learning curve. As a result, 
the opportunity for applications of robotic data is at an all-time high. 

2.2 Object recognition and segmentation 

There has been a proliferation in laser scanners since they have become more accurate and cheaper, 
which has found various applications such as autonomous driving, aerial scanning, inventory management, 
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augmented reality, and robotics. For most of these applications in the industry, point clouds are one of the 
best ways to represent a three-dimensional object in virtual spaces, allowing measurement accuracy, bird’s 
eye view of the site, and accessibility to the site from a computer. However, a point cloud has limited visual 

data if it is not analyzed to detect objects or segmented by types of objects on-site, and its manual 
segmentation can be tedious. Point cloud analysis to find objects faces multiple challenges: sparse input, 
unordered geometry, variable point density due to nonuniform point sampling, noise due to minor vibrations, 
occlusion, and surface reflection [7]. The increase of scan data in point clouds format has generated greater 
interest in machine learning research to tackle the problems and generate detection and segmentation with 
higher accuracy and speed, empowering essential knowledge of the current infrastructure when 
decommissioning. There are multiple methods that neural networks use to do object recognition and 
segmentation, such as direct point cloud analysis, voxel, pixel grouping or volumetric pixel-based 
structures, hybrid point voxel structures, and point group feature analysis. 

Direct point cloud analysis takes the points as input and outputs an object label or a segmented point cloud 
[8, 9, 10, 11]. The benefit of direct point cloud analysis is its higher accuracy of high-density point areas 
and linear features while using the points directly, which lowers the overhead preprocessing of points and 
leads to 58.8% mean Intersection over Union (mIoU) in Semantic KITTI benchmarks. [12,13] However, the 
larger the point cloud, the more process-intensive it is to process all the points in the point cloud. The 
volumetric pixel approach is gaining interest to circumvent overwhelming processing times [13,14]. The 
pixel grouping or volumetric pixels voxel-based point cloud analysis takes a point cloud and generates a 
regular eulerian grid coordinate system converted into raster volumetric pixels. The voxelization of a scene 
allows for a coarse view and faster processing of extensive point cloud data removing detail in favor of a 
more significant analysis of geometric features.[15,16] Recently, to maintain both speed and detail of the 
point cloud, research into voxel-point hybrid has proven optimal for object detection and segmentation[17, 
18]. With this approach, we can get state-of-the-art segmentation results at 70.8% mIoU [19]. However, 
since most datasets have been generated for autonomous vehicles[13] or house and office spaces [20, 21], 
there is a need for industrial point cloud datasets to boost the analysis of NPP structures for asset 
management and decommissioning. 

Understanding the current limits of the state-of-the-art and data availability, we opt to manually generate 
the segmentation of the proposed objects to be packed and contained while keeping an eager eye to 
automatic industrial NPP point cloud segmentation and object detection in the near future. 

2.3 Decomposing and packing optimization 

Decomposing and packing optimization of structure in decommissioning and demolition is an application of 
packing optimization problems. Packing optimization problems consist of arranging objects into one or a 
set of containers to optimize one or multiple objectives, such as maximizing the packing efficiency or 
minimizing the container's volume. The primary constraints of packing optimization problems are that the 
objects must not overlap and are entirely contained inside the containers [7]. The specific packing problem 
discussed in the paper involving packing optimization of the 3D irregular-shaped object can be referred to 
as 3D irregular cutting and packing (C&P) problems. There is a growing interest in 3D irregular C&P 
problems because of their broad applications and potential impacts in a multitude of industries. Three- 
dimensional irregular C&P problems can generally be applied both to traditional applications such as 
improving transport efficiency of building parts or pre-fabricated construction assemblies and emerging 
applications in civil engineering such as 3D printing in construction and facility waste management [8]. 

Researchers have proposed different solution approaches that can be classified into three categories: 
heuristics, metaheuristics, mathematical programming. Heuristics are rules of thumb used to guide, 
discover and reveal possible plausible but not necessarily, the correct solutions to solve a problem [9]. For 
instance, the most popular heuristic algorithm for 3D irregular packing problems is the Bottom-left-front 
algorithm, which packs pre-ordered objects one by one at the most bottom left front corner of the container's 
available space [10,11]. However, heuristics are generally relatively fast but can only explore limited 
packing configurations. Metaheuristics are combinatorial optimization techniques that provide guidelines to 
develop a process capable of escaping from local optima and finding a good solution [12]. Genetic algorithm 
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(GA), simulated annealing (SA), Tabu-search are some of the metaheuristics applied to the 3D irregular 
packing [13–15]. Metaheuristics explore more potential configurations resulting in significantly more 
computational time. Researchers have also tried to formulate the 3D irregular packing problem using 

 mathematical programming. The most successful approach is based on the phi-function, which provides a 
tool to mathematically describe non-overlapping and containment constraints [16,17]. Heuristics are then 
applied to reduce the problem into a sequence of subproblems with smaller dimensions and fewer 
constraints that can be solved using a nonlinear programming solver [16]. The drawback of the phi-function- 
based mathematical programming method is computationally costly and currently futile for arbitrary shapes. 
The 3D irregular cutting and packing problems are Np-hard [18]. In other words, the expected time to find 
an optimal solution is likely to increase exponentially as a function of the number of inputs [19]. None of the 
existing 3D irregular packing problem algorithms can find a globally optimal solution in polynomial time [11]. 
Overall, finding a suitable solution through autonomous approaches is currently computationally expensive 
and time-consuming. 

When dealing with D&D of NPP, large reactor components or nuclear facilities are considered. The 
segmentation and packing optimization need to decompose large components or structures into packable 
parts. This problem is referred to as the decompose-and-pack problem or decomposing and packing 
problem, which is a variation of the irregular 3D packing problem. The decompose-and-pack problem not 
only requires optimizing the packing of parts but also seeks to decompose components or structures into 
packable parts, which can then be efficiently packed [20]. The coupling of decomposition and packing 
makes the solution search even harder. Vanek et al. [13] propose an algorithm that converts the 3D model 
into a shell, which is then divided into segments. The packing part follows the ensuing process. A placement 
heuristic that minimizes the waste parts between segments is used to build packing configurations. Tabu- 
search is then used to optimize the packing sequence. Yao et al. [21] propose an iterative process between 
decomposition and packing to find the decomposition with high qualities that produces minimum packing 
volume. 

3 WORKFLOW OVERVIEW 

 

Figure 1: The overall human-robot collaborative workflow 

 

The overall proposed workflow, an aggregation of robot inspection, human planning, heuristic algorithm, 
virtual reality, and robot execution, is outlined in Fig. 1 and discussed in the following sections. This workflow 
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performs human-robot iterative waste packing optimization in remote decommissioning and demolition to 
minimize the final waste volume and ensure the effectiveness and safety of the process. 

Data capturing (Robot inspection). The first step involves capturing the initial data for the waste after the 
demolition process using a remotely controlled or autonomous unmanned ground vehicle (UGV). The UGV, 
equipped with synchronized and calibrated sensors (e.g., GPS, IMU, Cameras, Lidar), can continuously 
track and generate a 3D map of the surroundings with simultaneous localization and mapping (SLAM) 
software. Implementing UGV in data capturing can increase the efficiency of the process and vastly 
decrease the risk of human exposure to hazardous environments. 

Data processing. Once the 3D map is acquired, the second stage is to segment the target waste objects 
from the noisy environment and convert the corresponding raw point cloud data into mesh files. The 
purpose of having mesh files of the waste objects is to facilitate effective manipulation in the following 
packing configuration planning process. In this regard, a point cloud requires preprocessing to remove 
outliers and noise. Then, objects can be segmented and converted into a mesh format manually using the 
screened Poisson surface reconstruction algorithm in MeshLab [22]. 

Decomposing and packing planning. The decomposing and packing planning includes information about 
the structure's decomposition, the initial position, translation, and rotation of each decomposed component 
(here, a part is defined as a decomposed component of the structure). The optimal decomposing and 
packing planning process occurs in three stages on an interactive virtual reality (VR) platform. The first step 
requires the user to virtually assess the structure and, if necessary, decompose it to increase packing 
efficiency later. The decomposition strategy has an effect on how well the components can be packed. The 
user then initiates the second step, which is the execution of the autonomous packing algorithm. The 
autonomous algorithm is developed using metaheuristics to provide initial packing configurations that can 
be quickly fine-tuned to potentially achieve high packing efficiency. The final step enables humans to adjust 
the packing configuration as needed to achieve optimal decomposing and packing plans. The user receives 
immediate feedback on the current packing configuration via the virtual reality user interface in the virtual 
reality environment. This step leverages human instincts, strategic thinking, and the VR platform's ability to 
trial and error various packing configurations until the user is satisfied with the result. The packing 
configurations created in virtual reality planning scenarios can be executed later by humans or robots. 

Packing plan execution. With the information depicted in the pre-planned packing configuration, a robot 
arm can replicate each part's trajectories and execute the packing plan in the physical environment with 
minimal human supervision. 

4 DATA CAPTURING USING UGV 

A UGV equipped for robotic data capture in deconstruction environments is presented. 

 

Figure 2: UGV data collection platform 
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The mobility of the proposed solution is provided by a Clearpath Robotics Husky, an off-the-shelf platform 
that offers ruggedized differential-based steering and sensor payload support. With its large wheels and 
high torque, the Husky excels in mobility in unpredictable circumstances for a wheeled robot. However 
alternative methods such as dog-like robots are suited to construction and deconstruction environments as 
well. 

The sensing kit for the proposed platform includes inertial multi-sensors (IMU), global positioning system 
(GPS) receivers, and a combination of cameras and light detection and ranging (LIDAR) for vision and 
ranging measurements. Each sensor type has strengths and weaknesses. For example, GPS 
measurements do not suffer localization drift, but offer low accuracy and fail when GPS coverage is 
occluded such as indoors. 

 

 

Figure 3: Core sensing kit 

A 360 degree horizontal field of view is proposed for coverage and to minimize data collection time. A 360 
degree Lidar sensor positioned horizontally is sufficient to achieve this field of view for 3D range data. For 
image data, a combination of wide field of view (WFOV) camera lenses and a modular mounting plate are 
utilized to achieve a 360 degree field of view. In experimentation, WFOV lenses with greater than 180 
degree coverage positioned in opposing directions are sufficient. However, WFOV lenses introduce greater 
image distortion, so a standard field of view camera is included for SLAM performance. The modular 
mounting plate allows a camera arrangement to be optimized to each data capture task. Finally, the 
handheld data capture sensor kit includes an IMU positioned closely to the Lidar frame of reference. Time 
synchronization refers to the centralization of time measurements required for analysis and data fusion of 
the sensor outputs. An Arduino-enabled Teensy 3.6 microcontroller is utilized to introduce a one-to-many 
relationship between the reference clock and the sensors. This prevents the tangled web of sensor 
connections resulting from sensor-to-sensor synchronization approaches. The microcontroller is capable of 
interfacing with any synchronization scheme that a sensor manufacturer implements. Calibration describes 
the process of determining intrinsic properties of each sensor, and the extrinsic transformations between 
sensors. Intrinsic calibrations are essential for relating sensor measurements to real world geometry and 
removing distortions introduced by sensor hardware. 

Simultaneous Localization and Mapping (SLAM) refers to the algorithms and software a system uses to 
estimate the geometry of its surroundings and its position. In the proposed approach, the state-of-the-art 
open-source SLAM framework LVI-SAM is utilized. While the map produced during the SLAM process is 
often utilized as the final inspection map in literature, we propose decoupling the map building process from 
SLAM. Our framework allows any number or type of volumetric data to be combined into a single map, with 
noise removal and scan cropping techniques available at various stages along the map building pipeline. 
In the proposed approach, the globally consistent trajectory output from SLAM is used alongside visual and 
lidar odometry to interpolate high-rate locally consistent pose estimates at the time of any sensor reading. 
This sensor fusion approach improves inspection map quality, outperforming raw SLAM maps in surface 
density (point density), roughness, and planarity metrics in field testing. 
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Table 1: SLAM vs inspection map performance metrics 
 SLAM Map Inspection Map 

Surface Density 
(points per 0.25m radius circle) 

337.124 31986.9 

Roughness (unitless) 3.637e-2 2.576e-2 

Planarity (unitless) 4.686e-1 6.546e-1 

5 VR DECOMPOSING AND PACKING PLATFORM Decompose mode 

There are two modes available on the VR decomposing and packing platform: decompose mode and pack 
mode. After importing the structure into the VR packing environment, the user can switch to decompose 
mode and manually cut it into smaller pieces that will fit inside the containers and possibly be packed more 
efficiently. The decomposing feature is based on the Unity3D asset Mesh Slicer [23]. Mesh Slicer slices 
meshes with the aid of a cutting plane. As illustrated in figure 2a, a semi-transparent square indicates the 
cutting plane in the virtual reality environment. Given that a plane in Unity is an infinitely flat surface that 
divides three-dimensional space in half, it is possible to affect parts of objects that do not visually intersect 
with the cutting square (see figure 2b), which becomes problematic when slicing non-convex shapes, 
particularly large structures. The problem was resolved by rebinding ineffective cuts with Fixed Joint feature 
[24]. Additionally, large structures can be shrunk to meet user requirements in order to make them more 
manipulable in the VR environment. 

 

 

a) 

 

b) 

Figure 4: Screenshots of the decompose mode. (a) The semi-transparent square indicating the cutting 
direction. (b) Unwanted cuts being generated using Mesh Slicer 

5.1 Pack mode 

Once the structure has been decomposed, the user can switch to pack mode and initiate the autonomous 
algorithm to generate an initial packing configuration, which can then be fine-tuned (manually) if necessary, 
for example, to increase efficiency and adhere to constraints that have been exceeded. The integrated 
autonomous packing algorithm is based on Genetic algorithm (GA) proposed by [25] approach to search 
solutions with good packing sequences and rotations for each object and is implemented in C# using the 
GeneticSharp library [26], which includes built-in classes for standard GA functions. The autonomous 
algorithm is described in detail in [8]. 

Bottom-left-front (BLF) algorithm is implemented as the placement heuristic to convert each solution to the 
packing configuration by placing parts one by one at the bottom left front available space in the container. 
Each part starts from the right-up-back corner of the container and moves sequentially along negative z/y/x 
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direction incrementally towards the bottom-left-front corner until it comes in touch with the container 
boundaries or previously packed parts, as illustrated in Figure 3. BLF will iterate through the three directions 
until no further improvement can be made. 

 

 

Figure 5: BLF placement heuristic 

After being proposed by the autonomous packing algorithm, an initial packing configuration can be fine- 
tuned manually. Fine-tuning activities available to the user include adjusting the parts' orientations and 
locations in the packing configuration, remove parts, or add new parts to the packing configuration. 

5.2 Packing configuration evaluation 

There is a user interface canvas in the VR decomposing and packing planning platform. The following 
metrics are used to evaluate the packing configurations: 

Packing efficiency. Packing efficiency is calculated as the ratio of the container volume occupied by the 
parts and the total container volume, which in other words, is the space utilization of the container. Packing 
outcome efficiency is directly related to the decommissioning cost, especially in nuclear applications where 
the cost of waste containers can be quite high and not re-usable. 

Weight and radiation limits. Weight and radiation limits are constraints imposed on packing configurations 
to meet the transportation requirements and the waste acceptance requirements of storage facilities and 
repositories in nuclear waste packing and storage applications [27,28]. Violation of the two limits results in 
rework that wastes efforts and time, resulting in reduced efficiency and increased risk due to exposure for 
the workers. 

Time. For applications such as packing nuclear waste, reducing the overall human exposure time to harmful 
radiation is the most crucial risk mitigation measure. 

The VR user interface shows criteria values as real-time feedback to inform the user of the properties of 
the current packing configuration so that the user can make packing decisions accordingly. Warning 
messages are displayed to the user if weight or radiation limitations are exceeded, informing the user of 
unacceptable packing configurations. 

 

Figure 6: Workflow of the decomposing and packing optimization in the VR platform 
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5.3  Multiple containers 

For large structures, multiple containers are needed to accommodate all the decomposed parts. When not 
all parts can fit into a single predefined container, the user can define the number and the dimensions of 
the containers to instantiate requested containers before the packing starts. The autonomous packing 
algorithm first attempts to fit all parts into the first container in situations involving multiple containers. Parts 
that cannot fit in the first container will be packed in the next container. So on and so forth. The autonomous 
algorithm stops once all parts are all packed inside the containers. 

6 CONCLUSION 

In this work, a modular framework for remote human-robot collaboration for waste management in 
decommissioning and demolition is discussed. The proposed framework includes robotic platform reality 
data capture, scan processing (e.g., segmentation, surface estimation, and recognition), gamified waste 
packing in virtual reality (VR), and packing plan execution. A modular robotic scanning platform is presented 
to demonstrate the data capture component. A reconfigurable semi-automated VR platform for waste 
packing optimization is presented as an example of this process workflow in the context of remote 
deconstruction and demolition. 
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