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Abstract: Augmented Reality (AR) can be used as an intuitive user interface of the reality capture models 
for structural inspection, emergency response and teleoperations. For a seamless AR user experience, 
reality capture models usually need to be collected, processed, and rendered in a real-time manner. 
Nonetheless, most scanning technologies require a prolonged in-situ time on the site for data collection. 
And due to the excessive amount of data to be transferred and processed, it is difficult to achieve real-time 
scene reproduction. It is also challenging to render high-fidelity captured scenes via most commercial AR 
devices that do not have powerful graphic processing units for rapid renderings, especially when there are 
dynamic objects. This paper proposes an AR-based real-time 3D scene rendering method solely based on 
low-resolution mobile LiDAR. Velodyne-16 is used to collect dynamic point cloud data given its high stability 
in mobile scanning and low price compared to other high-resolution LiDAR devices. To maintain an 
economic data transmission to an AR headset, the obtained points message only includes the intensity and 
three-dimensional coordinates, relatively sparse. To overcome the defect of data sparsity, a scene texture 
information enrichment algorithm is implemented based on SLAM. Using IMU data and the LOAM 
algorithm, the scanning information of each angle position is transferred into a coordinate system with the 
initial position as the origin, and the supplementary scene reconstruction result containing denser texture 
information is obtained. To eliminate duplicate or similar scan points, voxel down-sampling is used after 
merging all scans, and the down-sampled point cloud will be used as a fixed background. Finally, the VFX 
and Shader processes are applied to render textural and physical information through ROS-Unity. The real-
time scene scanning results can be displayed with a satisfactory quality via HoloLens 2 with dynamic 
objects. The method is expected to contribute to rapid 3D scene reconstruction based on economic sensing 
and processing methods, as well as LiDAR integration with extended reality technologies.  
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1. INTRODUCTION 

The continuous evolution of Augmented Reality (AR) technologies has shown great potential to be an 
intelligent assistant for many construction tasks (Schiavi, Havard et al. 2022). By integrating complex visual 
information and reconstructing the jobsite three-dimensional (3D) mapping, AR enhances the workers’ 
perception of the surrounding environment and enriches the users’ awareness of potential hazards(Kim, 
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Kim et al. 2021). The major challenge for visualization in AR is to provide accurate and rapid 3D 
reconstruction results based on vision sensors and limit external disturbances such as lightning changes 
or device vibrations (Hua, Nan et al. 2019). The present AR rendering methods mainly rely on the 
environmental understanding functions of AR devices, such as HoloLens (Bekele and Champion 2019). 
The default sensors equipped with AR devices, including RGB-D cameras and distance sensors, are used 
to support streamlined machine learning algorithms for environmental modeling and registration (Karkus, 
Cai et al. 2021). Although it works for most scenarios, AR-equipped sensing and modeling are subject to 
several obvious limitations, such as the sensitivity to ambient lighting, limits of memory for storing the mesh 
models, and the computing efficiency for feature recognition and registration when moving in a bigger space 
(Rodrigues, Nagamura et al. 2019) (Xiao and Lifeng 2014).  

With the vigorous development of sensor technologies, different types of sensors emerge to provide 
external and secondary point cloud data for AR devices. The sensors can be roughly grouped into two 
types, including LiDAR (light detection and ranging) and RGB-D cameras. RGB-D camera can provide 
sufficient visual details and capture pixel-wise information for scene reconstruction and indoor 
segmentation and detection (Song, Lichtenberg et al. 2015), but the imagery data can be easily influenced 
by lighting conditions and lack the ability to support feature extraction without significant spatial structures 
(Jonasson, Ramos Pinto et al. 2021). LiDAR, on the other hand, can provide spatial information in a larger 
range with high stability. However, the obtained data points of most mobile LiDAR sensors are sparsely 
distributed with disorderliness causing difficulties in textural information collection and object shape 
recognition (Yang, Chao et al. 2013). Although the lack of detailed information could be solved by using 
LiDAR points as the backbone and fusing with other visual inputs (Vora, Lang et al. 2020), the fusion 
process requires additional computational time and requires an accurate calibration process. Furthermore, 
it is still unclear how to optimize the rendering results of the raw LiDAR in most commercial AR devices, as 
the data processing pipelines are different between the LiDAR platform (usually ROS) and AR platform 
(usually Unity), causing unsatisfactory results in AR devices, such as loss of texture information or shading.  

In this paper, we propose a novel indoor scene reconstruction method by utilizing only low-resolution LiDAR 
for high-fidelity 3D model rendering via light AR HMD. We take LOAM (Zhang and Singh 2014) as our basic 
SLAM structure which is originally used for large-scale outdoor environment reconstruction. We modify the 
transformation matrices estimation process to augment the scanning result of the first point cloud frame by 
the following ones in a single reconstruction process. The scanning results from different viewing angles 
will be combined to build a dense map for a given scene. In addition, we add the real-time scanning result 
onto the completed map so that the moving objects such as humans or other machines could be highlighted 
to provide dynamic information. Furthermore, we build the connection bridge between ROS and Unity so 
both the reconstructed map and real-time scanning results could be visualized in the AR system with a 
near-real-time frequency. To remove the redundant points from stacked frames, we also applied a simple 
down-sampled method to filter the map and compare the final visual results with different sets of 
parameters. We also utilized a VisualEffect (VFX) shading method to optimize the rendering results in 
HoloLens 2.  

2. RELATED WORK ABOUT 3D RECONSTRUCTION  

The 3D reconstruction sensors can be roughly grouped into LiDAR and RGB-D cameras regarding different 
data collecting methods. For image-based methods, monocular or stereo images are the generally used 
inputs for point cloud data collection. The textual information from single images will be captured and used 
to extract corresponding features based on computer vision algorithms. Then the extracted features from 
consequential images will be matched to compute the transformation of camera pose and to integrate the 
depth and RGB-D information to generate point clouds. The detailed texture information captured by RGB-
D camera could be applied to solve different types of indoor vision tasks such as scene completion (Dai, 
Diller et al. 2020), transparent object pose estimation (Sajjan, Moore et al. 2020) and oriented object 
detection (Shi, Guo et al. 2020). Conversely, the drawbacks of RGB-D input are obvious: the images are 
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easily influenced by lighting conditions and lack the ability to support feature extraction without significant 
spatial structures. Besides, RGB-D images provide sufficient texture information for feature extraction so 
they could be combined with SLAM for indoor localization and mapping in the field of computer vision and 
robotics. However, the captured data is easily influenced by external disturbance which will influence the 
feature point registration process of consequent frames and lead to poor mapping results.  

LiDAR could provide stable scanning results. The sensor emits laser rings and gathers the reflectance to 
detect the distance from the object’s surface so it is invariant to lighting changes or disturbances. Thus, 
LiDAR sensors are widely used in self-driving (Geiger, Lenz et al. 2012, Caesar, Bankiti et al. 2020, Sun, 
Kretzschmar et al. 2020), remote sensing (Zhu, Gehrung et al. 2020) and large-scale mapping (Tan, Qin et 
al. 2020). The high quality and stability of the acquired data ensure the improvement of accuracies for 
different vision tasks such as object detection (Jiang, Zhang et al. 2022), motion tracking (Huang and Hao 
2021) and path planning (Bolourian and Hammad 2020). However, the LiDAR-based methods still suffer of 
lacking in sufficient reflected data points to extract features for detection from a scanning frame. Recently, 
many state-of-the-art algorithms aim to take advantage of the spatial information from the LiDAR point cloud 
from different points of view, such as using voxel representations with different scales to concatenate multi-
scale features (Zhou and Tuzel 2018) or combining point features with their corresponding voxelized 
features (Shi, Guo et al. 2020). Despite the fact the usage of multi-scale features could enhance the 
performance of either detection or 3D reconstruction, the key problem has remained unsolved that the input 
data source of LiDAR is too sparse to support complex environment completion, especially for the indoor 
environment which contains detailed small-scales spatial information. 

3. SYSTEM OVERVIEW 

In this section, we describe the pipeline of our proposed LiDAR-SLAM 3D indoor dense reconstruction 
system for AR supplementary scene reconstruction. We introduce some pre-defined parameters that will 
be used in the following discussion for convenience. We also list the hardware information and algorithm 
description as an overview of our method. 

3.1 Task a Parameter Definition 

Our method aims to build a dense 3D scanning map for an indoor environment based on a single LiDAR 
that could capture more detailed spatial information with real-time operation speed. We use 𝑃𝐶 = {(𝑝, 𝑙)|𝑝 ∈
𝑅!, 𝑙 ∈ 𝑅} to denote a single point cloud, where p stands for the coordinates of a returned point and l stands 
for the corresponding intensity. 𝑆 = /𝑂, (𝐻" , 𝐻#, 𝐻$)2  denotes the LiDAR coordinate system where 
𝑂,𝐻" , 𝐻#, 𝐻$ ∈ 𝑅! with O denotes the origin coordinates of the current LiDAR system in the world coordinate 
of the scanning site and (𝐻" , 𝐻#, 𝐻$)  denotes the direction of x-, y- and z-axis. 𝑇 ∈ 𝑅%∗%  refers to the 
transformation matrix between two point clouds or origin coordinates. At timestamp i, 𝑆'(), 𝑃𝐶'() and 𝑆' , 𝑃𝐶' 
denote the adjacent LiDAR coordinates and point clouds then the transformation from 𝑖 − 1 to 𝑖 could be 
represented as 𝑃𝐶' = 𝑇'()' ⋅ 𝑃𝐶'() or 𝑂' = 𝑇'()' ⋅ 𝑂'().  

3.2 Hardware Description 

Our method is designed to use a single low-resolution mobile LiDAR scanner to build a dense 3D 
reconstruction map for indoor scenes. We use Velodyne VLP-16 LiDAR to collect point cloud and the 
method could also be extended and implemented based on the other types of LiDAR sensors. For 
convenience, we use V16 to denote the LiDAR sensor in the following discussion. V16 has 30 degrees 
vertical scanning range from -15○ to 15○ with 16 horizontal laser rings 𝑟', where i denotes the index of rings 
following the top-to-down order88. Each ring includes 360-degree scanning points with a rotation speed 
ranging from 300 RPM (revolutions per minute) to 1200 RPM. In our implementation, we simply set the 
rotation speed as 600 RPM. The laser firing time is 55.296μs with 0.199○ azimuth resolution. Figure 1 shows 
the top and front views of the VL16 scanner. To be consistent with the Velodyne manual, we use α to 
represent the vertical angle and ω to represent the horizontal rotation angle. The coordinates of receiving 
points are assigned in a right-hand system and approximately 28800 points are collected for each scanning 
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recycle. As for the platform, we use a quadrupedal robot for mobile LiDAR scanning. We programmed a 
unique locomotion pattern for the robot as it moves a certain angle vertically for filling the sparse LiDAR 
data. It will be discussed in detail in the following sections.   

 
Figure 1: Front view (on the left) and Top view (on the right) of Velodyne VLP 16. 

3.2 Software Setup 

Our developed method can be divided into two parts: LiDAR-based LOAM and reality capture visualization. 
For the first part, we build the modified LOAM algorithm with ROS melodic on Ubuntu 18.04 with an Intel 
i7-8750H CPU and an NVIDIA GeForce GTX 1050 Ti GPU. For the latter part, we build the data 
transmission bridge with ROS Sharp between the Ubuntu laptop and a Windows PC with an Intel i9-11900F 
CPU and an NVIDIA GeForce GTX 3080 GPU. The reconstructed map and dynamic scanning results are 
visualized in Unity with version 2020.3.25. In Figure 2, we illustrate the overall structure of our 3D 
reconstruction system. 

 
Figure 2: The overview of our 3D reconstruction and reality capture pipeline. 

4. METHOD 

4.1 Feature Point Selection 

Our reconstruction SLAM method is built based on LOAM (Zhang and Singh 2014). The overall process 
includes three major steps: feature point selection, correspondences estimation and multi-map 
transformation. For a given point cloud 𝑃𝐶*, the points on edges and planar surfaces are selected as feature 
points, denoted as 𝐸* and 𝑃𝑙*, respectively. According to Section 3.2, 𝑃𝐶* consists of 16 calibrated ring-
shaped scanning point sets denoted as 𝑟+ , 𝑘 = {1,2, … ,16}. The points in a single ring are obtained in 
clockwise order. Let 𝑝(',+)*  be a single point from 𝑟+ in local coordinate at timestamp 𝑡 and 𝑃𝐶/ be the set of 
continuous points of 𝑝(',+)*  that is equally distributed on both sides of 𝑝(',+)* . Then the sharpness of the local 
area around 𝑝(',+)*  could be evaluated based on the following equation: 
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𝑠 =
1

|𝑃𝐶/| ∙ A𝑝'+A
B C /𝑝'+ − 𝑝0+2
0∈23!,04'

B . (1) 

Thus, for each point 𝑝(',+)*  there is a corresponding sharpness score  𝑠(',+)* . All the points are filtered based 
on 𝑠 values. The points with the highest 𝑠 scores are saved as edge points and the points with the lowest 
ones will be stored as planar points. According to (Zhang and Singh 2014), a single ring is divided into 4 
subregions on the x-y plane and each subregion includes 2 edge points and 4 planar points. In other words, 
the points in a single subregion will be firstly sorted in a descending order based on their 𝑠 values and the 
top 2 and bottom 4 points will be treated as the region’s feature points. In addition, two types of insufficient 
feature points will be removed to ensure high evaluation quality for the downstream process. Firstly, the 
points on planes that are parallel to the ring plane will be dropped. Secondly, the points on the occluded 
planar will be ignored. Figure 2 shows the second situation. Planar A is half occluded by Planar B and point 
a is close to Planer B. Thus, even if point a is a planar point, it has a large 𝑠 value and it is possible to be 
selected as an edge point. However, since the large distance between A and B, a huge gap between a and 
a’’ exists and could be used to filter the pseudo edge point. 

 
Figure 3: Point a on Planar A is actually a planar point. However, it seems to be on the edge of B from the 

view of the sensor so it is possible to be wrongly detected as an edge point. 

4.2 Correspondences Estimation 

Given two consecutive point clouds  𝑃𝐶* and 𝑃𝐶*5), the next step is to find the correspondences based on 
the extracted feature point sets (𝐸* , 𝑃𝑙*) and (𝐸*5), 𝑃𝑙*5)). At time stamp t+1, 𝑃𝐶*  is projected into the 
coordinate 𝑆*5)  and the resulting point cloud is denoted as 𝑃𝐶*′  with the projected feature point sets 
denoted as (𝐸*′, 𝑃𝑙*′). 𝑃𝐶*6, 𝐸*6 and 𝑃𝑙*′ are now in the same coordinates with 𝑃𝐶*5), 𝐸*5)and 𝑃𝑙*5).  

Given 𝑒(',+)*5)  be a point of 𝑟+*5) from 𝐸*5), let 𝑒(0,+)* ′ be the closet point of 𝑒(',+)*5)  in 𝑟+*′ from 𝐸*′ and 𝑒(7,+±))* ′ be 
the closet point of 𝑒(',+)*5)  from the adjacent rings 𝑟+±)* ′ of 𝑟+*′. Then (𝑒(0,+)* ′, 𝑒(7,+±))* ′) forms the correspondence 
of 𝑒(',+)*5)  in 𝐸*′. The distance between the point and its corresponding edge is calculated as: 

𝑑9 =
H/𝑒(',+)*5) − 𝑒(0,+)* 62 × /𝑒(',+)*5) −	𝑒(7,+±))* 62H

H𝑒(0,+)
* 6 − 𝑒(7,+±))

* 6H
, (2) 

where 𝑒(',+)*5) , 𝑒(0,+)* 6 and 𝑒(7,+±))* 6 are the 3D coordinates of the corresponding points. 
As for the planer correspondence, given 𝑝𝑙(',+)*5)  be a point of 𝑟+*5) from 𝑃𝑙*5), let 𝑝𝑙(0,+)* ′ and 𝑝𝑙(7,+)* ′  be the 
two closet points of 𝑝𝑙(',+)*5)  in 𝑃𝑙*′,  𝑝𝑙(:,+±))* ′ be the closet point of 𝑝𝑙(',+)*5)  from the consecutive rings 𝑟+5)* ′ or 
𝑟+()* ′. Then  (𝑝𝑙(0,+)* ′, 	𝑝𝑙(7,+)* 6, 𝑝𝑙(:,+±))* ′) forms the planar correspondence of 𝑝𝑙(',+)*5) . The distance from the 
point to its corresponding planar is: 

𝑑2; =
H(𝑝𝑙(',+)*5) − 𝑝𝑙(0,+)* ′) ⋅ ((𝑝𝑙(0,+)* ′ − 	𝑝𝑙(7,+)* 6) × (𝑝𝑙(0,+)* ′ − 	𝑝𝑙(:,+±))* 6)H

H(𝑝𝑙(0,+)
* 6 − 𝑝𝑙(7,+)

* 6) × (𝑝𝑙(0,+)
* 6 − 𝑝𝑙(:,+±))

* 6)H
. (3) 

Then 𝑑9 and 𝑑2; are the optimization target of the algorithm.  
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4.3 Multi-map Transformation 

The key problem is to estimate the optimal transformation matrices {𝑇)<, 𝑇=<, … , 𝑇><} between each frame and 
the original frame. Since 𝑇?< = ∏ 𝑇?(@

'(0()'
0A< , the problem is turned to estimate {𝑇)<, 𝑇=), … , 𝑇>>()}, where 𝑇:=

[𝑡, 𝛳Q⃗ ]B. 𝑡 denotes the translation and 𝛳Q⃗  denotes the rotation angle around the x, y and z axes. Then given 
a pair of points 𝑝?* ∈ 𝐸* ∪ 𝑃𝑙* and 𝑝?*5) ∈ 𝐸*5) ∪ 𝑃𝑙*5), the transformation equation is: 

𝑝?*5) = 𝐑 ⋅ 𝑝?* + 𝑇C*5)[0: 3], (4) 
And the rotation matrix 𝑹 is calculated based on (Murray, Li et al. 2017): 

𝐑 = 𝐈 + 𝜔[ ⋅ 𝑠𝑖𝑛𝛳 + 𝜔[= ⋅ (1 − 𝑐𝑜𝑠𝛳), (5) 

where 𝛳 =∥ 𝑇C*5)[4: 6] ∥ and  𝜔[ = − B"
#$%[%:F]

∥B"
#$%[%:F]∥

B
 denotes the skew symmetric of rotation direction. According 

to equation Eq. 2 and Eq. 3, the optimization targets are 𝑑9 and 𝑑2;, the non-linear functions to relate the 
feature points and its correspondences could be formed as: 

a
𝑓9(𝑝?*5), 𝑇C*5))
𝑓2;/𝑝@*5), 𝑇C*5)2

c = d𝑑9𝑑2;
e , (6) 

where 𝑖, 𝑗 ∈ 𝐸*5), 𝑃𝑙*5). Let 𝒇 = h𝑓9(𝑝?*5), 𝑇C*5)) 𝑓2;/𝑝@*5), 𝑇C*5)2i
𝑻
, then the Jacobian matrix 𝑱 of 𝒇 could be 

derived based on 𝑇C*5) as 𝑱 = 𝜕𝒇/𝜕𝑇C*5) and the final optimization iterational problem is: 

𝑇C*5)⃪𝑇C*5) − /𝑱𝑻 ⋅ 𝑱 + 𝜆 ⋅ diag(𝑱𝑻 ⋅ 𝑱)2
() ⋅ 𝑱𝑻 ⋅ d𝑑9𝑑2;

e , (7) 
where 	𝜆 is a pre-defined weight. 

Once the transformation matrices {𝑇)<, 𝑇=), … , 𝑇>>()} is estimated by Eq. 7, we could get {𝑇)<, 𝑇=<, … , 𝑇><} to 
reproject frame 1 to frame n back to frame 0. In section 3.2, we discussed that V16 only has 16 rings to 
cover a vertical angle range from -15○ to 15○. Thus, there will be huge gaps between vertical rings, which 
is the main reason for data sparsity. To tackle the problem and build a dense indoor reconstruction map, 
we slightly rotate the LiDAR sensor around the x and y axes by 𝛽 in both clockwise and counter-clockwise 
directions, as shown in Figure 4. This is done by controlling the locomotion of the quadrupedal robot in a 
corresponding way, see Figure 4. The scanning results from different views with different 𝛽 values are 
projected back to the initial frame with 𝛽 = 0. Let 𝛽* denotes the horizontally rotated angle at timestamp t, 
then the final reconstructed map is 𝑃𝐶J;; = [𝑇)< ⋅ 𝑃𝐶), 𝑇=< ⋅ 𝑃𝐶=, … , 𝑇*< ⋅ 𝑃𝐶* , … , 𝑇>< ⋅ 𝑃𝐶>] . The final 
reconstructed map 𝑃𝐶J;; will be down sampled and sent to Unity through ROS sharp.  

 
Figure 4: Rotation of the sensor in both CCW and CW direction enable the rings to cover the gaps of 

rings from the initial frame. Therefore, the vertical resolution could be largely improved. 

4.4 LiDAR and HoloLens Model Alignment  

After the LiDAR point cloud model is successfully acquired, it should be post-processed to consolidate into 
a single model with the AR’s environmental mesh model, i.e., model registration. LiDAR maps acquired 
without sensor rotation are not adopted because of the lack of point clusters and extractable features. First, 
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the point clouds are smoothed with filters to remove excessive noise and outliers. For this process, the 
“Density-based spatial clustering of applications with noise” (DBSCAN) algorithm is first applied (Ester, 
Kriegel et al. 1996). This method aims to remove clusters with less content and far away from major clusters, 
especially for noises and artifacts generated from sensors interacting with unsatisfying objects. The second 
step is to extract feature points from each point cloud to reduce complexity and increase the effectiveness 
of the registration process. For this process, the feature descriptor named Fast Point Feature Histograms 
(FPFH) is used (Rusu, Blodow et al. 2008, Rusu, Blodow et al. 2009). Since it is a non-learning-based 
workflow based on feature histograms of values, it can be easily implemented to do real-time applications 
as an efficient way of qualifying geometric properties. Furthermore, FPFH can extract local pose-invariant 
features of each point that ensures the robustness of registration among a large scale of initial translation 
between two-point cloud maps.  

For the last process, another non-learning-based method Fast Global Registration is applied to register two 
point clouds based on the feature points generated in the previous section (Zhou, Park et al. 2016). The 
point cloud model from LiDAR and AR’s environmental models are then registered to form a consolidated 
and collaborative model. To be noted, the registration process also includes aligning the world coordinates 
of the HoloLens 2 HMD and that of the consolidated point cloud model. HoloLens 2 is equipped with a depth 
camera system and builds its 3D point cloud during the scanning and environmental understanding phase. 
The SDK, however, does not allow direct access to the raw point cloud model established by HoloLens. A 
workaround solution we found was a reverse engineering approach. First, we utilized HoloLens’ MRTK’s 
Spatial Awareness system to register the observer. This process allows us to access the 3D meshing model 
established by HoloLens. Then we apply an open-source mesh-to-point tool, point cloud library (PCL) 
(Durrant-Whyte and Bailey 2006), to convert the mesh model back into a dense point cloud model. Finally, 
the same workflow of aligning and merging LiDAR and depth-camera point clouds is repeated to further 
align the HoloLens-generated point cloud data with the scanned point cloud data. Once the coordinate 
system is reconciled, the consolidated point cloud model (from robot carried LiDAR and depth camera) is 
transformed (T) and rotated (R). The alignment errors will be corrected dynamically until a stopping 
threshold is achieved.  

4.5 Data Visualization in AR 

The last step of the proposed system involves rendering the results via an AR head-mounted display (HMD) 
device. The advantage of optical see-through AR HMD is to help the user visualize a virtual model on top 
of the real world, which provides great advantages for users to locate both themselves and virtual objects 
based on the real-world scene (Kim, Kang et al. 2017). To realize this design, two computers and one 
HoloLens 2 HMD are used. First, the point cloud data published from ROS containing transformation and 
color data of each spatial point are transferred to a Windows PC through ROS bridge and received by 
ROS# plug-in with-in Unity. This confronts the first challenge, which is streaming large point cloud data in 
real-time. The point cloud data from LiDAR and RGB-D sensors could be extensive when combined due to 
the limitation of mobile processors and web sockets. An ethernet cable is used to bridge the data stream 
between the Linux machine and the windows machine. The second step is to process the raw point cloud 
data into the correct form that could be rendered with the Unity game engine. The rendering of point cloud 
is intrinsically difficult due to its scattering nature and takes up a lot of RAM and computing power if not 
handled correctly (Griffiths and Boehm 2019). We incorporated the VisualEffect (VFX) function in Unity to 
both register the transformation of each point and render them individually. The advantage of VFX is for 
rendering large-scale point clouds (up to millions of points) with the help of shader graph in comparison to 
the conventional particle system. In our previous study, we found that the particle system could only handle 
particles on the scale of thousands, and the frame rate drops to an unbearable state (5 Hz). The High-
Definition Render Pipeline (HDRP) is also required for VFX to work. In the Unity engine, a game object with 
updating transformation from the SLAM’s trajectory ensures the stability of point cloud model, and the points 
are registered and rendered accordingly. The third step is to stream the real-time rendered video data to a 
HoloLens 2 device through Wi-Fi connection. The incorporation of HoloLens 2 with Unity is developed with 
the help of Mixed Reality Toolkit (MRTK). The resultant visualization could be described in this way: a digital 
twin model of the target space in form of a point cloud model registered on top of the real world and could 
be seen from a distance regardless of occlusion and motion of the user. This enables a seeing-through wall 
sensation for the operator (Pu, Wei et al. 2021). In terms of the real-time capability, the proposed system 
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could handle point cloud data streaming with short delay (5 seconds) and have continuous streaming 
capability. Raw sensor data were also visualized with updating point cloud (> 1 Hz frequency) to ensure 
the situational awareness of surrounding environments (from 360° LiDAR) and frontal situation (from depth 
camera). Furthermore, the visualization cloud is shared with multiple agents collaboratively or hierarchically 
for better team task performance. 

5. RESULTS AND DISCUSSION 

In this session, we show the qualitative results of our reconstruction method and reality capture speed in 
Unity. In Figure 5, we present our reconstruction map. The detailed spatial information was captured 
including the shape of objects. The fused map included the scanning point cloud of approximately 50 
frames. The merged point cloud was down sampled by cubic voxels with the size of 0.2m*0.2m*0.2m. The 
region covered by a voxel was replaced by its center point if it contained at least 5 points. Otherwise, the 
voxel would be dropped, leaving the region empty. The point density of rings from either raw scanning or 
reconstruction were insufficient to represent the vertical spatial changes. As a result, the reconstruction 
map using our proposed fusion and data augmentation method was applied. It was able to capture the 
detailed vertical spatial changes by adding new rings of scanning results from different views. Also, the 
floor and ceiling structure could be captured by changing the viewing angle when gathering the frames for 
reconstruction.  Finally, processes discussed in sections 4.4 and 4.5 were applied to render the 3D models 
in HoloLens 2.  

     
Figure 5: The comparison of raw scanning result (on the left) and the reconstructed map (on the right). 

   
Figure 6: The real-time scanning result on the constructed indoor map in ROS and HoloLens. 

Figure 6 shows the real-time scanning result based on the rebuilt map. The left one visualizes the 
reconstructed map in ROS. The color points form the 3D map, and the white dots are the dynamic scanning 
result. The middle one is the captured reality map in Unity with the blue points set to be the dynamical 
scanning results and the left one is the visualization of the rebuilt map in HoloLens. The transmission rate 
is 1Hz which is a near real-time speed with an average of 51,626 points for the map and 27,791 points for 
the dynamical scan. Our proposed method could largely increase the density of 3D indoor scanning results 
with LiDAR at a near real-time speed. The reprojection of frames with different viewing angles could 
effectively fill the spare space between the rings of raw LiDAR scanning point cloud and provide rich 
information for capturing 3D spatial information. A demo video can be found at: https://youtu.be/rjuw9Hi5xrU. 
It shows that how a high-resolution point cloud model was built with only a low-resolution LiDAR, how the 
robot platform was used to carry the mobile LiDAR, and how the result was rendered in HoloLens 2 with 
high fidelity.  
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