
________________________________________________________________________________  

  

1  

  

   
  

Transforming Construction with Off-site Methods and Technologies (TCOT) Conference: 

Designing Tomorrow’s Construction, Today  

  

August 20-22, 2024, Fredericton, New Brunswick, Canada  

________________________________________________________________________________  

  
ENHANCING BUILT ENVIRONMENT MANAGEMENT: A VISION-BASED  

APPROACH UNIFIED WITH FIDUCIAL MARKERS AND 

OMNIDIRECTIONAL CAMERA POSE ESTIMATION  
 

Taherian, Gelare1*, Rezazadeh Azar, Ehsan1  
1 Department of Architectural Science, Toronto Metropolitan University, Canada * 

gelare.taherian@torontomu.ca  

   

Abstract: Construction jobsites are characterized by their dynamically changing environment driving the 

need for improved managerial methods, such as automated progress tracking and quality inspection. These 

applications rely on detecting physical changes, which necessitate accurate data capturing technologies 

and analysis of as-is against the as-planned status. Vision-based methods have emerged as promising 

tools for localizing the real-time query thanks to the availability of low-cost data capturing, transferring, 

storing, and computing systems. However, they should overcome certain challenges to reliably detect and 

locate construction resources and building elements in frames, especially in complex indoor environments. 

Despite significant advancements, recent approaches still require considerable effort to perform reliably, 

such as creating comprehensive 3D point clouds through frequent 3D reconstruction using overlapping 

images. This paper proposes a new approach inspired by recent innovations in computer science which 

can reduce the data capturing efforts needed in other approaches. The method proposes the use of 

omnidirectional images and detecting the fiducial markers in the generated visualizations to capture the 

asis status and further retrieve the relative pose in the as-planned status through Building Information 

Modeling (BIM). This approach facilitates comparative analysis through state-of-the-art computer 

visionbased object detection and classification methods for change detection between the as-is query and 

the as-planned status across a wide view. Additionally, it moderates camera pose estimation efforts, 

enhancing efficiency for various built environment management applications, including construction 

progress tracking.  
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1 INTRODUCTION  

Detecting changes in the constantly evolving built environment, especially within Architectural, Engineering, 

and Construction (AEC) contexts, is crucial for various operational and managerial purposes, such as 

construction progress monitoring and documentation. Indoor built environment management (IBEM) 

encompasses the concept of visual-comparative analysis of the as-is vs as-planned status, for which the 

estimation of the user's location within the indoor environment is an integral element to accurately capture 
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the as-is status and correctly detect the objects of interests. Indoor localization refers to identifying the 

precise location and orientation of objects or individuals in an indoor environment. The as-planned 

information is typically derived from the building information modelling (BIM). The as-is status is mainly 

captured manually and there are some ongoing research and development to capture it by the help of 

ground robots and UAVs. Despite advancements in vision-based camera pose estimation (CPE) 

technologies, existing methods often require high amount of data and efforts and still struggle with 

accurately localizing the camera in complex indoor environments. Marker-based CPE methods are viable 

solutions to the current challenges. Fiducial markers are the reference points, creating an artificial landmark 

to recognise, detect and localize different objects within the environment (Yu et al. 2019). These markers 

typically come in various forms, with known size and shapes, ranging from simple patterns to more complex 

designs that include encoded IDs or messages (Kalaitzakis et al. 2021). Marker-based CPE methods have 

received recognition in recent years owing to their ease of use and reliable accuracy. They alleviate the 

CPE process by only requiring the detection of the four corners of a single square-shaped or the center of 

a circular-shaped fiducial marker. The main advantage of the fiducials is undoubtedly their extremely low 

cost and the need for only a calibrated camera (Ulrich et al. 2022). However, their exploration and evaluation 

have been largely centred around their application as 2D planar and non-planar artificial landmarks in 

environments captured in 2D imagery, which requires a considerable number of images with markers 

present in them for pose estimation. Though limited research studies (Hajjami et al. 2020; Adapa et al. 

2023) have explored non-planar marker detection in 2D/3D images, the proposed methods are developed 

based on employing specific devices or equipment for holding non-planar markers. Additionally, to the best 

of authors' knowledge, no research work has focused on implementing omnidirectional imaging for CPE 

specifically in dynamic and comprehensive AEC industry. Consequently, there remains a significant 

opportunity for further investigation into fiducial markers detection as 2D planar markers within the context 

of omnidirectional images, also known as 360-degree images, enabling a comprehensive view of the 

environment through a single capture. This research aims to enhance built environment visual assessment 

by streamlining the capture of the environment's current status through the novel integration of fiducial 

markers with omnidirectional CPE. The objectives are to: (1) reduce data capturing efforts, (2) improve 

camera localization efficiency in indoor settings. This research avenue is essential for addressing the 

persistent challenges and limitations encountered in existing approaches to marker-based CPE, including 

issues with detection under occlusion and constraints related to the detectable distance range, even in 

conventional scenarios involving flat markers in 2D images.  

2 MARKER-BASED CPE WITH OMNIDIRECTIONAL VIEWS FOR IBEM  

The position and orientation of the camera can be estimated using the pose of a detected marker within an 

image with respect to the marker’s reference system. This representation involves six degrees of freedom 

and employs diverse formats to communicate alterations in both position and orientation, covering 

translation and rotation (Xu et al. 2023). Therefore, the pose can be expressed as a combination of two 

components:  

1) Translation vector: a tuple of three elements that identifies the absolute coordinates x, y, and z in a 

reference space (R)  

2) Rotation matrix: a 3*3 matrix that is represented using Euler angles, where the tuple contains three 

values corresponding to the rotations around the three principal axes (e.g., roll, pitch, and yaw) in a 

reference space (R)  

2.1 Marker-based CPE  

The typical process for pose estimation using square-based markers involves embedding any geometric 

shape or pattern within a square border, which serves as the marker's ID. This distinctive pattern aids in 

distinguishing between multiple markers. Square-shaped fiducial markers, primarily established on the 

foundation of ARToolkit (Kato and Billinghurst 1999), stand as a prevalent choice in marker-based CPE. 
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ARToolkit employs a global threshold to identify regions that can be delineated by four-line segments. 

Evolved from ARToolkit, ARTag (Fiala 2005) incorporates digital coding theory to enhance marker reliability, 

facilitating detections under conditions of partial occlusion. ArUco (Garrido-Jurado et al. 2014), a derivative 

of ARTag, introduces a significant advancement by allowing users to generate customized marker libraries 

tailored to specific application requirements. This customization capability has led to the development of 

smaller marker libraries and reduced computational overhead, enhancing efficiency and flexibility in marker-

based applications. In addition to these established frameworks, methodologies such as DeepTag (Zhang 

et al. 2023) have emerged to broaden the capabilities of markers in CPE, supporting the detection of a wide 

variety of existing marker families and designing new marker families with customized local patterns. Once 

a marker is successfully detected within an image, its pose relative to the camera reference system can be 

estimated, followed by subsequent computational steps to determine the pose of the camera with respect 

to the marker's reference system.  

2.2 The Contribution of Omnidirectional View to IBEM and CPE  

State-of-the-art methods for CPE with fiducial markers rely on cameras with a limited Field of View (FOV), 

leading to tracking interruptions when markers become occluded or go out of sight. In contrast, 360-degree 

cameras offer distinct advantages over regular perspective cameras by providing an omnidirectional view 

of a scene rather than a narrow FOV. This omnidirectional view facilitates the extraction of comprehensive 

information from the entire indoor environment in a single capture, demonstrating invaluable for systems 

that require a detailed understanding of their surroundings, such as analyzing construction progress for 

IBEM. However, the adoption of 360-degree cameras presents challenges due to distortions inherent in the 

captured images, impeding accurate marker detection compared to images captured from a perspective 

view. Therefore, there is active research about employing cameras with an enhanced FOV for improved 

marker detection. Hajjami et al. (2020) investigated the detection of non-planar (polygonal) ArUco markers 

in omnidirectional images, employing a spherical representation of the image data. Images were captured 

using a 3D rig of markers to create a dataset. In contrast, our research focuses specifically on detecting 

and identifying 2D planar markers in omnidirectional images captured within indoor environments, 

eliminating the need for additional equipment and setups for marker installation.  

3 METHODOLOGY  

The methodology revolves around a structured experiment where an omnidirectional camera was used to 

capture an indoor built environment. Fiducial markers (ArUco and DeepTag) were strategically placed to 

facilitate the detection and localization processes. Accordingly, the empirical test setup involved the 

installation of six 2D planar square-shaped markers, comprising four ArUco and two DeepTag markers, in 

different locations within an office environment, covering an area of 6.5m × 8.5m. The markers were 

generated with random IDs including 16, 23, 45, and 68 from the ArUco and 323 from the DeepTag libraries. 

Considering that marker detection is influenced by the distance of the camera from the markers, the camera 

was held within a fix height as 150 cm and positioned relatively close to the markers to capture a 360-video, 

ensuring that the distance parameter, which is not under the scope of current research, was adequately 

fulfilled.  This research used the Insta360 ONE X2 camera and Insta360 Studio software, which facilitated 

the extraction of snapshots with different FOVs from a specific frame. In response to the need for distortion 

coefficient estimation in CPE, the camera was calibrated using the OpenCV pipeline. The calibration was 

performed under standard conditions; however, the calibration was uniformly applied across different FOVs 

due to practical constraints in dynamically adjusting distortion coefficients.  

Employing 360-degree visualizations, various perspectives within the environment were examined, 

including snapshots with different FOVs (Narrow, Linear, Linearplus, Wide, and Ultrawide) and images 

extracted from the video recording of the environment in forms of Flat and 360-degree images. To facilitate 

frame extraction from the video, the 360-degree video was first extracted into Flat and 360-degree video 

formats. Subsequently, frames were extracted from each exported video at a rate of 10 frames per second 
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(fps). These visualizations were rigorously evaluated using the ArUco marker detection pipeline in OpenCV. 

Marker detection was performed with the detectmarker() function, while the camera's position relative to 

the marker was determined through a three-dimensional transformation with solvePnP() method  

encompassing rotation and translation vectors (OpenCV 2015).  

4 EXPERIMENTAL RESULTS  

It is important to note that while ArUco is primarily designed for ArUco marker detection, it also exhibits 

robustness in detecting other marker packages, including DeepTag. This versatility is evident where 

successful detections of both ArUco and DeepTag markers are showcased in Linearplus image type, as 

outlined in Table 1.  

Table 1: the results of marker detection and estimated poses in different image types  
Data   Initial detection   Error     

Image Type  FOV  Marker  Detection  ID  tx  ty  tz  Rx 

   

Ry 

   

Rz 

   

Video  -to-image  360    DeepTag  0%  343  No marker detected        

    ArUco    75%  23  No marker detected         

      
 45  CPE failed    

      

      
 16  CPE failed    

      

    68  CPE failed  
      

Video  -to-image  Flat    DeepTag  0%  343  No marker detected         

    
ArUco    100 %  23  CPE failed      

        45  0.10  0.31  0.81  2.11  0.85  0.59  

        16  0.09  0.87  0.74  2.11  3.90  0.27  

    68  0.35  0.12  0.26 

   

2.71 

   

3.08 

   

0.31    

Snapshot    Narrow    ArUco    100 %  23  CPE failed      

        45  0.04  0.22  0.87  3.11  2.12  0.61  

        16  0.05  0.38  1.01  2.10  3.92  0.26  

    68  0.29  0.04  0.31  5.86  0.51  0.36  

Snapshot    Linear    ArUco    100 %  23  0.20  0.04  1.36  1.03  3.54  0.13  

        45  0.17  0.45  0.68  3.17  2.06  0.60  

        16  0.08  0.69  0.84  2.10  3.89  0.26  

    68  0.40  0.23  0.14 

   

5.87 

   

0.51 

   

0.34    

Snapshot    Linearplus    DeepTag  100%  343  CPE failed      

    ArUco    100 %  23  0.19  0.04  1.31  1.03  3.56  0.15  

        45  0.23  0.56  0.59  3.12  2.11  0.65  

        16  0.06  0.81  0.77  2.14  3.89  0.22  

    68  0.45  0.33  0.06 

   

5.87 

   

0.53 

   

0.29    

Snapshot    Wide    ArUco    100 %  23  CPE failed      

        45  0.14  0.40  0.72  3.11  2.13  0.61  

        16  0.04  0.62  0.88  2.10  2.09  0.24  

    68  0.38  0.19  0.18  5.14 

   

0.52 

   

0.65    
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Snapshot    Ultrawide 

   

DeepTag  0%  343  No marker detected     

    ArUco    100 %  23  0.19  0.04  1.30  1.02  3.19  0.07  

        45  0.24  0.59  0.56  3.08  2.12  0.62  

    16  0.06  0.90  0.72  2.09  2.12  0.24  

            68  0.47  0.36  0.03  5.09  0.52  0.68  

* tx, ty, tz values represent the position error in meters and Rx, Ry, Rz values represent the rotation error in 

Euler angels.  

Although DeepTag markers were not consistently detected in all image types, their detection, particularly in 

certain FOVs such as Linearplus, underscores the significant impact of FOVs types extracted from 

360degree images on detection results as well as the position of the maker within the images. In contrast, 

ArUco markers exhibited consistent detection across all image types. Namely, image types with wider 

FOVs, like Flat video-to-image extraction, Linearplus, Wide, and Ultrawide, consistently resulted in 

successful detections for ArUco markers. However, the detection rate for these markers in 360 video-

toimage extraction format was 75%, indicating the potential of failure in this FOV. These results highlight 

the provided chance of marker detection in images with broader FOVs compared to regular perspective 

images. However, there remains room for further exploration and improvement to enhance the robustness 

to detection of all types of marker packages in addition to increasing the rate of detection in image types 

with the wider view, such as 360 video-to-image extracted image, in which the markers may not entirely be 

detected due to high rate of distortions.  

The scene featured four ArUco markers, each positioned on separate walls parallel to the camera lens. 

According to Table 1, the estimated pose errors represent consistent results across different image types 

with minor variations. Marker 16 exhibited minor variations in all image types except for orientation errors 

in Wide and Ultrawide images. Marker 23 showed the most consistency in estimated poses across various 

image types. Lastly, markers 45 and 68 displayed reasonable consistency in estimations among all image 

types, though with variations in rotation errors in flat images. Discrepancies in estimation errors, especially 

in rotation, may be attributed to marker position in the images and varying conditions in the environment, 

such as the lighting or the camera distance from the markers. Table 2 illustrates the average errors for CPE 

in each image type in which the markers were detected and CPE was successful. The errors are ranging 

from 0.13 to 0.75 meters for position and 0.33 to 3.69 degrees for rotation. While mean errors suggest 

minor variations overall, errors in Rx and Ry are significantly higher, which make them worth to be explored 

further. Additionally, CPE with the 360-degree image type was unsuccessful for all markers, indicating the 

need to address distortions in wide visual representations to enhance marker detection and CPE accuracy.  

Table 2: The average pose estimation errors (in meter for position and Euler angels for rotation) according 

to the detected markers in different image types  
Image Type  |Δtx|  |Δty|  |Δtz|  |ΔRx|  |ΔRy|  |ΔRz|  

Flat  0.18  0.43  0.60  2.31  2.61  0.39  

Linear  0.13  0.21  0.73  3.69  2.18  0.41  

Linearplus  0.21  0.35  0.75  3.04  2.50  0.33  

Narrow  0.23  0.43  0.69  3.04  2.52  0.33  

Ultrawide  0.18  0.40  0.59  3.45  1.58  0.50  

Wide  0.24  0.47  0.66  2.82  1.99  0.40  

Average  0.20  0.38  0.67  3.06  2.23  0.39  

5 CONCLUSION  

The experiments yielded results in two key aspects: marker detection rate and estimated camera pose for 

the extracted frames. Preliminary findings indicated promising marker detection rates with the provided 

omnidirectional input. Despite the overall success of marker detection, challenges persist, particularly in 
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image types with extensive distortions, such as 360 video-to-image extracted images. In these cases, 

markers are not consistently and accurately detected due to high levels of distortion, necessitating further 

exploration of 360-degree image rectification methods. The consistent results of CPE in this research 

represent a significant contribution to the comprehensive and automated visual assessment of built 

environments, particularly within the field of construction management. Key tasks such as progress 

monitoring and quality control require an accurate understanding of the project's as-is status. The proposed 

method provides a broad visualization of the actual environment, eliminating the high amount of data 

capturing and efforts for CPE to acquire the as-is status, such as the need for multiple camera setups. 

Accordingly, it facilitates direct visual comparisons with the as-planned status using the advanced computer 

vision techniques. While minor discrepancies are reflected in CPE results, future research on developing 

adaptive calibration methods to encounter practical uniform implementation of calibration results across 

different FOVs can enhance the CPE accuracy. Additionally, investigating CPE for sequences from the 

video that do not include markers will be a focal point for further exploration. These explorations are 

especially crucial in indoor environments, which have more challenges compared to outdoor settings, 

including clutter, similar patterns, and limitations in lighting conditions. Addressing these challenges will be 

pivotal in enhancing the robustness and accuracy of marker detection in omnidirectional images, thereby 

advancing the efficacy of built indoor environments management.  
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