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CONSENSUS CLINICAL STANDARDS FOR THE PROSTHETIC MANAGEMENT 

OF UNILATERAL TRANSRADIAL AMPUTATION 

 

Erin O’Brien1, Phillip Stevens1-2, Steve Mandacina3, Craig Jackman3 

1Hanger Institute for Clinical Research and Education, 2Division of Physical Medicine and 

Rehabilitation, University of Utah Health, 3 Upper Limb Prosthetics Program, Hanger Inc. 

 

ABSTRACT 

Consensus clinical standards of care were recently developed through three rounds of Delphi consensus surveys.  

The 40 statements that reached consensus standards for inclusion encompassed indications for general prosthetic 

consideration, as well as indications and considerations for body powered, externally powered and oppositional 

silicone restoration prostheses, terminal device selection, the selection of body powered control strategies, 

considerations for moisture, debris or heavy duty use, activity specific prostheses and indications for multiple terminal 

devices.  These standards may serve to guide clinical decision making and inform medical policy. 

INTRODUCTION 

While substantially less common than major lower limb amputation, major upper limb amputation accounts for 

approximately 16% of the major limb loss affecting an estimated 2.2 million Americans.1  While clinical practice 

guidelines have been developed for the broad holistic care of the individual with upper limb amputation or limb 

deficiency,2-3 there has been an absence of detailed clinical guidance with respect to prosthetic management.  A 

relatively recent multi-disciplinary State of the Science Conference, held by the American Academy of Orthotists and 

Prosthetists addressed design options for upper limb prostheses.  The Conference concluded that those rehabilitation 

professionals that have amassed considerable experience in working with upper limb amputation and limb deficiency 

should be recognized as the most informed source of currently available evidence.4 

Recent years have seen the emergence of a number of clinical practice guidelines based on the published evidence 

and addressing prosthetic patient populations.  These have included post-operative care, prosthetic foot selection, 

transtibial socket design and prosthetic knee selection.5-11  When the published evidence for a given episode of care is 

limited, the highest level of available evidence is collaborative consensus from subject matter experts, with the Delphi 

process being commonly employed.12  Several such guidelines have been performed and disseminated within the field 

of prosthetic rehabilitation.13-15  The use of Delphi consensus techniques in prosthetic and orthotic rehabilitation has 

been summarized via systematic review with a number of best practice recommendations.12  The purpose of this 

abstract is to summarize the methods and findings of a recently published Delphi consensus exercise to establish 

clinical care standards in the prosthetic management of individuals with unilateral transradial amputation or limb 

deficiency.16 

METHODS 

The full details of the methodology associated with these consensus guidelines has been published elsewhere16 

and can be summarized as follows.  Project directors from a national provider of upper limb prosthetic rehabilitation 

met with a focus group of experienced upper limb clinicians to review available systematic reviews in the area of 

upper limb prosthetic rehabilitation and identify postulates related to the indications, contraindications, and 

considerations associated with prosthesis type (e.g., body powered vs externally powered) and terminal device type 

(e.g., hand vs hook) with regard to unilateral transradial prosthetic management.  These initial postulates (n=40) were 

then entered into a secured, web-based survey platform.  A panel of 20 certified prosthetists, each of whom oversaw 

the care of at least 85 new upper limb prosthetic cases per year, and two occupational therapists, both of whom treated 

at least 75 upper limb prosthetic patients annually, anonymously considered each postulate, rating their degree of 
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agreement or disagreement with each and providing clarifying or qualifying statements to explain their position.  The 

panel was geographically diverse with an average of 21 years of clinical experience. 

Consensus standards for the acceptance of a clinical postulate was predefined at 80%.  Those postulates that 

exceeded this threshold were retained within the clinical consensus standards.  Those that did not were assessed by 

the project directors and amended to reflect the comments from the Delphi survey panel.  Amended postulates where 

returned to the panel for subsequent review and potential acceptance.  A total of 3 rounds of anonymous surveys were 

administered.  In the first round of surveys 31 postulates were accepted by the panel with 9 postulates failing to reach 

the consensus threshold.  Eleven of fourteen amended postulates were accepted in the second round.  A final postulate 

was presented and accepted in the 3rd survey round. 

RESULTS 

Once the survey rounds were concluded and consensus postulates were determined, they were aggregated by the 

following topic areas for ease of integration into clinical practice 

Prosthetic Candidacy 

Candidacy for a prosthesis may be based upon functional need, psychosocial considerations or preservation of 

the contralateral extremity.  A prosthesis should be considered for an individual with unilateral transradial amputation 

or limb deficiency when any of the following is identified:  An individual is unable to accomplish self-care activities 

or ADLs independently; an individual has functional, vocational, or avocational needs that cannot be met without a 

prosthesis; the person’s psychosocial acceptance of their amputation/limb deficiency would be improved by the use 

of a prosthesis; or an individual is at risk of overuse syndromes on their sound side. 

Body Powered Prosthesis Candidacy 

There are a number of considerations that should be assessed prior to the recommendation and provision of a 

body powered prosthesis.  These include patient education and awareness as well as certain physical attributes.  

Patients should fully understand the restriction, associated pressures and donning and doffing requirements associated 

with a control harness and be able to physically tolerate those elements.  In addition, they should accept and understand 

that activities requiring dynamic prehension will be predominantly performed with a hook, rather than a hand.  With 

regard to physical presentation, a patient’s residual limb must possess adequate soft tissue coverage and integrity to 

allow cyclical loading of the limb within the prosthesis as experienced during cable activation of the terminal device.  

This tolerance may be facilitated with appropriate interface materials or socket design.  Similarly, patients must 

possess adequate soft tissue coverage and integrity over those body segments underlying the control harness of the 

prosthesis.  Finally, candidates for a body powered prosthesis must possess adequate strength and range of motion to 

generate the necessary cable force and excursion to actuate their terminal device. 

Externally Powered Prosthesis Candidacy 

Prior to the recommendation and provision of an externally powered prosthesis the following elements should be 

evaluated and considered.  The candidate should possess adequate control input to control an externally powered 

prosthesis through EMG, FSR, electronic switch or linear transducer and understand and accept the noise, weight and 

charging requirements associated with an externally powered device.  An externally powered prosthesis should be 

considered when one or more of the following is identified:  A candidate lacks the strength or range of motion required 

to generate the necessary cable force or excursion for a body powered prosthesis; A candidate lacks the necessary soft 

tissue coverage and integrity to allow cyclical loading of the limb within the prosthesis, even with appropriate interface 

materials and socket design; a candidate anticipates the need for sustained, high grip strength through movement; a 

candidate’s functional work envelope cannot be confined primarily to the area immediately in front of them; there is 

a compromise to gross body movements of the shoulders or back and/or an existing neurological compromise to the 

sound side upper limb (such as pain, numbness, or tingling); or a candidate has been previously fit with either an 

oppositional or body powered prosthesis and could not integrate it fully into their desired ADLs or vocational 

responsibilities, either because of mechanical constraints or psychosocial rejection. 

Oppositional Silicone Restoration Prosthesis Candidacy 

An oppositional silicone restoration prosthesis (sometimes termed “passive” or “aesthetic” prosthesis) should be 

considered when the user’s primary priority is an aesthetic restoration of their forearm and hand, the user fully 
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understands and accepts the absence of active prehension, and the user fully appreciates the cosmetic limitations of an 

oppositional prosthesis. 

Terminal Device Selection 

Non-anthropomorphic hook-type terminal devices should be considered when enhanced visibility and find motor 

dexterity during object manipulation are desired and the user of a body powered prosthesis required a durable terminal 

device.  Alternately, hand-type terminal devices should be considered when the associated psychosocial acceptance 

of an anthropomorphic terminal device is indicated for the patient, and the cosmetic and fine motor dexterity 

limitations of such terminal devices are fully understood by the patient. 

Body Powered Control Strategies 

Users of body powered prostheses will need to actuate their devices using either the more common voluntary 

opening strategy or the less frequently utilized voluntary closing strategy.  The former should only be considered when 

the user presents with adequate strength to overcome the mechanical resistance mandated by the necessary grip 

strength of the terminal device and fully understand and accepts the relationship between available grip strength and 

the strain experienced through the harness during operation of the terminal device.  Similarly, the voluntary closing 

control strategy should only be considered when the user understands and accepts the potential energy expenditure 

and cognitive load associated with sustaining grip strength through range of motion. 

Moisture, Debris and Heavy Duty Use 

With the recent improvements in certain externally powered components, appropriately designed body powered 

and externally powered prostheses can be considered when exposure to moisture, debris or heavy duty use is 

anticipated. 

Activity Specific Prostheses 

Activity Specific Prostheses should be considered when the user’s needs during a give activity exceed the 

capabilities of alternate prosthetic designs and/or terminal devices. 

Multiple Prostheses 

Multiple prostheses or terminal devices may be indicated when the user’s needs exceed the capabilities of a single 

prosthesis type or terminal device. 

 

DISCUSSION 

The aim of this effort was to establish treatment guidelines for the prosthetic management of unilateral transradial 

amputation and limb deficiency.  While a degree of subjectivity is innate to Delphi consensus methodology our 

protocols were consistent with those used in prior Delphi consensus efforts in the field and recommended best 

practices.12  This included initial postulate generation based on available evidence, the selection of a highly 

knowledgeable and experienced expert panel of an appropriate size, attainment of a high response rate, apriori 

establishment of a high standard of consensus and the use of multiple rounds of surveys to refine postulates towards 

consensus acceptance. 

The Delphi processes facilitated the establishment of clinical practice standards for the prosthetic management of 

individuals with unilateral transradial amputation in the absence of strong, detailed evidence from existing clinical 

research and systematic literature reviews.  Many clinicians lack the necessary expertise in the area of upper limb 

prosthetic management to allow a high degree of confidence in treating this population towards optimal clinical 

outcomes.  These clinical care standards may help inform clinical decision-making processes to ensure that essential 

elements are taken into clinical consideration.  However, they are not so prescriptive as to preclude the individual 

judgment of the clinician or the values and preferences of the patient.  These consensus standards have also been 

welcomed by medical directors and policy makers in addressing the void that would otherwise be present in the 

prosthetic management of this relatively small patient population. 
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PPP-ARM: A QUALITY IMPROVEMENT BY INCORPORATING PATIENT 
INVOLVEMENT AND BY ADDING A DECISION AID FOR TERMINAL DEVICES 
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3 Rehabilitation centre De Hoogstraat, Utrecht, The Netherlands 

ABSTRACT 

Introduction: The Prosthesis Prescription Protocol of the upper limb (PPP-Arm), is a digital tool to structure, 
underpin and evaluate the prescription of upper limb prostheses (ULPs) in rehabilitation centres in the Netherlands 
that prescribe ULPs. The results of evaluating five years of PPP-Arm use, the recently developed Dutch Quality 
Standard for Prosthetic Care (D-QSPC) and the wish for facilitating shared decision-making led to this study. We 
aimed to develop and implement quality improvements and a patient decision aid (PDA) to the national digital protocol 
PPP-Arm. 

Methods: Improvements for PPP-Arm were identified by an evaluation with clinicians after five years of PPP-
Arm-usage and based on the recommendations described in the D-QSPC, focussing on new elements that should be 
incorporated in PPP-Arm. The PDA about Terminal devices for people with Upper Limb Absence (PDA-TULA) was 
developed in a systematic co-creation process following the steps described by the International Patient Decision Aid 
Standards. The improved PPP-Arm and the newly developed PDA-TULA were pilot-tested in the real-life national 
rehabilitation setting. 

Results: The following improvements were made to PPP-Arm: the option to add images to the prosthesis 
application for the health care insurer, access for patients to PPP-Arm in order to complete surveys, digitally signing 
prosthesis applications, view educational material, and more structure was integrated in the description of the stepped 
care process. Furthermore, the PDA-TULA was added to PPP-Arm, which informs patients about available Terminal 
Devices (TDs), then stimulates the patient to consider their own preferences regarding the TD options, and lastly 
provides an overview of the patients’ preferences in relation to the available TD options. Implementation of the pilot-
test regarding the improvements of PPP-Arm is ongoing, we expect it will lead to better usability, modernization, and 
increased patient involvement in the treatment process. Pilot-testing of the PDA-TULA showed that patients and 
clinicians experienced benefits from the PDA-TULA regarding the prosthesis selection process.  

Conclusion: PPP-Arm has been improved, adjusted to the renewed D-QSPC, and supplemented with the PDA-
TULA. Results emphasize the importance to cooperate with all stakeholders and pilot-test changes and new products 
in the real-life setting to develop and improve products that suits the needs of all stakeholders.  

INTRODUCTION 

The Prosthesis Prescription Protocol of the upper limb (PPP-Arm) is a national tool to structure, underpin and 
evaluate the prescription of upper limb prostheses (ULPs). The protocol creates a uniform and structured, nationally 
applicable, prescription policy and is based on the World Health Organization’s criteria of the International 
Classification of Functioning (ICF; Figure 1). PPP-arm was initiated in 2009, digitalized in 2012, and implemented 
into all ten rehabilitation centres that prescribe ULPs in the Netherlands in 2016. PPP-Arm has been co-created by 
patients, rehabilitation teams, orthopaedic workshops, and health insurance companies, collaborating in the working 
group PPP-Arm [1]. After five years of nationwide use, the users expressed a need to evaluate and improve PPP-Arm. 
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Additionally, the publication of the new Dutch Quality Standard for Prosthetic Care (D-QSPC) [2], which should be 
implemented into the Dutch health care process, affirmed the need to update PPP-Arm. Furthermore, shared decision 
making is becoming increasingly important in clinical practice, especially regarding preference-based decisions such 
as ULPs [3]. A patient decision aid (PDA) could support the shared decision-making process between patient and 
clinicians by informing the patient about available options and helping them to clarify their values related to those 
options [4]. Therefore, this study aimed to develop and implement quality improvements and a PDA to the national 
digital protocol PPP-Arm.  

METHOD 

Adjustments to PPP-Arm 

Adjustments to PPP-Arm were based on 1) an evaluation among clinicians and 2) recommendations provided by 
the recently published D-QSPC. 

1) The evaluation consisted of collected feedback and suggestions from clinicians of ten rehabilitation teams 
during the last five years and discussion during several meetings of the national working group amputation 
and prosthetics of the upper limb (WAPA).  

2) The recommendations of the renewed D-QSPC were analysed focussing on elements that should be 
incorporated in PPP-Arm, for example: PPP-Arm should be more patient oriented, more structured in the 
application of the stepped care process and should use the same terminology as the D-QSPC. 

A proposal for adjustments was presented to and approved by the WAPA members. After incorporation of the 
improvements to PPP-Arm, the protocol was implemented and tested in clinical practice by ten rehabilitation teams. 
In each team a knowledge broker (KB; a member of the prosthetic team, mostly a therapist) was responsible for the 
implementation of the new version of PPP-Arm within his own centre. A national project coordinator was appointed, 
who maintained contact with all parties involved, collected questions and problems regarding the improved PPP-Arm, 
and organized meetings to further implement the PPP-Arm.  

Development and pilot-test of PDA-TULA 

The local Medical Ethics Review Board of the University Medical Centre Groningen waived formal study 
approval regarding the PDA-TULA (METc 2018/582). Participants of focus groups, surveys and interviews provided 
written informed consent. The documentation template of the International Patient Decision Aid Standards was used 
to develop the PDA about Terminal devices for people with Upper Limb Absence (PDA-TULA) [5]. First, the scope 
was determined. A focus group among clinicians was organized and the target audience for the PDA-TULA was 
determined: people with major unilateral upper limb absence. Second, a steering group with patients, clinicians, a 
prosthetist, researchers, an ICT expert, and implementation experts was assembled. Third, the contents and design of 
the PDA-TULA were elaborated. The contents were based on a qualitative meta-synthesis [6], a focus group with 
patients [6], a survey among patients [7] and prosthetists, a nationwide digital meeting with clinicians, information 
from manufacturers, and discussions with the research team and steering group. To determine the design, drafts of the 
PDA-TULA were made, improved based on the feedback of the steering group, and the PDA was integrated into the 
software. Fourth, the PDA-TULA was alpha tested by patients, clinicians, health care insurers, researchers, and an 
implementation expert. All feedback was processed, resulting in the beta-version of the PDA-TULA, which was 
implemented and pilot-tested for five months in nine rehabilitation centres. To support the implementation process, 
the following actions were taken: co-creation of the PDA-TULA, usage of the network of KBs of PPP-Arm, option 

 

Figure 1: Structure of PPP-Arm 
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for financial support for KBs, organization of meetings with the KBs, assignment of a project coordinator for technical 
support and questions during the pilot, provide updates about the PDA-TULA on national meetings and in newsletters 
for stakeholders. Telephone interviews with patients, KBs and clinicians were conducted to evaluate the PDA-TULA. 

RESULTS 

Implementation of adjustments to PPP-Arm 

Based on the feedback derived from PPP-Arm users (ten rehabilitation teams) and analyses of the D-QSPC, the 
following improvements were made to PPP-Arm: 

• Creation of a patient hub, a digital environment that can be accessed by the patient in order to exchange 
questionnaires and entry the PDA-TULA. 

• Addition of the option to provide a digital signature for patients and professionals in order to digitally approve 
the prosthesis application. 

• Integration of the Dutch version of the Quebec User Evaluation of Satisfaction with assistive technology (D-
QUEST). Via the patient hub, D-QUEST can be sent digitally, completed and stored in PPP-Arm. 

• Creation of easier access and management of the prosthesis information folder in the protocol: 
Administration page for content managers to add/remove educational materials for patients. 

• Addition of the option to add photos to the prosthesis application report. 
• Addition of the option to define the function of all separate users (i.e., doctor, occupational therapist, 

physiotherapist, hand therapist, prosthetist) to guarantee safety and transparency.  
• Application of the terminology of the D-QSPC in PPP-Arm. 
• Structuring and improvement of choices in the stepped care process. 
• Development and integration of the PDA-TULA (see below). 

Currently, pilot-testing is ongoing. We expect the adjustments will lead to a quality improvement of PPP-Arm: better 
usability, more structure, modernization, better access to educational material and increased patient involvement in 
the prosthesis selection process. Pilot-test results will be revealed at the conference.  

 

Figure 2: Example of the summary page of the last part of the digital PDA-TULA. 
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Development and pilot-test of PDA-TULA 

The PDA-TULA consists of four parts. In the first part, patients are asked to enter personal information, which 
can be imported into the patient’s file by the clinician. In the second part, general information about seven Terminal 
Device (TD) categories is provided: prosthesis with a tool/accessory, cosmetic/passive hands, body-powered hooks, 
body-powered hands, myoelectric hooks, myoelectric hands with one grip, and myoelectric hands with multiple grips. 
To fulfil the need of experienced ULP users, more detailed information can optionally be consulted by accessing 
underlying pages within the PDA-TULA. In the third part, patients are stimulated to consider what is important for 
them regarding their ULP. Information about five prosthetic aspects is provided (appearance, wearing time, activities, 
prosthesis control, time and effort), each followed by a question about the patient’s preferences regarding that aspect. 
In the last part, a patient profile is created based on the patient’s preferences. This profile can be compared with the 
profiles of the TD options (Figure 2). A PDF with a summary of the results and the patient’s questions for the next 
consultation is available for the patient and clinician. 

Patients were enthusiastic about the PDA-TULA, they stated that the PDA helped them to get an overview of the 
available TD options and go through the information at their own pace. Additionally, KBs and clinicians indicated 
that the PDA-TULA was of added value and could be used as educational material in the prosthesis selection process. 
However, some patients needed help to go through the PDA (e.g., non-Dutch speakers, insufficient digital skills). 
Provided feedback from the telephone interviews were discussed with the steering group and subsequently final 
refinements were made to the beta-version of the PDA-TULA (e.g., addition/change of some pictures, textual 
clarifications).  

CONCLUSION 

PPP-Arm was modernized, improved, adjusted to the new D-QSPC, and supplemented with the PDA-TULA. 
Clinicians, KBs, and patients were involved in the development of the PDA-TULA and update of PPP-Arm. Pilot-
testing of the PPP-Arm improvements is still ongoing. However, the pilot test in the real-life rehabilitation setting 
enabled further improvements of PDA-TULA based on the experiences of the different stakeholders, which resulted 
in many positive responses from the involved stakeholders. This study, therefore, emphasizes the importance to 
cooperate with all stakeholders and pilot-test changes and new products in the real-life setting to make a product that 
suits the needs of all stakeholders. 
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Upper Extremity Prosthetic Rehabilitation: A 20 day plan of therapy, education 

and coaching. 

By Josef Butkus, MS OTR/L, Occupational Therapy Supervisor, Walter Reed National Military Medical 

Center, Bethesda, MD, USA.  

 

 

 Rates of prosthesis rejection continue to remain around 50% despite technological advances in 

the field [1].  There are a number of factors involved in the whether someone chooses to wear a 

prosthesis or not [2].  There are also life circumstances that may contribute to not wearing a prosthesis 

[2].  One of the challenges to successful acceptance of an Upper Extremity prosthesis may be a delay in 

fitting, inefficiencies in care, and lack of consistent treatment [2,3].  Frequently patients suffering limb 

loss are seen by providers who have limited experience with this type of injury and are only able to offer 

patients limited insight into the use of their prosthesis.  This presentation proposes a protocol of 

prosthetic training to ensure consistency and quality of care. 

 Walter Reed National Military Medical Center (WRNMMC) has received many military members 

who suffered upper extremity limb loss over the past 20 years.  Patients at Walter Reed have had the 

benefit of exceptionally experienced staff, peer support, funding for new developing limbs, recreation 

therapy, robust adaptive sports/reconditioning and housing for patients and their families while 

undergoing rehabilitation.  Rates of prosthetic acceptance have been anecdotally better than studies of 

the civilian populations, but because the programs are so different it requires more study to determine 

why.  Some differences of care are that patients enjoy much more therapy time, insurance support, 

funding for newly developed devices and a commitment to return patients to a full, active lifestyle 

involving fitness and adaptive sports.  This presentation will serve as an opportunity to look at a 
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treatment protocol, concepts, education and training that have been hallmarks of the UE prosthesis 

training program in Occupational Therapy at Walter Reed NMMC. 

 With a limited opportunity for prosthetic training and acceptance, therapy should focus on 

facilitating the patient to learn how the device can best assist them in daily life.  Attaching anything to a 

physical body is awkward, and much more so if it is suspended off an extremity.  Whether a person 

chooses to use a prosthesis is entirely up to the individual.  What medical professionals can control is 

helping the patient achieve a high level of proficiency and knowledge of the device.  If proficiency is 

achieved, theoretically the patient will have more autonomy and have a good understanding of how the 

device may best assist the patient.  Medical staff should encourage the patient to take ownership of the 

device and progress towards some level of embodiment of the device.  Patients often have gone 

through recent physical and emotional traumatic events which need to be counteracted with as much 

positive and enjoyable circumstances surrounding the prosthesis as possible.  Knowledge of activities 

and how best to adapt them for success with a prosthesis is a vital part in this process. 

 This proposed treatment plan includes the key components of prosthesis skills, knowledge of 

the device and how to adapt a task to perform efficiently.  Ideally a patient would attend more than 20 

sessions but more may not be possible due to insurance or time limitations of the patient.  The 

treatments focus on building a patient’s confidence in analyzing efficient performance.  Coaching and 

offering feedback in actual tasks assist the prosthesis user in developing more efficient motor plans.  

This document will serve as a resource for new therapists to the population and assist them to make 

sure they have covered all aspects of prosthesis training.  This plan will focus on 20 therapy sessions to 

present a method to progress skills and knowledge across a continuum to achieve acceptance and 

proficiency with the prosthesis.  
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ADAPTIVE EMG PATTERN RECOGNITION REDUCES FREQUENCY AND 
IMPROVES QUALITY OF AT-HOME PROSTHESIS TRAINING FOR UPPER LIMB 

MYOELECTRIC PROSTHESIS WEARERS 
 

Zachary Wright, PhD, Blair Lock, PEng, MScE 
Coapt, LLC 

ABSTRACT 

Upper limb myoelectric pattern recognition-controlled prostheses use machine learning algorithms to identify a 
wearer’s intended movement from their muscle activity patterns. However, many factors can contribute to changes 
in the characteristics of the EMG input signals (electrode shift, muscle fatigue, limb position etc.) during everyday 
prosthesis use which can diminish controller performance. Multiple in-lab studies have demonstrated promising 
results towards improving controller performance by employing advanced algorithms, none of which have been 
tested clinically, that can adapt to these changes. This paper presents the implementation of a supervised-adaptation 
algorithm on a commercially available pattern recognition control system that makes use of historical EMG data 
collected during previous user-initiated calibration routines to update the existing classification model. In an at-
home clinical study, we evaluated whether real-world use of adaptive classification reduces how often upper limb 
prosthesis wearers need to recalibrate their pattern recognition system.  

INTRODUCTION 

Pattern recognition style of myoelectric prosthesis control has benefitted many individuals since 
commercialization in 2013. Using machine learning techniques to decode complex muscle activity patterns recorded 
from electromyographic (EMG) sensors, a pattern recognition controller can provide wearers natural and intuitive 
control of their powered prosthesis [1]. A key feature of pattern recognition is that is needs to learn the wearer’s 
unique EMG patterns corresponding to each type of prosthesis motion they want to control. This is achieved by 
inputting representative data during system training (i.e., calibration). The inability of a control system to classify 
the user’s EMG inputs significantly affects user control of their prosthesis device. This often leads to frequent 
recalibration which can be quite time-consuming and burdensome for many pattern recognition wearers. 

Effective EMG pattern recognition requires wearers to make repeatable, consistent muscle contractions [2]. 
Studies have shown that it is possible for control algorithms to achieve accuracies greater than 90% under ideal 
laboratory conditions [3], [4]. However, classification accuracies deteriorate significantly under more realistic usage 
scenarios such as when electrodes shift positions [5], when the user changes the posture/position of their residual 
limb [6], or when modulating the force of their contraction. To address these deteriorations, the most effective 
method might be to collect additional algorithm training data that is representative of these conditions. After 
representative data is collected, the control system may be adapted to incorporate this new data.           

The default behaviour of many existing pattern recognition systems is to clear the existing classification model 
from memory each time the user initiates a calibration. Studies have shown that an alternative solution, which 
instead modifies the existing classifier using EMG input data recorded upon recalibration, has the potential to 
improve pattern recognition control. In lab-based studies, Vidovic et al. found that classification accuracy improved 
from 75% to above 92% [7] and Cummins et al. found that classification error rates significantly decrease across 
multiple days of training data [8] when utilizing such adaptive calibration strategy. These promising results point to 
the need for clinical implementation; yet, no studies have evaluated the effectiveness of using pattern recognition 
adaptation under realistic use conditions – i.e., while prosthesis wearers use their device at-home in their own 
environment. Here, we present preliminary results from an at-home study where upper limb myoelectric pattern 
recognition wearers used a supervised adaptation calibration paradigm. Our primary hypothesis is that using 
adaptation reduces the frequency at which recalibration is needed. In a randomized, cross-over study design, we 
compared everyday wearers’ calibration frequency and the quality of their EMG input data between their prosthesis 
use with and without the adaptive classification algorithm.  
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METHODS 

Participants:  

Five individuals with upper limb difference/absence (three at the transradial level and two at the transhumeral 
level) have completed the at-home study. Two additional individuals are currently enrolled, and two others withdrew 
their study participation. All participants provided informed consent in accordance with the Institutional Review 
Board and Human Research Protection Office.  

Apparatus:  

Participants used their existing Coapt Complete Control Gen2® pattern recognition control system to control 
their motorized arm components. The number and type of prosthesis motions participants had enabled varied 
depending on the type of powered devices connected (hand, wrist or elbow combination). Gen2 system users are 
able to train their EMG pattern recognition controller by performing either a prosthesis-guided or software-guided 
motion calibration sequence using the Complete ControlRoom software application [9]. The classification algorithm 
of the control system is linear discriminant analysis (LDA) [10] which, when enabled, clears the existing classifier 
from memory upon a user-initiated motion calibration sequence. Effectively, new EMG input data recorded during a 
calibration replaces the existing data and only this data is used to create a new LDA classifier.  

Changing the control system to the adaptive classification algorithm can be easily done by accessing the 
controller settings in the software. This classification model uses covariate shift adaptation to update the class means 
and pooled covariance matrices of an existing LDA model using the new EMG input data recorded during each 
subsequent user-initiated calibration. The control system retains memory of the existing LDA classifier which does 
not clear until the user manually performs a full system reset. A full derivation of the adaptive algorithm can be 
found in [7]. It is important to note that the default classification algorithm employed by the Complete Control Gen2 
system for all new and existing wearers is the adaptive algorithm, thus study participants were not naïve.  

Following each calibration, the EMG input and classifier data is analyzed by the Control Coach® [11]. The 
Control Coach® uses artificial intelligence to detect calibration issues and to evaluate the quality of the calibration 
data. In addition to providing feedback messages (up to two per motion) to users on how to improve calibration 
quality, the software tool provides a star rating for each enabled prosthesis motion relating to the potential severity 
of any calibration data quality issues detected (1 star = most severe, 5 stars = least severe). The overall calibration 
quality is determined by computing the average star rating across all motions. The Gen2 system hardware also has 
data logging capabilities to monitor at-home prosthesis use including prosthesis wear-time, calibration frequency, 
commanded motion frequency and device output speeds, electrode liftoff frequency and Control Coach® data. 

Procedures:  

Participants were asked to use their prosthesis at-home for a total of 16-weeks. Each participant was randomly 
assigned to one of two study groups. For the first 8-weeks, participants used their Gen2 system with the adaptive 
classification algorithm either ON or OFF, and for the second 8-weeks, the opposite classification algorithm was 
enabled. Only research personnel had access to the controller settings to enable or disable the adaptive algorithm at 
the beginning of each 8-week period so that participants were blind to the classification algorithm enabled on their 
system throughout the experiment. At the beginning of each 8-week period, research personnel manually performed 
a full control system reset to clear out any existing calibration data. Participants were then asked to complete an 
initial motion calibration sequence. At the end of the study, participants completed a questionnaire asking about 
their preferences towards the type of classification algorithm used in both 8-week periods in terms of their perceived 
prosthesis control efficiency and controller performance.  

RESULTS 

Our primary outcome measure was calibration frequency which we defined as the ratio between the number of 
times users initiate a calibration sequence and the number of times the user powers on their prosthesis. This 
calibration frequency metric accommodates for differences in user wear-time and number of calibration events. We 
compared calibration frequency during each 8-week period in which the adaptive algorithm was either ON or OFF 
for each user (Fig. 1, left). Preliminary results reveal a trend towards a reduction in calibration frequency among 
participants with the adaptive algorithm ON. Three out of the five participants reduced their calibration frequency on 
average by 43% while one participant showed a marginal increase and another participant nearly doubled calibration 
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frequency with the adaptive algorithm ON. Our preliminary analysis also shows a trend towards increased prosthesis 
wear-time per calibration (Fig. 1, middle) as four out of five participants demonstrated an increase in how many 
hours (on average, 2.7 more hours) they used their prosthesis with the same classifier before recalibrating. Four out 
of the five participants also showed improvements in the quality of their calibration data, as measured by the Control 
Coach® star ratings, with the adaptive algorithm ON (Fig. 1, right). 

 

 

DISCUSSION 

We presented preliminary results of an at-home study to determine whether an adaptive classification algorithm 
for upper limb myoelectric prosthesis wearers reduces how often users choose to recalibrate their pattern recognition 
controller when using their prosthetic device within their home environment. By adding new data to the pattern 
recognition classifier rather than completely clearing the existing classifier, we implemented an adaptive algorithm 
that affords the controller the opportunity to generalize to more movements, prosthesis use conditions and a larger 
set of EMG input data. Our preliminary analysis reveals a trend towards a reduction in calibration frequency and an 
increase in how much time elapses before users choose to recalibrate their device when the adaptation algorithm was 
enabled. Interestingly, four of the five participants reported, in a Post-Study Questionnaire, that they felt they 
achieved better control performance during the 8-week period when the adaptive algorithm was enabled on their 
device. The implementation of supervised controller adaptation on a commercial pattern recognition system that 
decreases the need for recalibration, and even improves home-use performance can have a far-reaching clinical 
impact on prosthesis wearers. 

An adaptive classification strategy may provide a means not only to reduce the frequency of user recalibration, 
but also to improve their functional prosthesis control. Another main finding of our preliminary results was that 
users improved their calibration quality when the adaptive algorithm was enabled. This result provides preliminary 
evidence that adding additional EMG input data can improve calibration quality which may translate to enhanced 
user control of their prosthetic device. Further analysis of participants’ usage logs and virtual game data collected 
during each 8-week period is needed to determine the correlation between the quality of their calibrations and their 
control efficiency within both a virtual environment and their home environment.   

While the adaptation algorithm implemented on the control system can generalize over a broader set of EMG 
calibration inputs, it is unable to account for EMG signal noise recorded during regular prosthesis use. EMG signal 
quality is a significant factor in users being able to consistently achieve adequate control of their device. While there 
are several physiological and engineering factors that can affect EMG signal quality (including external noise, 
muscle fatigue, electrode-skin impedance), myoelectric prostheses require that the electrodes maintain contact with 
the skin surface to ensure proper user function. The Complete Control System can detect such electrode liftoff 
events which can be used to monitor signal quality issues. Interestingly, the two users who had higher a calibration 
frequency when the adaptive algorithm was off also had a high frequency of electrode liftoff events. Currently, the 

Figure 1: Differences in individual participant logged prosthesis use data including (left) calibration frequency 
(middle) wear-time per calibration (right) average calibration quality star-ratings when the adaptation classification 
algorithm was enabled or disabled on their pattern recognition control system. 
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only way for users to counteract frequent electrode liftoff is by disabling the electrode channels with a noticeably 
high occurrence of liftoff events. 

Participants in this study were required to perform a full motion calibration sequence to either replace or update 
their control system’s classifier during both 8-week periods. However, one of the added features of the adaptative 
calibration algorithm is the ability to add EMG input data to a single motion rather than completing the entire 
motion sequence. This feature provides users a convenient way to update and improve their classifier for a single 
motion if they feel that their control efficiency for that motion has deteriorated or if there are prosthesis use 
conditions where they want to train with that specific motion. Since participants in this study were existing 
Complete Control system wearers and the adaptive classification algorithm is the default behaviour of the system, 
many who normally rely on the “Single Motion Add Data” feature to improve their prosthesis control did not have 
access to it. In fact, one of the participants who withdrew from the study reported that the inability to use the “Single 
Motion Add Data” feature as the primary reason for withdrawing from the study.  
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ABSTRACT 

Purpose: This study aimed to survey Canadian upper limb prosthesis users and clinical prosthetists (who fit the device) to 

examine physical and psychosocial factors that influence the acceptance and rejection of using an upper limb prosthesis. 

Methods: Two separate, custom-built questionnaires were developed and sent to Canadian clinical prosthetists to participate 

and distribute to their upper limb patients. Results: This survey received responses from 47 clinicians, 22 prosthesis users, and 

one non-prosthesis user from nine provinces. Due to the small data set, responses did not show any statistical significance; 

however, the results highlight several important factors and the importance of patient-prosthetist relationships and rehabilitation 

services. Conclusion: Upper limb fitting in Canada has its challenges, and similar to other research, there are several important 

factors to focus on when considering acceptance of upper limb prostheses.  

 

INTRODUCTION 

Individuals with upper-limb absence (ULA) account for 3 to 15% of all amputations and have relatively lower rates of 

acceptance/use than those with lower-limb absence (LLA) [1]. Studies show that acceptance rates for ULA individuals are 27 

to 56%, whereas LLA individuals have a 49 to 95% acceptance rate [2]. Limb loss is considered “trauma”, as the correlation 

between mental-self and real-self disrupted, which can affect an individual’s interaction with the sense of belonging and the 

acceptance of a prosthetic limb. Acquired/traumatic limb loss accounts for 80 to 90% of all ULA, which can be correlated to 

the high and varying rates of prosthesis rejection, ranging from 24 to 70% [3]. Canadian research regarding upper limb 

prosthesis acceptance and rejection rates and reasons are limited and outdated since there are no official reporting requirements 

[4]. Furthermore, with the technological advancements in prosthetics, these rates have changed and should be updated [5]. The 

purpose of this study was to survey Canadian upper limb prosthesis users and clinical prosthetists (who fit the device) to 

examine physical and psychosocial factors which influence the acceptance and rejection of using an upper limb prosthesis. The 

results of this study will help address this void in Canadian upper limb research and improve our understanding of why 

acceptance and rejection of upper limb prostheses occurs.  

 

METHODS 

Questionnaire 

Two separate, custom-built questionnaires were developed from a literature review of existing surveys and relevant 

research to focus on the most prevalent factors impacting prosthesis acceptance. The prosthesis user/non-user questionnaire 

collected participant demographics, limb loss specifics, prosthesis user background, and prosthesis acceptance and rejection 

related factors. The clinician questionnaire collected clinician and clinic demographics, prosthesis availability and 

rehabilitation, and prosthesis acceptance and rejection factors. The surveys were provided in English and French and 

administered through the online survey platform Google Forms and the post if needed. Certified clinical prosthetists across 

Canada were the primary recruitment source, as survey links were distributed via an invitation email. The clinicians were asked 

for their participation in the survey, as well as, to aid in dispersing the prosthesis user/non-user survey, to their patient list that 

met the inclusion criteria. The inclusion criteria for the clinician questionnaire were Canadian certified prosthetists (CP), 

certified prosthetists orthotists (CPO) and prosthetic residents, and that the clinic at which they worked fitted upper limb 

prostheses. The criteria for inclusion in the prosthesis user/non-user survey were upper limb amputees of any length, age 19 

years or older, and who currently use a prosthesis or have chosen to reject using a prosthesis. A total of 47 clinicians (CL), 22 

prosthesis users (PU) and one non-prosthesis user (NPU) participated in the survey. Questionnaires with a minimum of 75% 

completed answers were used, and for questions which were not answered by all participants the response rate was included in 

the results separately. Data was processed using t-tests with two-tailed distribution and two-sample unequal variance and two 

MEC 2022

21



sample proportion z-test, with an alpha level of 0.05. All statistical analysis was computed using Minitab 19.2020 (Minitab® 

LLC State College, Pennsylvania, USA), and a variance equality was not assumed for this. The Research Ethics Board at the 

University of New Brunswick (REB #2021-135) approved this study.  
 

RESULTS 

Clinician and clinic demographics   

Clinician participation came from nine provinces, with 40.4% working in hospital-based clinics. The majority, 70.2%, of 

CL were CP, ranging from less than five to over ten years of experience. Most clinicians’ ULA patients represented less than 

10% of their clinic’s population, with the average age of patients between 36 to 65 years. Clinician and clinic demographics 

are presented in Table 1.  

 

Table 1: CL (p=46) and PU (p=20)  

Complaint 
Pooled sample 

proportion 

Test 

statistic 

P-value 

(p>0.05) 

Fit 0.23 -4.0845 2.000 

Maintenance/ 

repair 

0.169 -2.592 1.990 

Function 0.350 0.000 1.000 

Glove issues 0.166 -1.203 1.771 

Comfort 0.275 1.504 0.133 

Cosmetics 0.228 0.356 0.722 

Myo-hand/ 

device 

0.135 0.547 0.585 

Harness 0.120 1.150 0.250 

Durability 0.106 0.971 0.331 

Skin irritation 0.092 0.776 0.438 

Technology  0.064 0.305 0.760 
 

 
Figure 1: CL, PU and NPU ratings of importance for factors 

affecting acceptance. Likert scale of 1 to 5, with 1 being not 

at all important and 5 being very important. Standard error 

bars represent standard deviation. Factor Key: 1-Function of the 

prosthesis, 2-Ease of prosthetic device use, 3-Ease of putting on/taking off 

the prosthetic device, 4-Weight of the prosthetic device, 5-Cosmetic quality 

of prosthetic device, 6-Sufficient sensory feedback from the prosthetic 

device, 7-Socket and harness comfort, 8-Skin/body irritation from prosthetic 

device, 9- Heat produced while wearing the prosthetic device, 10-
Satisfaction with prosthetic device technology, 11-Past prosthesis 

experience, 12-Lifestyle, 13-Availability of prosthetic services, 14-Access 

to therapy and training for prosthetic device use, 15-Confidence of 

prosthetist, 16-Quality of patient-prosthetist relationship.  

 

Users and Non-Users demographics and limb loss specifics 

Out of 23 individuals with ULA, 22 currently use a prosthetic device, and one did not. Participants identified as 43% female 

and 57% male and were primarily in the age range of 36 to 65 years and reported from five different provinces. 91% of the 

participants were unilateral amputees, mainly transradial (52%). Acquired amputation accounted for 65%, and of the acquired 

ULA individuals, 73% had their limb loss occur on their dominant arm. Prosthesis user and non-user demographics and limb 

loss specifics are documented in Table 2.  

 

Table 2: Factors rated greater than or equal to 4.0 for the level of importance in influencing prosthesis acceptance.  

 Factors 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17* 18* 19* 20* 

CL + + + + - - + + - + - + + - + + - + - + 

PU + + + + - - + + - + - + + - + +     

NPU + + + + - + + + + + - + + + + +     

+ = ≥4.0, - = < 4.0, *Factors only asked in clinical questionnaire. Factor Key: Same as Figure 1, with the addition 17-Patient gadget 

tolerance, 18-Amputation level, 19-Time to initial fit, 20-Funding availability.  
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Factors affecting “acceptance” of a prosthesis 

CL, PU and NPU rated a list of 16 factors on the level of importance with regards to how it would affect the “acceptance” 

of a prosthesis. A statistical difference was not found between the CL and PU, as their ratings of importance were relatively 

similar. Except for their ratings for Access to therapy and training for prosthetic device use, there was a statistical significance 

(p= 0.06), with the CL rating a higher importance value, than the PU and NPU. The order of the highest-ranked factors, varied 

slightly between the two groups. PPU’s top 5 factors, in order of highest to lowest average rating, were: socket and harness 

comfort, ease of putting on/taking off the patient’s prosthetic device, quality of patient-prosthetist relationship, the function of 

the prosthesis, ease of prosthetic device use. Whereas the top 5 factors for CL, in order of highest to lowest average rating was: 

function of the prosthesis, socket and harness comfort, skin/body irritation from prosthetic device, quality of the patient-

prosthetist relationship, ease of prosthetic device use.  

 

Common complaints 

In order of greatest occurrence, the following top 5 PU complaints were mentioned in clinicians’ responses (n=46): weight, 

function, comfort, cosmetics, cost, whereas the top 5 PU complaints mentioned in the PU responses were (n=20): fit, 

maintenance/repair, function, glove issues, cosmetics. Table 1 documents commonly mentioned complaints and their statistical 

analysis values.

Patient-prosthetist relationship  

On average, PU rated their overall relationship with their prosthetist 4.55 on a scale of 1 to 5, and the NPU participants 

rated theirs as a 5. Furthermore, 73% of PU agreed that they believe their level of satisfaction with their prosthetist influenced 

their decision to use a prosthesis, whereas the NPU did not. Similarly, 89% of CL agreed that PU's satisfaction level with their 

prosthetist can influence their acceptance of a prosthesis. However, there was no statistical difference between the two 

proportions, (p = 0.09).    

 

Rehabilitation services  
82% of PU have worked with a rehabilitation specialist, whereas the NPU did not. 74% of CL answered yes to coordinating 

rehabilitation services for their patients after fitting, with 64% of the specialists being occupational therapists (OT), 26% 

physiotherapists (PT) and 10% covering other specialists, such as physiatrists and psychologists.   

 

DISCUSSION 

Although the sample size for this study is relatively small and thus restricts the ability to show statistical analysis, these 

findings still present a great deal of preliminary data for Canadian upper limb prosthetics.  

 

Participant demographics  

Since ULA makes up a small portion of the limb loss population, it is understandable for most CL to have a limited amount of 

experience fitting upper limb PU and the various levels of limb loss. In the final question of the clinician questionnaire, 

participants are asked to provide their final thoughts on the current challenges in Canada regarding prosthesis acceptance and 

rejection. Prosthetist knowledge and having access to an experienced upper limb fitting prosthetist, had the third-highest 

occurrence rate (17%, n=47). It is recognized that the number of NPU does not allow for statistical analysis to occur; however, 

the answers provided are still considered to be a finite view of a NNPU’s reasons for rejection.  

 

Factors affecting "acceptance” of a prosthesis 

Similar to previous research, CL and PU identify factors such as function of the prosthesis, socket and harness comfort, 

ease of putting on/taking off prosthetic device, ease of prosthetic device use, skin/body irritation from prosthetic device and 

quality of patient-prosthetist relationship [5]. Table 2 shows all ratings given greater than or equal to 4.0, which represents 

important to very important on the provided Likert scale.  

 

Common complaints 

Comparing the common complaints listed by the PU and CL allows for an analysis of how the CL are possibly interrupting 

user complaints and, what complaints are important to the users. When comparing the top five occurring complaints, it is 

interesting to note that two of the clinician’s listed complaints are not in the top five for PU. When given the opportunity to 

report on their most common complaints, PU do not focus on weight or cost, unlike the CL. CL may be more focused on these 

two factors since they have an important influence on the PPU’s use of and ability to use a prosthesis. 72% (n=16) of the PU 

participants (n=22), use body-powered or myo-electric hook/hands, which is when weight implications can become more 
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prominent. However, the survey results show that the PU is more concerned about the fit, maintenance, and function, which is 

understandable. If the prosthesis does not function properly, then the weight of the device is null and void.   

 

Patient-prosthetist relationship  

All three groups scored the quality of patient-prosthetist relationship ≥4.0 and both CL and PU groups rated this factor in 

the top five highest for its importance. There is no statistically significant difference between the group’s ratings. An additional 

comment in a clinician’s survey said, “well-fitting/comfortable device can be accepted by any patient regardless of their feelings 

towards the prosthetist. It is often easier to get to the well-fitting/comfortable device is both parties have a healthy working 

respect for each other.” This statement aligns with the current study’s data and past research where the strength of each factor 

affects acceptance placed the quality of this relationship in the top five highest rankings [6]. Especially for younger patients, 

who may be clinic clients for a longer amount of time, the relationship with their clinician could hold an even greater influence 

factor in their decision to accept and continually use a prosthetic device.  

 

Rehabilitation services  

Rehabilitation and training can be influential on the prosthesis user. For acquired amputation, a good rehabilitation program 

is often divided into four phases: acute postsurgical, subacute pre-prosthesis training, basic prosthesis training, and advanced 

long-term rehabilitation [7]. The sooner training can start, the greater the period of “high acceptance” is, which influences the 

prosthesis user’s willingness to use a prosthesis [8]. A common complaint reported in the current study was the lack of 

functionality or having too high of expectations for how well the prosthesis would function. Research shows that quality 

prosthesis training can positively impact the function and use of the prosthesis, for the rest of the user’s life [8]. CL, who 

reported not coordinating rehabilitation services after fitting, provided reasoning, such as: “Therapists with expertise/experience 

with upper limb amputees are not available in our area (i.e., northern regions especially),” “Depends on access to publicly 

funded rehab therapists. No private therapists specialize in UE training” and “Depends on the level of confidence/experience 

(i.e., Often for people with new amputations we do coordinate rehabilitation with an OT and PT. However, for experienced PU 

we do not as they are already confident users.).” Improving the rehabilitation coordination and quality of training, is important 
for the overall prosthesis fitting process, especially as prosthetic device technology becomes more advanced. As user gadget 

tolerance becomes more difficult, experienced rehabilitation services will become more influential in the acceptance, and long-

term use, of a prosthetic device [7]. In addition, to optimize rehabilitation, previous studies report the importance of sharing 

experiences between rehab centres, to spread knowledge of upper limb prosthetics [9].  

 

CONCLUSION 

The results suggest that Canada's upper limb prosthesis fitting has areas in need of improvement. Many factors can 

influence prosthesis acceptance, mainly focusing on function, ease of use and comfort of various components. Therefore, it is 

important for multidisciplinary teams of CL to focus their attention on improving these factors. Additionally, elements such as 

quality of patient-prosthetist relationship and rehabilitation services are shown to greatly impact a PPU’s willingness to try a 

prosthesis and then consistently use it. Future research should focus on developing validated clinical research surveys to 

increase Canadian data, and track improvements, as prosthesis technology continues to change, and upper limb fitting improves 

through awareness and education. Awareness and qualification could also impact the number of survey participants, as CL and 

upper limb amputees may become easier to contact and more interested in helping with data collection. This research can help 

initiate the surge for Canadian upper limb fitting data collection and in turn better the quality of life of Canadian’s living with 

ULA.  
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ABSTRACT 

Objective: To evaluate the effect of multi-grip hands on performance of daily activities, pain-related disability 

and prosthesis use, in comparison to single-grip hands. Design: Single-case AB design. Patients: Nine adults with 

upper-limb loss participated. All had previous experience of single-grip myoelectric prostheses and were prescribed a 

prosthesis with multi-grip functions. Methods: To assess the changes in daily activities, pain-related disability and 

prosthesis use between single-grip and multi-grip prosthetic hands, the Canadian Occupational Performance Measure, 

Pain Disability Index, and prosthesis wearing time were measured at multiple occasions. Visual assessment of graphs 

and multi-level linear regression were used to assess changes in the outcome measures, adjusting for xx, yy, and zz. 

Results: At 6 months’ follow-up self-perceived performance and satisfaction scores increased, prosthesis wearing time 

increased, and pain-related disability reduced in participants with musculoskeletal pain at baseline. On average, 8 of 

the 11 available grip types were used. Most useful were the power grip, tripod pinch and lateral pinch. Conclusion: 

The multi-grip hand appears to be associated with higher performance and satisfaction of individually chosen 

activities, increased prostheses use and lower pain-related disability. A durable single-grip hand may still be needed 

for heavier physical activities. With structured training a standard two-site electrode control system can be used to 

operate a multi-grip hand. 

 

INTRODUCTION 

It is well known that myoelectric prostheses are being used in varying degrees [1]. To improve the usability of 

prosthesis, myoelectric prosthetic hands have been developed with multiple grip functions. The multi-grip prostheses 

have the potential to facilitate fine motor skills and enable a natural movement pattern [2], which, over time, may 

reduce pain due to a reduction in compensatory movements, and avoidance of overuse of the contralateral limb. 

However, the impact of these hands on the users’ daily life has been sparsely studied, and the results have been 

inconsistent. Both users and clinicians reported that many of the multi-grip functions are rarely used [3]. There are 

several possible reasons for this; notably that all functions in the multi-grip hand need to be mastered, which may take 

time, training and, inevitably, require higher cognitive load [4]. Another reason for not using the full potential of the 

multi-grip hand may be incomplete training [5,6]. With inadequate training the patients may use their multi-grip hand 

in the same way as they have used a single-grip prosthesis [7,8]. Questions arise as to whether extensive training in 

control skills and use of multi-grip functions will facilitate actual use of the prosthesis, and whether this will have an 

effect on prosthesis users’ activity performance and pain-related disability. 

 

AIM 
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The overall aim of this study was to evaluate the effect of multi-grip myoelectric prosthetic hands on the 

performance of daily activities, pain-related disability and prosthesis use, in comparison with single-grip myoelectric 

prosthetic hands. A secondary aim was to study the users’ ability to learn and use the multi-grip hand functions with 

a standard 2-site control system. 

 

METHOD 

A single case AB-design was used. 

Participants and procedure 

Inclusion criteria were: age 18 years or older, upper limb loss due to amputation or reduction deficiency present 

at birth, being a previous user of a conventional myoelectric prosthesis (single-grip) and having had training in using 

it, and having currently being prescribed a multi-grip prosthetic hand. Nine patients (5 males/4 females) mean age 

31,8 (range: 18-59) years with various causes of limb loss and various prosthesis wearing time (range: <1-15 hours 

/day) were prescribed a multi-grip hand during September 2017- September 2020 and included in the study. They 

were all fitted with a bebionic multi-grip hand from Ottobock, Vienna, Austria, and using 2-site direct control. 

In the prescription procedure the patients identified activities that were hard to perform with their present 

conventional myoelectric hand. The activities required fine motor skills which the participants thought maybe could 

be easier to perform with a multi-grip prosthetic hand. Examples of activities were to hold a book, shake hands, use 

cell phone, carry shopping bags, dress children, cook, and use a keyboard.  

The participants were assessed 3 times before fitting with their single-grip prosthesis for a base-line (Phase A). 

Thereafter, the intervention followed, including fitting a multi-grip hand and a period of training and follow-up (Phase 

B). They had 2 days of intensive training at the time of fitting the bionic hand, and further training at the follow ups 

after 2 weeks, 1, 2, 3 and 6 months after fitting. A total of 6 assessments were made with the multi-grip hand (bebionic). 

Outcome measures  

To assess the changes in daily activities, pain-related disability and prosthesis use between single-grip and multi-

grip myoelectric prosthetic hands, the Canadian Occupational Performance Measure (COPM), Pain Disability Index 

(PDI), and prosthesis wearing time were measured at multiple time-points. A study specific questionnaire was also 

used at the 6 months follow up to investigate the usefulness and actual use of the available grip types.  

The COPM is an interviewer administered assessment of individually selected problems in daily life activities. 

Patients define the 5 most important activities and score the quality and satisfaction with performance on a 1-10 scale 

where higher score indicates higher quality of performance or satisfaction with performance. The COPM scores were 

calculated according to the manual, with the sum of scores divided by the number of activities. 

The effect on pain-related disability was measured with the PDI. This generic instrument measures the impact of 

prolonged pain on a person’s ability to participate in essential life activities. The PDI is able to detect from low to high 

levels of pain-related disability on a 0–10 scale in 7 dimensions. The scores on all the dimensions are summed on a 

scale of 0–70, where a higher score indicates more obstacles in essential life activities due to pain. 

The secondary aim, to study the users’ ability to use the multi-grip hand functions, was assessed with a modified 

Southampton Hand Assessment Procedure (SHAP) and Assessment of Capacity for Myoelectric Control (ACMC).  A 

modified SHAP was used to measure ability to switch between grips. The participants performed all tasks in the test 

in a sequence, and switched grip between each task. Time taken to complete all tasks was registered. The ACMC was 

used to see how well the participants learned to control and use the new prosthetic hand in daily activities. The ACMC 

is an observational based assessment with 22 items scored on a 0-4 scale of capacity for control of the prosthesis. 

Higher scores indicate higher ability. The ACMC raw scores were processed through the website resulting in an overall 

score ranging from 0-100.  

Analyses  

The changes in COPM, PDI, ACMC, and modified SHAP scores were assessed using both visual assessment of 

graphs [9] and multilevel linear regression models [10]. In the multilevel models, level 2 represented the individual 

and level 1 represented multiple measurement occasions from baseline to 6 months that were nested within level 2. 

Follow-up time was used as a categorical variable, with Phase A (baseline) as the reference. The coefficients indicate 
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differences in scores between baseline and each follow-up occasion in Phase B, with adjustment for xx, yy and zz. 

Confidence intervals (CIs) not overlapping zero were considered to indicate a statistically significant difference.  

RESULT 

Performance of daily activities 

The graphs present crude scores for occupational performance and satisfaction scores in COPM, both of which 

increased in all individuals after using the multi-grip hand (see Figure 1). Adjusted multilevel regression models 

showed that, after 3 months, quality of performance scores increased, by a mean of 3.9 points (95% CI=3.2–4.6) and 

satisfaction with performance scores increased by 4.9 points (CI=4.0–5.7) (see Table 1). 

Figure 1: Visual assessment of graphs of quality of and satisfaction with performance, as measured with the Canadian Occupational 

Performance Measure (COPM). Performance= Quality of performance; Satisfaction= Satisfaction with performance. Raw scores range from 1 to 

10, with 10 representing the best possible score. (Phase A=baseline with the single-grip hand, Phase B=follow-up after fitting the multi-grip hand. 

 

Table 1. Coefficients, 95% confidence intervals and p-values using multilevel linear regression models for COPM, 

PDI, ACMC and modified SHAP scores, with adjustment for xx, yy and zz.   

 Data 

collection  

time 

point 

COPM 

Performance 

 

COPM 

Satisfaction 

 

PDI PDI (n=5)* 

 

 

ACMC Modified 

SHAP 

Light objects,  

seconds 

Modified 

SHAP  

Heavy objects, 

seconds 

  Coefficient  

(95% CI)  

Coefficient  

(95% CI)  

Coefficient  

(95% CI)  

Coefficient  

(95% CI)  

Coefficient  

(95% CI)  

Coefficient  

(95% CI)  

Coefficient  

(95% CI)  

Phase 

A 

 

Baseline 

 

Reference Reference Reference Reference Reference Reference Reference 

 

Phase 

B 

 

2 days  

 

No data 

collected 

No data 

collected 

No data 

collected 

No data 

collected 

-18.5 (-24.5 to 

12.4) p<0.001 

26.3 (8.1 to 

44.4) p=0.005 

28.3 (12.2 to 

44.3) p=0.001 

2 weeks 

 

No data 

collected 

No data 

collected 

No data 

collected 

No data 

collected 

-12.4 (-18.4 to -

6.5) p<0.001 

7.7 (2.8 to 

12.7) p=0.002 

8.9 (-1.2 to 

19.0) p=0.085 

1 month 

 

3.0 (2.1, 3.8)  

p<0.001 

3.8 (2.7, 4.9) 

p<0.001 

-2.0 (-9.9 to 5.9) 

p=0.620 

-4.6 (-18.1 to 

8.9) p=0.504 

-4.2 (-8.6 to 0.3) 

p=0.068 

9.3 (2.9 to 

15.8) p=0.004 

12.1 (-3.1 to 

27.4) p=0.119 

2 months 

 

3.5 (2.9, 4.0)  

p<0.001 

4.5 (3.6, 5.4) 

p<0.001 

-4.0 (-10.8 to 

2.8) p=0.249 

-7.2 (-18.4 to 

4.0) p=0.209 

-4.8 (-9.5 to -

0.2) p=0.042 

5.0 (0.4 to 

9.6) p=0.033 

1.2 (-8.4 to 

10.9) p=0.801 

3 months 

 

3.9 (3.2, 4.6)  

p<0.001 

4.9 (4.0, 5.7) 

p<0.001 

-9.0 (-16.3 to -

1.7) p=0.015 

-14.4 (-23.0 

to -5.8) 

p=0.001 

-1.4 (-6.1 to 3.2) 

p=0.545 

2.3 (-2.3 to 

6.9) p=0.330 

3.4 (-6.3 to 

13.1) p=0.494 

6 months 

 

4.3 (3.6, 4.9)  

p<0.001 

4.8 (3.9, 5.7) 

p<0.001 

-7.7 (-14.0 to -

1.3) p=0.018 

-13.8 (-21.8 

to -5.8) 

p=0.001 

-2.5 (-7.8 to 2.8) 

p=0.359 

6.5 (-5.2 to 

18.1) p=0.275 

-3.7 (-13.4 to 

6.0) p=0.454 

*Includes only the 5 participants who reported pain-related disability in the Pain Disability Index at the baseline measurements. 

 

Pain-related disability 
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Five participants reported that musculoskeletal pain was limiting their participation in essential life activities at 

baseline. This activity limitation generally declined after fitting a multi-grip hand. At the 6-month follow-up the 

number of participants reporting any pain-related disability had decreased from 5 to 2. In the adjusted multilevel 

analyses, focussing on the 5 participants who reported pain-related disability at baseline, it was found that, compared 

with baseline, their PDI mean score decreased significantly, by a mean of –14.4 (CI=–23.0 to –5.8) at the 3-month 

follow-up, and by –13.8 (CI=–21.8 to –5.8) at the 6-month follow-up (see Table 1) 

Prosthesis use and perceived usefulness of multi-grip features  

Participants increased their self-reported prosthesis wearing time after switching to a multi-grip hand, from a 

mean of 6.9 hours a day with single-grip hand to 8.8 h a day with the multi-grip hand at the 6-month follow-up. The 

median number of grip types used was 8 out of 11 (range 7–10). Grip types that were considered most useful and were 

used most were the power grip, tripod pinch and lateral pinch. 

Prosthetic skill  

Initially, when the participants were fitted a multi-grip hand, their skill in prosthesis control (ACMC scores) 

decreased compared with their baseline performance with the single-grip hand. After 3 months, the score of most of 

the participants increased to a level similar as with the single-grip hand. The time to perform the modified SHAP test 

became longer 2 days after fitting the multi-grip hand, compared with baseline with the single-grip hand. However, 

by the measurement after 2 weeks, it decreased to a similar level as with the single-grip hand. (Table 1) 

 

CONCLUSION 

The multi-grip myoelectric prosthetic hand has favourable effects on performance of, and satisfaction with, 

individually chosen activities, prostheses use and pain-related disability. A durable single-grip myoelectric prosthetic 

hand may still be needed for heavier physical activities. With structured training, a standard 2-site electrode control 

system can be used to operate a multi-grip myoelectric prosthetic hand, and many of the prosthetic functions are 

actually used. 
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ABSTRACT 

Hand loss profoundly impacts daily functioning.  The use of an upper limb prosthesis can restore a measure of 

both unimanual and bimanual upper limb function for this population.  We asked unilateral, transradial amputees 

(N=22) and healthy controls (N=20) to wear wireless accelerometers on their forearms and distal prostheses, as well 

as on their upper arms bilaterally to capture data over 3 days while the subjects were in their natural environments.  

Prosthesis users wore their devices an average of 11 hours/day.  They exhibited heavier reliance on their sound side 

upper limb than on their affected limb.  However, they were observed to engage in unimanual activity with their 

prostheses an average of 20 minutes/day compared to the 60 minutes of mean unimanual activity observed in the non-

dominant extremity of control subjects.  Bimanual activity among prosthesis users was recorded for an average of 4 

hours/day compared to an average of 5 hours/day in the control population.  While participants generally exhibited 

70% reliance on their lower arm segment relative to their upper arm segment, on the affected extremity of the amputee 

participants, this reliance dropped to 50%, suggesting a need for greater upper arm activity to preposition the prosthesis 

in space.  Upper arm accelerometers confirmed that engagement of the upper arm segment in upper limb amputees 

diminish when the prosthesis is removed.  Collectively, this data begins to demonstrate the ability of transradial 

prostheses to preserve both unimanual and bimanual functionality.  (This abstract focuses on a subset of previously 

published data from Frey S, Motawar B, Buchanan K, et al.  Greater and more natural use of upper limbs during 

everyday life by former amputees versus prosthesis users.  Neurorehabil Neur Rep.  2022;36(3):227-38). 

INTRODUCTION 

Upper limb amputation has a profound impact on both function and quality of life.1-4  Prostheses can improve 

outcomes, but disuse occurs among a minority of patients5 and those that use a prosthesis often rely heavily on their 

intact limbs during everyday life.6  This tendency towards one-handedness has been associated with greater disability 

and overuse injury.7 

Recent literature has attempted to quantify the engagement of upper limb prostheses through wrist-worn 

accelerometers.6  These efforts have observed that prosthesis users demonstrate a preference towards their intact side, 

a lack of correlation between prosthesis wear and prosthesis use and a lack of correlation between prosthetic skill and 

prosthetic engagement.6 

We implemented a wireless accelerometry protocol to record upper extremity movements during 3 days of normal 

activity in transradial amputees and healthy age-matched controls.  Prior studies only implemented the forearms and 

prostheses at the distal wrist levels to capture hand and terminal device movements.6  In contrast, in addition to bilateral 

distal sensors we placed sensors proximally above the elbows.  This allowed us to evaluate between-group differences 

in both upper arm and residual limb movements and the use of the upper arm by amputees when not wearing their 

prosthesis.  We sought to better define the extent to which transradial prostheses were able to enable the unimanual 

and bimanual upper limb engagement observed in able-bodied controls.  This effort was part of a larger trial that 

additionally enlisted both hand transplant and hand replant patients which has been published elsewhere.8 
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METHODS 

Ethics 

The protocols was approved by the University of Missouri Office of Human Protections and the Human Research 

Protection Office at the Department of Defense and was performed in accordance with the Declaration of Helskinki.  

All participants provided informed consent. 

Participants 

With respect to the data reported in this abstract, we used wireless accelerometers to capture data on limb use 

across 3 consecutive days in 2 groups of interest.  Group 1) users of unilateral transradial prostheses (N=22, aged 56.4 

± 17.1 years, 1 female, 30.2 ± 21.6 years after traumatic amputation).  Half of the limb loss group had dominant hand 

affected; and Group 2) healthy age-matched controls (N=20, aged 53.4 ± 15.8 years, 3 females, 18 right handed.  

Current amputees used a variety of prostheses: exclusively body-powered (n=8), exclusively myoelectric (n=7), both 

body-powered and myoelectric (n=5), passive (n=1) and unknown (n=1).  On average, the amputee group had used a 

prosthesis for 26.09 ± 20.93 years, with their current prosthesis being in use for an average of 7.11 ± 14.46 years.  

Prosthesis users were recruited through Hanger Clinic and local and national advertising, resulting in a convienence 

sample of individuals who responded to recruitment materials. 

Data Collection 

Data collection on this trial has been reported in detail elsewhere8 but is described briefly as follows.  Four 

accelerometer sensors (GT9X Link, ActiGraph Corp, Pensacola, FL) were shipped to subjects.  Subjects wore these 

accelerometers for 3 consecutive days.  The data collection included 2 weekdays and 1 weekend-day to sample both 

occupational and leisure activities.  Two accelerometers were worn on the anatomical or prosthetic forearm to capture 

hand or prosthesis movements, and two accelerometers were placed above the elbows to capture upper arm 

movements. 

Data Analysis 

Data Analysis on this trial has been reported in detail elsewhere,8 but is described briefly as follows.  Activity 

counts were counted in 1-second epochs and downloaded from the accelerometer.  Variables of interest were computed 

during awake time.  For prosthesis users, we also identified prosthesis non-wear time. 

 

Table 1: Variables of interest including measured unilateral and bilateral forearm activity and median reliance 

on the upper arm.  (In general, the metrics of the affected limb of prosthesis users are compared against the 

nondominant limb of the control group, while the metrics of the unaffected or sound limb of prosthesis users are 

compared against the dominant limb of the control group). 

 Amputees Control 

Dominant 

Control 

Nondominant 

 Mean SD Mean SD Mean SD 

Unilateral forearm activity (hours/day) 4.8 1.6 2.72 .89 N/A N/A 

Unilateral affected forearm activity (hours/day) .33 .19 N/A N/A 1.06 .46 

Unilateral unaffected forearm activity (hours/day) 4.47 1.61 1.65 .54 N/A N/A 

Bilateral forearm activity (hours/day) 4.02 1.35 5.04 1.33 N/A N/A 

Median reliance on forearm, affected limb (%) 49.41 3.37 N/A N/A 70.33 7.66 

Median reliance on forearm, unaffected limb (%) 69.98 3.61 68.56 7.46 N/A N/A 

Median reliance on affected upper arm, prosthesis off 

(%) 

25.37 12.44 53.58 5.35 46.42 5.35 

Median reliance on affected upper arm, prosthesis on 

(%) 

30.62 7.07 N/A N/A N/A N/A 
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RESULTS 

Our data found that prostheses were used an average of 79% of waking hours with a mean recorded utilization of 

11.1 ± 1.8 hours/day.  Additional variables of interest are shown in Table 1.  Unilateral engagement of the prosthesis 

was recorded an average of 20 minutes per day.  Unilateral engagement of the sound side extremity was recorded for 

an average of 4.5 hours per day.  By contrast, unilateral activity in the dominant and non-dominant extremity of the 

control subjects were reported an average of 100 minutes and 60 minutes respectively per day.  Among prosthesis 

users, an average of 4 hours of bimanual activity was recorded.  By comparison, control subjects recorded an average 

of 5 hours of bimanual activity per day. 

Reliance upon the forearm relative to the upper arm was recorded in four conditions; that of the dominant limb in 

controls, the non-dominant limb of controls, the sound side limb of the prosthesis users and the affected extremity of 

the prosthesis users.  That mean forearm reliance ratios were reported at 69%, 70% and 70% respectively among the 

first three scenarios.  In the last scenario a forearm ration of 50% was recorded. 

Upper limb reliance among the non-dominant limbs of control subjects was observed at 46%.  When the prosthesis 

was not worn, this ratio decreased to 25%.  When the prosthesis was worn this variable increased to 31%. 

DISCUSSION 

While a minority of those with upper limb amputation eventually choose to abandon the use of a prosthesis, the 

subjects enrolled in our trial were found to wear their devices for more than 11 hours per day.  During this period, 

prosthesis users engaged in both unimanual and bimanual tasks.  Viewed collectively, prosthesis users engage in an 

average of 8.82 hours of upper limb activity.  This is roughly one more hour of upper limb activity than that recorded 

on average for healthy controls (7.76 hours).  This relative parity may reflect the similarities associated with activities 

of daily living (ADLs) in both groups, with upper limb amputees requiring additional time to complete upper limb 

tasks. 

As observed by Chadwell et al,6 the disparity between unimanual engagement of the prosthesis and unimanual 

engagement of the sound side limb is stark, observed at 20 minutes and nearly 4.5 hours respectively.  However, the 

disparity between unimanual engagement of the prosthesis and unimanual engagement of the non-dominant extremity 

of the controls was much less pronounced at 20 and 60 minutes respectively. Our data suggest that transradial 

prostheses are able to preserve roughly 1/3rd of the unimanual activity duration typically associated with a non-

dominant extremity. 

Ostlie et al9 observed a tendency for upper limb prostheses users to report preferentially engaging the use of their 

devices in bimanual tasks.  Our data support this tendency, with engagement of transradial prostheses during bimanual 

tasks occurring an average of 4 hours daily.  This value begins to approximate the 5 hours of bimanual tasks recorded 

among health controls, suggesting that transradial prostheses are able to facilitate approximately 80% of the bimanual 

activity duration observed in able-bodied controls. 

The relative reliance upon the forearm relative to the upper arm was assessed in four conditions.  Specifically, the 

ratio of forearm movement to upper arm movement was recorded in the dominant control limbs, the non-dominant 

control  limbs, the sound side extremities of the unilateral amputees and the amputee’s affected extremities.  The mean 

values in the first three conditions were comparable at approximately 70%, suggesting that upper limb activity was 

predominantly executed distal to the elbow.  By contrast, this ratio was observed to be much lower for the affected 

group at 50%.  This may suggest a greater need for proximal joint motions to effectively preposition the terminal 

device in space for task execution.  Pilot efforts to understand such proximal joint compensations have been reported.10 

Interlimb reliance among the upper arms of the non-dominant limbs of control subjects averaged 46%.  When 

prostheses were not being used, our amputee subjects demonstrated an even greater reliance on the upper arm segment 

of the unaffected limb, suggesting decreased engagement of the affected extremity (upper arm reliance of the affected 

extremity = 25%).  When the prostheses were worn, the engagement of the affected extremity increased (upper arm 

reliance of the affected extremity=30%).  This shift suggests increased engagement of the affected extremity with the 

prostheses on, better approximating the valued observed in the non-dominant extremities of control subjects. 
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This initial analysis was confined to users of unilateral transradial prostheses.  Additional insights may be gathered 

when this data is compared against that collected from users of bilateral prostheses or among prosthesis users with 

more proximal amputation levels. 

CONCLUSION 

Upper limb prostheses are characterized by several limitations.  These include their weight, limited dexterity and 

lack of sensory restoration.  Yet, for all of these limitations, our findings suggest that transradial prostheses are able 

to facilitate roughly 1/3rd of the unimanual activity duration recorded upon the non-dominant extremities of able 

bodied controls.  Similarly, transradial prostheses facilitate the performance of approximately 80% duration of the 

bimanual activity recorded among able bodied controls.  Limitations in prosthetic dexterity is such that the proximal 

joint segments of the affected extremity appear to experience greater compensatory motion to facilitate upper limb 

function.  Amputees appear to engage their residual limbs more frequently while wearing their prostheses than when 

prostheses are not being worn. 
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ABSTRACT 

Background: Musculoskeletal complaints (MSCs) are a highly prevalent problem in subjects with upper limb 

absence (ULA) and Brachial Plexus Injury (BPI). Single-handed individuals often experience pain in multiple 

locations. Human Assumed Central Sensitisation (HACS) can be present in single-handed individuals. This study aims 

to determine the presence of HACS in single-handed individuals with MSCs compared to individuals without MSCs 

as well as two-handed controls.  

Methods: This study aims to include 20 individuals with ULA, 20 with BPI, and matched two-handed controls. 

All participants filled in the Central Sensitisation Inventory (CSI) questionnaire (range 0-100, cut off value for CS ≥ 

40). Furthermore, they underwent a Quantitative Sensory Testing (QST) protocol. Seven sensory tests were executed 

to quantify the function of the sensory nervous system: dynamical mechanical allodynia (DMA, range 0-100), 

mechanical detection threshold (MDT, range 0.125-1024mN), mechanical pain threshold & sensitivity (MPT, range 

8-1024mN & MPS, range 0-100), wind-up ratio (WUR, ratio), and pressure pain threshold & sensitivity (PPS in N & 

PPT, range 0-100). 

Results: Data collection is ongoing. At present, data of seven individuals with BPI are collected. CSI mean is 24 

(SD 11.0). QST: DMA [1.0], MDT [1.3-1024.0mN], MPT [19.2-1024mN], MPS [0.6-25], WUR [1.33-4.5], PPS 

[27.5-138.0N], and PPT [1-50]. 

Conclusion: Preliminary results indicate that CS may be present in a subgroup of single-handed individuals with 

MSCs. This study sheds light on the role of CS in single-handed individuals and could give more insight in the 

frequently occurring MSCs in such individuals.   

INTRODUCTION 

Many individuals with one functional hand, such as individuals with upper limb absence (ULA) and brachial 

plexus injury (BPI), complain about musculoskeletal complaints (MSCs). The prevalence of MSCs in individuals with 

ULA is nearly twice as high as compared to two-handed controls (35% vs. 65%) [1]. A higher prevalence is also 

shown in a sample with BPI (49%) compared to a non-impaired control group (35%) [2]. They experience pain more 

often, but also in more bodily locations [1,2].  

Pain can be described by three mechanistic descriptors according to the International Association for the Study 

of Pain (IASP): a) nociceptive pain, pain that arises from actual or threatened tissue damage to non-neural tissue and 

is due to the activation of peripheral nociceptors; b) neuropathic pain, pain caused by a lesion or disease of the 

somatosensory nervous system; and c) nociplastic pain [3]. Nociplastic pain is pain that arises from altered nociception 

despite that there is no clear evidence of actual or threatened tissue damage causing the activation of peripheral 

nociceptors or evidence for disease or lesion of the somatosensory system causing the pain [3]. However, in individuals 

with pain, multiple simultaneous mechanisms can play a role, described as mixed pain [4]. Central sensitisation (CS) 

is related to all three pain descriptors. CS is defined by the IASP as “the increased responsiveness of nociceptive 

neurons in the central nervous system to their normal or sub-threshold afferent input” [3]. Although CS has some 

overlap with nociplastic pain, it differs in the fact that CS refers to a neural mechanism and nociplastic pain to a pain 
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mechanism [5]. CS has been proven in animal studies, but not yet in humans, therefore CS should be regarded as a 

concept and therefore we used the term Human Assumed CS (HACS) [6]. Currently, no golden standard for HACS is 

available, and investigating HACS can be done by identifying reference clinical symptoms and signs [6]. Instruments 

like the Central Sensitisation Inventory (CSI) and the Quantitative Sensory Testing (QST) protocol are often used to 

assess the indicators of HACS [6]. An indicator for HACS is allodynia, a hypersensitivity to normally subthreshold 

innocuous stimuli [3,7]. Another indicator is hyperalgesia, an increased responsiveness to noxious stimuli [3,7]. 

Furthermore, temporal summation is another indicator, which is described as an increased response to repetitive 

noxious stimuli over time [7]. 

HACS has been researched in persons with other diagnoses, such as fibromyalgia and chronic low back pain [8], 

but not in single-handed individuals, despite the fact that it is known that many single-handed individuals suffer from 

musculoskeletal pain [1,2]. Knowledge about the presence of HACS could give additional insight into the 

development and persistence of MSCs, and could help clinicians in the treatment and prevention of those complaints 

[9]. This study aims to examine the presence of HACS in individuals with ULA and BPI with and without MSCs and 

healthy two-handed individuals, by performing the QST protocol [10] and evaluating results of the CSI [11]. We 

hypothesized that individuals with MSCs showed some indicators for HACS compared to individuals without MSCs. 

Within participants, we expected to see differences between a painful area and a non-painful area, showing more 

indicators in the painful area. 

METHODS 

 The Medical Ethics Review Board of the University Medical Center Groningen (METc UMCG) approved the 

study (METc 2019/425). All participants signed an informed consent before the start of the study. 

Three samples were included: individuals with ULA, either due to congenital transversal reduction deficiency or an 

acquired amputation, individuals with BPI, and matched controls. Participants were recruited via a list of adult eligible 

patients composed by clinicians of the UMCG, Center for Rehabilitation. Individuals with ULA were also recruited 

via the Dutch patient organization for persons with ULA. Controls were recruited via the network of the researchers 

through advertisements.  

 At the start of the measurements, participants filled in a survey with demographic and clinical characteristics (i.e. 

age, gender, handedness, cause of injury, affected side, level of injury, aid use). All participants also filled in the CSI 

questionnaire [11]. This is a self-reported questionnaire consisting of two sections (A and B) to assess the presence of 

HACS-related symptoms. In section A, 25 questions about how often a symptom occurred were rated on a 5-point 

Likert scale (range 0-100). A score higher than 40 could indicate HACS. Section B asked participants about previously 

diagnosed CS syndromes (CSS) and/or conditions related to HACS, such as restless legs syndrome or fibromyalgia. 

Furthermore, all participants underwent the QST protocol. This protocol is composed of several sensory tests to 

quantify the function of the sensory nervous system [10]. Five sensory tests were executed resulting in seven outcomes. 

These were all performed on four body locations: thigh on the non-dominant/affected side as a control site, thigh on 

the dominant/unaffected side as a reference site, the most painful location of the upper extremity, and the location 

contralateral to this most painful location. The following tests were executed: 1) Dynamic Mechanical Allodynia 

(DMA): pain rating of a brush stroke (range 0-100); 2) Mechanical Detection Threshold (MDT): stimulus intensity of 

a Von Frey filament when touch was no longer perceived (range 0.125-1024mN); 3) Mechanical Pain Threshold 

(MPT): stimulus intensity of a pinprick when it becomes sharp (range 8-1024mN); 4) Mechanical Pain Sensitivity 

(MPS): the pain rating of the MPT (range 0-100), 5) Wind-Up Ratio (WUR): the ratio between pain rating of repeated 

stimuli and a single stimulus; 6) Pressure Pain Threshold (PPT): intensity in Newtons of pressure algometer; and 7) 

Pressure Pain Sensitivity (PPS): pain rating of the PPT (range 0-100). 

Data records from the different tests and questionnaires were collected and imported into the database RedCap. 

The records were then exported that SPSS, where the analyses were performed. Before analysis, the ratio of the DMA 

and the WUR was calculated. A mean of the five repetitions of the MDT, MPT, and MPS was calculated, given that 

there were at least three valuable data points. Descriptive statistics of the sample characteristics and the main test 

results were calculated as median and range. Because data collection is ongoing, no statistical tests were performed.  
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RESULTS 

Participants 

Seven participants (six males) with BPI were included so far, since due to the COVID-19 regulations 

measurements were delayed. The median age of the participants was 65.3 years (range 36.3–74 years). The side of the 

BPI was right in four cases. The participants were diagnosed with BPI between 7 and 45 years ago (median 30 years). 

All seven had an accident that caused the BPI. Four individuals experienced MSCs in the previous year, while three 

did not. Of these four participants, three experienced MSCs during the last four weeks. The median duration of MSCs 

was 13 years (range 1.5–30 years). The location of the pain varied, in three of the participants with MSCs the most 

painful area was the affected shoulder/neck region. One participant experienced pain in the unaffected hand and 

fingers.  

CSI outcomes 

The mean (SD) of the CSI was 24 (11.00). Previously diagnosed CSS were jaw complaints (n=1), migraine (n=1) 

and neck injuries (n=2). 

QST outcomes 

The results for the QST are presented in Table 1. The DMA, an assessment for allodynia, was missing in almost 

all participants, indicating no pain from a single brush stroke. In the MDT, on the most painful site the intensities of 

the Von Frey hairs were higher compared to the contralateral site, indicating that the stimuli with lower intensities 

(i.e. thinner Von Frey hairs) were not felt and thus a decreased responsiveness. This was also seen in the MPT; a 

higher value meant that the pinprick was considered painful with a higher intensity (i.e. thicker pinprick), so less 

sensitive to the stimulus. Additionally, the stimuli were rated as less painful with the MPS. The WUR remained 

relatively similar between the test sites. All participants experienced more pain after the stimulus series in comparison 

with the single stimulus.  

Table 1: QST test results for each test site. 

Legend: All results were reported as median [range] (n=). a The DMA/WUR cannot be calculated if the pain rating of the single stimulus was 

zero, those were registered as missing value. b One participant was not tested on the CTS. Abbreviations: QST, Quantitative Sensory Testing; DMA, 

dynamic mechanical allodynia; MDT, mechanical detection threshold; MPT, mechanical pain threshold; MPS, mechanical pain sensitivity; WUR, 

wind-up ratio; PPT, pressure pain threshold; PPS, pressure pain sensitivity;   

DISCUSSION 

Several individuals with ULA or BPI experience MSCs [1,2], which may indicate the presence of HACS in these 

people. Until now, knowledge on HACS in these populations remained underreported and this research aims to bridge 

that gap by using the CSI and QST protocol to assess indicators for HACS. In this study, seven individuals with BPI 

have participated. None of the participants reported a score above>39 points on CSI, which represents an often used 

cut-off point for the presence of HACS [11]. However, while often used, the validity of this cut-off is debated, and 

recently a clinically relevant cut-off of 30 points was suggested (males 25, females 33; [12]). Based on the newest cut-

off, the presence of HACS is feasible in a subgroup in this study.  

QST Test (n=7) Reference test site Most painful test site 
Contralateral test site (to most 

painful test test)b 

1) DMAa 1.0 [1.0] (n=2) 1.0 [1.0] (n=1) 1.0 [1.0] (n=1) 

2) MDT in mN 6 [3.2–11.2] (n=7) 9.6 [1.3–1024.0] (n=7) 3.1 [1.0–16.0] (n=6) 

3) MPT in mN  115.2 [19.2–115.2] (n=7) 108.8 [16.0–1024.0] (n=7) 64.8 [19.2–454.2] (n=6) 

4) MPS 3.4 [0.8–25.0] (n=7) 1.5 [0.6–7.5] (n=6) 3.5 [0.8–20.0] (n=6) 

5) WURa 
2.5 [1.33–4.0] (n=7) 2.8 [2.0–4.0] (n=5) 2.67 [1.4–4.5] (n=5) 

6) PPT in N 81 [45.0–138.0] (n=7) 46.5 [33.0–73.0] (n=6) 61.5 [27.5–93.0] (n=6) 

7) PPS 4 [1.0–40.0] (n=7) 9.5 [2.0–50.0] (n=6) 16 [2.0–45.0] (n=6) 
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Regarding the QST results, differences were seen between the test sites, this could be explained by the fact that 

different body locations have different sensitivity to stimuli [10]. We did not find more indicators in the most painful 

site in comparison with the contralateral site. Almost all participants showed no values on the DMA, suggesting that 

allodynia is not present in these participants. Results on hyperalgesia, assessed with the MDT, MPT, and MPS, showed 

that the most painful site was less responsive and less painful than the contralateral side. Temporal summation is 

considered positive when the pain intensity increases with repeated stimuli, so this might be present [6]. However, 

there were no differences seen between the test areas. These surprising results might be explained because these QST 

tests consist of cutaneous stimuli and might not be very adequate for musculoskeletal conditions [13]. Another 

explanation could be that HACS was not present, but that the pain could be described as nociceptive, neuropathic, 

and/or nociplastic pain. These pain descriptors have to be examined with other tests and physical examinations. 

Furthermore, due to the lack of cut-off values for the QST, it is difficult to interpret the data [6].  

This is to our knowledge the first study to examine the presence of HACS in single-handed individuals. The CSI 

and the QST are quite easily adapted into clinical practice and could give additional insight into individuals with ULA 

or BPI experiencing MSCs. However, individuals with ULA and BPI may also suffer from phantom pain and 

neuropathic pain. As we did not examine these pain conditions, this may have influenced the results. Currently, there 

is no golden standard for HACS and due to the lack of cut-off values for the QST, the presence of HACS is difficult 

to determine. Other QST measures, such as conditioned pain modulation (CPM) and thermal stimuli were not included 

in this study due to practical reasons. Adding these tests could give a broader insight into HACS in this population. 

As this is an ongoing study, only preliminary results were reported. More participants (also with ULA) will be included 

and we expect to be able to present more results at the congress. Hopefully, this will show explanations for the findings. 

Analysing the group with ULA and the controls could also show similarities and differences between the three 

samples. 

In conclusion, this preliminary data showed possible HACS in a subgroup of BPI participants, depending on the 

applied cut-off score of the CSI questionnaire. Variability between subjects was considerable. This suggests that an 

individual approach could be more efficient. With more results, this study could shed light on the role of the pain 

mechanisms and CS in single-handed individuals. This could give more insight into MSCs in individuals with ULA 

and BPI, and could aid in the treatment and prevention of these complaints.  
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ABSTRACT   

Myoelectric prosthesis users have altered spatial and temporal allocations of gaze, likely influenced by both 
control proficiency and sensory feedback. Providing task-relevant and movement feedback can improve spatial visual 
allocation, but temporal patterns of gaze shift have not been reported for prosthesis users with sensory feedback 
systems. We present data from two prosthesis users with integrated touch and kinesthetic feedback in a myoelectric 
prosthesis performing a functional cup movement task while tracking eye and hand movements. Despite different skill 
levels and task performance, both participants showed improved ability to disengage eye fixation from the object and 
transition to the next movement plan when provided kinesthesia and touch feedback together. Temporal allocation of 
gaze, specifically, the ability for the eye to disengage after interacting with objects, seemed impervious to skill level 
and maybe a valuable measure of the ability to trust the sensory feedback, disengage vision, and motor plan forward 
in a sensorized prosthesis. Eye latency measures could be a valuable marker of control skill and feedback efficacy in 
prosthesis users. 

INTRODUCTION  

Myoelectric prosthesis users have disruptions to normal hand-eye coordination when interacting with objects. 
Generally, prosthesis users will fixate their gaze on the prosthetic hand and cannot look forward to the next target 
location of action [1], [2]. This behaviour is quite different from normal eye-hand coordination, where the eyes lead 
the hand and fixate on task-relevant areas to efficiently motor plan the next movement [3], [4] and may contribute to 
less use of the prosthesis for functional activities.  

We have shown in a prior study that providing relevant touch and kinesthetic feedback in a sensory integrated 
myoelectric prosthesis can reduce the spatial allocation of vision, with reduced fixation to the hand and increased 
fixation to the next target in an object interaction task [5]. However, sensation is only one aspect of prosthetic 
performance that may influence visual behaviour; accurate control may also provide the confidence to look away from 
the hand once the object is firmly grasped and look ahead to the next target [6]. The transition of the gaze fixation 
may therefore be affected by both movement control and the type of sensory feedback provided. 

Using a simulated transradial myoelectric prosthesis with non-disabled participants [7], we explored eye latency 
measures [3] for further insight into eye fixation and hand movements. The ability of the eye to precede the grasp of 
an object significantly correlated with hand trajectory variability and grasp time. Similarly, the ability to disengage 
the eye after pickup of the object to transition the gaze to the next dropoff location significantly correlated to hand 
trajectory variability, distance travelled, and transport time. Lastly, the ability of the eye to disengage after dropping 
off the object was related to release time. Similar to the findings of [8], control issues with opening and closing the 
prosthetic hand and controlling movement through space influenced the ability to temporally and spatially allocate 
visual fixation. Therefore, the temporal allocation of vision may be of value to explore in prosthesis users with sensory 
feedback, as presumably providing channels of real-time feedback should release vision to be more effectively used 
for motor planning. 

This paper explores the changes to eye gaze transitions when picking up and dropping off objects in two 
participants with sensory integrated prostheses providing matched touch feedback (to the digits) and kinesthesia 
(sensation of hand grasp movement). Whereas touch sensation provides task-specific feedback on object contact 
during grasp, kinesthesia should improve the ability to reallocate vision for motor planning of the next movement. We 
also hypothesized that measures of hand function, used as a proxy of control skill [9], may affect the eye gaze 
adaptations seen with sensory feedback. If eye gaze metrics are responsive to changes with sensory feedback, this 
could be a valuable method of assessing both sensory feedback and control strategies from the perspective of 
movement planning. 
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METHODS 

As described in [5], two participants that had undergone targeted motor and sensory reinnervation at shoulder 
disarticulation level (participant SD) and transhumeral level (participant TH) were fit with a bidirectional myoelectric 
prosthesis with touch feedback related to the prosthetic digits, and kinesthetic sensation of hand close. They performed 
trials in 3 conditions: motor (no feedback), touch (touch tactors activated), and kinesthesia (both touch and kinesthetic 
tactors activated). SD had control of 3 prosthetic movements (hand open/close, elbow flexion/extension, 
pronation/supination). TH only had control of hand open/close, due to technical difficulties with the prosthetic elbow. 
Both participants gave written informed consent for the study, which was approved by the ethics review board. 

Participants performed the Cup Transfer Task of the Gaze and Movement Assessment protocol [10] which records 
eye gaze and hand movements as they pick up and transfer 2 compliant cups full of beads over a barrier on a table in 
front of them and then back to the starting location, for a total of 4 cup movements. SD performed 13 trials for motor 
and touch conditions and 9 trials for the kinesthesia condition. TH performed 20 trials for motor and 19 trials for touch 
and kinesthesia conditions. Data processing steps to attain metrics of interest for this analysis (eye latencies and hand 
function metrics) are described in [11].  

As detailed in [3], eye arrival latency (EAL) was defined as the time the eye first fixates to the target location 
relative to the end of grasp for “pickup”, and to the end of transport for “dropoff” of the object.  Eye leaving latency 
(ELL) was defined as the time the eye first leaves the pickup location relative to the start of transport; and leaves the 
dropoff location relative to the end of transport. A shorter ELL is a more positive number, whereas a longer ELL is 
more negative (see: [3]). Target locking strategy (TLS) [8] was calculated as the ratio of percent (%) fixation to current 
minus % fixation to hand for the phases of reach and transport initially for each movement based on the average % 
fixation values, and then across movements as a summary metric of spatial gaze fixation. For EAL and ELL metrics, 
all trial values across the 4 movements were averaged per condition. Values are reported as mean (standard error of 
the mean). 

RESULTS 

The two participants were different in skill level and control (Table 1). SD had longer task durations and spent more 
relative time in prolonged grasp phases (grasp SD 31.1(2.0)%; TH 23.4(2.2)%), compared to TH who had more 
prolonged transport phases (transport SD 24.0(0.6)%; TH 35.5(2.2)%). SD also showed longer hand distance travelled 
and greater hand trajectory variability in both reach and transport compared to TH, indicating a less efficient 
movement path. The hand movement metrics were substantially unchanged across conditions, except for slightly lower 
hand trajectory variability in reach for SD in the kinesthesia condition. SD showed an improved TLS for the 
kinesthesia condition in both reach and transport (Figure 1a), reflecting less fixation to hand and greater fixation to 
the next target. For reach, the value improved closer to normative, and for transport, the TLS became less negative 
(indicating greater target fixations, but still not greater than fixations to hand). 

Regarding eye latencies of SD (Figure 1b), when transitioning from picking up the cup to transporting, in the 
motor and touch conditions the eyes lingered on the cup well into the transport phase (ELL pickup motor -1.85(0.13) 
sec; touch -1.79(0.15) sec). However, for the kinesthesia condition, the ELL became positive at +1.62(0.19) sec, 
indicating the eyes disengaged from the cup and shifted to the next target location while still in grasp phase. The other 
latency measures were not notably different between conditions for SD; in general, the EAL pickup values were very 
high (6.50-7.27 sec), reflecting the long reach and grasp times. 

Table 1: Hand movement values across conditions 

Metric average values 
across all movements 

Normative 
Reference 

Participant SD Participant TH 

Motor Touch Kinesthesia Motor Touch Kinesthesia 

Total task duration (sec)*  8.9 (0.1) 58.6 (3.4) 55.3 (1.9) 51.9 (1.5) 18.7 (0.2) 20.3 (0.3) 18 (0.2) 

Hand distance travelled (mm) 4864 (47) 6497 (237) 6896 (153) 6998 (176) 5574 (24) 5497 (25) 5523 (18) 

Hand trajectory variability 
Reach; Transport (mm) 

18 (4);          
19 (4) 

71 (8.0);         
50 (3.3)   

75(9.2); 
38(2.2) 

58 (6.3); 
52(5.7) 

32(2.2); 
25(0.7) 

52(6.9); 
30(2.1) 

32(3.2);    
21 (1.1) 

*Calculated as sum of all phase durations 
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For TH, the movement profile was quite different. He moved faster, with less variability, as expected given the intact 
shoulder and only having to control one degree of freedom. He also had positive TLS values for all conditions in reach 
and transport, reflecting that he did not have high hand fixations (reported in: [5]), and TLS did not improve with 
kinesthesia. However, ELL at pickup had similar improvements as with SD; in motor and touch conditions ELL pickup 
was negative (ELL pickup motor -0.26(0.04) sec; touch -0.29(0.05) sec) and improved to positive for the kinesthesia 
condition at +0.22(0.09) sec (Figure 2), indicating he could disengage his eye fixation away from the object just before 
the end of grasp. The other latency measures also showed a trend to be closer to zero for the kinesthesia condition, 
specifically ELL at dropoff also showing earlier disengagement from the cup during release. 

DISCUSSION 

Touch and kinesthetic sensory feedback within a prosthesis system has been shown to improve spatial allocation 
of gaze fixation behaviour [5]. Spatial and temporal gaze transitions have also been shown to reflect control stability 
and performance and influence the interpretation of visual allocation [8]. Specifically, the impact of sensory feedback 
on eye behaviour might be determinant on control proficiency. In this analysis, both kinematic hand function measures 
and eye behaviours reflected the individual differences in skill and control performance. SD, at a shoulder 
disarticulation level using 3 degrees of freedom, had lower baseline motor function as reflected in slower movements, 
longer hand trajectory and higher variability. Providing positional awareness (kinesthesia) related to grasp function in 
addition to touch feedback had an impressive impact on spatial visual allocation, with improved target locking 
strategy. At pickup of the object, with kinesthesia and touch, SD was also remarkably able to temporally reallocate 
the gaze fixation forward when still in the grasp phase, thereby impacting both spatial and temporal gaze allocation 
behaviour. 

 

 Figure 2:  Participant TH EAL and ELL values at pickup and dropoff averaged for all trials per condition. 

  
a b 

Figure 1:  Participant SD a) Target Locking Strategy (% fixation to current - % fixation to hand) averaged across 
movements for Reach and Transport phases. Normative value 79% for Reach and 67% Transport.  b) EAL and ELL 
values at pickup and dropoff averaged for all trials per condition. 
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TH, with an intact shoulder and controlling hand open/close, had a more confident reach and overall performance 
at baseline than SD. The addition of kinesthetic grasp and touch feedback did not change movement function or target 
locking, although he did show reduced fixations to hand [5]. TH’s spatial allocation of vision was likely already 
positively influenced by his proficient motor control. However, the addition of kinesthetic feedback to touch improved 
the ability to transition the gaze more normally at the end of grasp and when releasing the object. The improvement 
in eye latency measures suggests kinesthesia increased confidence in disengaging vision from the object for motor 
planning of the following action.   

Limitations of this study include only 2 participants representing different amputation levels and skill proficiency. 
With higher participant numbers, we could more thoroughly investigate the consistency of these trends and the 
statistical generalizability. There was no “only kinesthesia” condition due to the intense testing schedule and need to 
limit conditions, so the results do not directly tease out the differences between touch and kinesthesia, other than to 
note that touch alone did not provide the same improvements. We believe this underscores the importance of 
proprioception and kinaesthesia in releasing vision for motor planning in prosthesis users. 

CONCLUSION 

Temporal allocation of gaze, specifically, the ability for the eye to disengage after interacting with objects, seemed 
impervious to skill level and maybe a valuable measure of the ability to trust the sensory feedback, disengage vision, 
and motor plan forward in a sensorized prosthesis. Eye latency measures could be a valuable marker of both control 
skill and feedback efficacy in prosthesis users and should be further investigated.  
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ABSTRACT 

Background: The focus of the field of upper limb prosthesis has primarily been on lab-based studies, while user-

complaints do hardly change. Focus should shift to home use training and assessment. The current paper establishes 

whether training with serious games in the home setting affect upper limb prosthesis activation signals in Pattern 

Recognition controlled prostheses. 

Method: Ten upper limb prosthesis users were measured for a period of two weeks and were instructed to play serious 

games for at least 45 minutes per week. The activation signals before and after a serious game was played during daily 

life were measured. The activation signals were classified in involuntary and voluntary activations.  

Results: More involuntary activation signals than voluntary activation signals were recorded. Second, no effects of 

serious game training on activation signals in daily life were found. 

Conclusion: Even though no effect of serious game training was found, our findings show that recording and analyzing 

data derived from prosthesis users’ daily life is feasible. However, much has still to be learned about the storage, 

applicability and meaning of this data. Our research underlines the importance of transitioning from lab-based research 

to research in daily life. 

INTRODUCTION 

Upper limb prostheses have undergone substantial technological improvements in the last two decades. For instance, 

the number of degrees of freedom of the prosthetic hand has increased by creating multi-grip hands and control has 

advanced to Pattern Recognition (PR) control, where multiple electrodes measure patterns of muscle activation that 

are matched to a grip pattern, cf. [1]. However, user complaints about the control of the prosthesis in daily life 

situations have hardly changed in the last two decades, despite these technical advancements [2]–[4]. This might be 

partly due to the fact that technological improvements have mainly been assessed in lab-based studies with a limited 

number of users [5]. In lab-based studies, mostly tasks were used that only partly cover the tasks that users perform 

in activities of daily living. To improve the quality of lab-based training, serious games (games that are designed to 

develop a certain skill while playing) have been used as a training tool to enhance prosthesis control [6]–[8]. However, 

effectiveness of serious game training on prosthesis use has not been evaluated in home use. Hence, the current study 

aims to determine the effect of training serious games in the home setting on upper limb prosthesis activation signals 

in PR controlled prostheses. 

METHOD 

The data collection of the Coapt Complete Control System for this study was conducted by Coapt LLC. Each 

participant provided informed consent in accordance with the WCG-IRB. 

Design 

The activation signals of the participants’ upper-limb prosthesis were measured in their home setting when the device 

was turned on during a period of 2 weeks. Participants were instructed to use their prosthesis as they would in their 

normal day-to-day life with the only additional requirement to train with serious games provided by the Coapt system 

for at least 45 minutes per week. Participants were free to choose when they would train with the games, however 

they were urged to train multiple days. 
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Serious games 

The Coapt system provided users with two serious games, Simon Says and In The Zone. Simon Says is a Fitts’-Laws 

style serious game in which participants control a virtual arm in an attempt to match a target posture (Figure 1). The 

virtual arm is controlled by the same activation signals as the real prosthesis. 

In The Zone is a serious game in which participants had to match a target intensity of muscle contraction 

levels. A virtual arm with a target ring around a specific joint and a ring which matched their actual contraction level 

(see Figure 2) was presented. By increasing the amount of muscle activation around that joint, participants were able 

to match the sizes of both rings. 

Data storage and outcome measures 

Data storage within the Coapt system was done in three steps. First, the system computed the number of consecutive 

time frames of 50 ms in which the user produced the same activation signal. Second, the system stored the data of 

each individual activation signal in one of two groups based on the number of consecutive time frames: involuntary 

activations (1-6 frames) and voluntary activations (<7 frames). Third, the system counted the frequency of each group 

of activation signals per individual motion of the system. As outcome measure we divided the number of activation 

signals per group by the total activations for all participants separate for each motion of the system. It was hypothesized 

that serious games would improve a user’s prosthesis control, arguably resulting in more voluntary activation. When 

a user had more voluntary activation than involuntary activation after the serious games were played than before, it 

could be assumed that playing serious games improved that user’s prosthesis control.  

Statistical analysis 

Due to the limited number of participants, a non-parametric Wilcoxon Signed Rank test was used to determine if there 

were differences in the ratio of the involuntary and voluntary activations of the Hand Open, Hand Close, Wrist 

Supination and Wrist Pronation modes before and after serious games were played. 

 

Figure 1. A) The user has to match the position of the 'shadow arm' (closed hand 
position) with the representation of their own prosthesis (solid arm, hand open 
position). B) When the user correctly matches their prosthesis position to the target 
position, the prosthesis turns green. 

A B 

Figure 2. A) The user has to match the diameter of the target ring (yellow) by activating the 
joint with the correct amount of activation.  B) When the user correctly matches the 
amount of activation (the black ring) with the target ring, the ring will turn green.   

A B 
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RESULTS 

Participant characteristics are presented in Table 1. The data show that there are more involuntary activation signals 

than voluntary activation signals for each prosthesis activation mode, see Figure 3. No significant differences were 

found between the ratio of involuntary and voluntary activations before and after the serious games were played 

(Figure 3) for both the Hand Open, Hand Close, Wrist Supination and Wrist Pronation modes.  

DISCUSSION AND CONCLUSION 

Our main analysis of the effectiveness of serious games on activation signals in PR controlled upper limb prostheses 

showed no difference in the ratio of voluntary and involuntary activation signals when comparing before and after 

training. This null-finding may have different reasons that deserve further study. For instance, it might be that a 

Table 1. Characteristics of participants with transradial (TR) or transumeral (TH) defects 

Participants Sex Age Number of months of 

prosthesis use 

Wear time 

(hours/2 weeks) 

Number of games played/2 weeks (1 

game = 5 minutes) 

TR 1 Female 57 33 6.8 18 (90 min) 

TR 2 Male 38 25 25.9 19 (95 min) 

TR 3 Female 42 18 64.9 14 (70 min) 

TR 4 Male 28 8 125.0 19 (95 min) 

TR 5 Female 53 74 243.7 18 (90 min) 

TR 6 Female 31 54 4.1 53 (265 min) 

TR 7 Female 36 4 13.2 14 (70 min) 

TH 1 Male 57 16 66.4 28 (140 min) 

TH 2 Male 47 72 9.6 21 (105 min) 

TH 3 Male 43 84 45.0 20 (100 min) 

Figure 1. The average distribution of the activation signals for the Hand Open motion (first), Hand Close (second), Wrist 
Supination (third) and Wrist Pronation (fourth) are shown. The ratio of the activation signals (y-axis) was calculated (activation 
signals per group (x-axis) divided by the total) for all participants before a serious game was played (black bars) and after a 
serious game was played (white bars). 
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training period of two weeks is too short to find an effect of the training with serious games (see for instance Tabor et 

al 2018), or that the training time of minimal 45 minutes was not long enough. Moreover, it might be that the users 

included in this study were already quite experienced in the use of PR controlled prosthesis. 

Another issue that deserves further study is the choice of the games. In this study we used the games that 

were available in the Coapt system. However, other studies have shown effectiveness of serious games that were task-

specific [7], [9]. It might be that the serious games currently used were not specific enough to improve use of the 

prosthesis in the home setting due to training and focused too much on the control of the myo-signal.  

An unexpected result of the current study is that we found more involuntary activations that voluntary 

activations. The origin of this result is not clear. It might be that the short activation commands do not result in 

activation of the prosthesis and therefore these signals are not controlled by the users, which might explain their high 

occurrence. This finding underlines the importance of longer lasting studies in the home setting of the prosthesis users 

instead of short lab-based research. 

To conclude, in a first study to examine the effectiveness of serious games in home usage of PR controlled 

upper limb prostheses we did not find an effect of the serious games. We argued that the step to measuring in the home 

situation is an important one to further improve the field. Our current findings show that a type of training (i.e., serious 

gaming) that had shown to be effective in the lab, was not effective in the home situation. Therefore, our findings, 

although a null finding, show the importance to shifting focus to studies in home settings to improve PR controlled 

upper limb control. 
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ABSTRACT 

A retrospective analysis of 250 individuals with upper limb amputation or limb deficiency was performed to better 

understand the relationships being well-being and upper extremity function, activity and participation, prosthesis 

satisfaction and wear times and pain interference.  Well-being, as a cumulative construct of quality of life and 

satisfaction was found to strongly correlate with self-reported physical function in bimanual tasks, self-reported 

activity and participation levels, self-reported satisfaction with prostheses and reduced pain interference.  By contrast, 

neither age, gender, time since amputation nor reported prosthesis wear times were found to correlate with well-being 

in this population.  While causality between these closely related and overlapping constructs may prove difficult to 

establish, their close relationships suggest that well-being in this population may be pursued through the thoughtful 

provision of an appropriate prosthesis and training to enable the performance of bimanual tasks tailored to the unique 

activity and participation needs of the individual. 

INTRODUCTION 

Upper limb amputation and congenital upper limb deficiencies are associated with a number of disabling 

characteristics.  In addition to the obvious functional deficits attendant with the absence of the affected extremity, 

these individuals contend with a spectrum of pain experiences and social stigma, and in the case of acquired 

amputation, a dramatic alteration in self-image and vocation. 

Well-Being has been described as a blended construct combining the elements of quality of life and satisfaction.1   

The restoration of well-being among individual with acquired upper limb amputation can be reasonably considered a 

primary objective of rehabilitation.  Importantly, it may be influenced by a number of interconnected variables 

including an individual’s functional upper limb capacity, their activity and participation amongst family, friends and 

society, and their daily pain levels and experiences. 

Individuals who have undergone upper limb amputation have reported reduced scores with respect to the physical 

elements of their quality of life relative to both population norms2 and individuals with lower limb amputation.3  

Similar findings have been observed with respect to the related construct of satisfaction with life even when controlling 

for a range of potentially confounding variables such as age, gender, marital status and educational level.4 

With respect to limitations imposed upon activity, Gallagher et al identified frequently encountered broad activity 

limitations for this population. These included getting dressed (52.9%), taking care of household responsibilities 

(52.9%), and day-to-day work/school activities (40.0%).5  Additionally, in consideration of restrictions to 

participation, the most frequently identified restrictions have been suggested in employment or job seeking (91.7%), 

family life (41.2%), leisure/cultural activities (41.2%), sports or physical recreation (38.5%), shopping (35.3%), living 

with dignity (35.3%) and socializing (23.5%).5 

With respect to upper limb function, following upper limb amputation MacFarland et al found greater difficulty 

associated with bimanual activities such as washing and drying dishes, and food preparation and lesser difficulty 
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associated with tasks that lend themselves to one-handed performance such as driving, brushing ones teeth, and 

opening and closing doors.6 

Beyond the described constraints to function, activity and participation, this population frequently contends with 

a number of often overlapping pain experiences.  These include phantom limb pain, residual limb pain and overuse 

pains experienced in the sound side extremity or torso.  One or more of these pain experiences has been reported by 

as much as 90% of those with upper limb deficiency, with most reporting multiple, overlapping pain experiences.2,7   

While phantom limb pain and residual limb pain appear to be more prevalent, overuse pains have been reported as 

both more severe and disruptive.7 

The provision of an appropriate upper limb prosthesis may influence well-being in this population by restoring a 

measure of upper limb function and enabling improved activity and participation levels.  While individuals with 

unilateral upper limb deficiency tend to rely heavily on their sound side limb for upper limb function, bimanual 

function is indicated for many daily tasks and may be enhanced with an appropriate prosthesis.8   

Satisfaction with a prosthesis appears to be very user dependent, taking into consideration such elements as 

appearance, weight and reliability.  Available evidence suggests that different upper limb prosthesis types (eg, body-

powered, myoelectric and cosmetic) appear to address different areas of satisfaction with no consistently preferred 

device type.8-9  Rather, prosthesis satisfaction appears most influenced by amputation level, with great satisfaction 

associated with more distal amputation levels.9  Within the constraints imposed by amputation level, optimizing 

prosthetic satisfaction may be a product of matching device characteristics with user priorities. 

The purpose of this retrospective analysis was to better understand the relationships observed between well-being 

and upper limb function during bimanual tasks, activity and participation levels, satisfaction with a prosthesis, and 

pain interference amongst a convenience sample of individuals with unilateral limb deficiency distal to the shoulder 

and proximal to the wrist who utilize and upper limb prosthesis 

METHODS 

Using the Prosthesis Evaluation Questionnaire-Well Being,1 patients rated their satisfaction with life (SAT) and 

quality of life (QOL) over the prior 4 weeks.  Scores range from 1 to 10, with higher scores indicating higher levels 

of well-being. 

To evaluate upper limb physical function, a previously assessed custom 9-item short form derived from the 

PROMIS®-UE v2.0 item bank was administered (PROMIS-9 UE).10  Patients were asked to report the level of 

difficulty associated with each item using a discrete, ordinal scale ranging from 1 (unable to do) to 5 (without any 

difficulty).  Items included such tasks as opening and closing a zipper, cutting food using utensils and lifting or passing 

heavy items. All items within the PROMIS-9 UE are bimanual activities. Bimanual activities were intentionally 

chosen to attempt to isolate those activities where prostheses would be more likely to influence upper limb function. 

Raw scores were converted to t-scores using the healthmeasures.net scoring service such that a score of 50 corresponds 

to the average scores of the United States population. 

Additional patient reported outcomes included the 4-item short form of the PROMIS-Ability to Participate in 

Social Roles and Activities (APSRA).  This construct aligns well with the considerations of activity limitation and 

participation restriction proposed by the International Classification of Function, Disability and Health (ICF). Patients 

were additionally asked to report prosthesis satisfaction using the Trinity Amputation and Prosthesis Experience 

Scales- Revised (TAPES-R), a single item of pain interference (PROMIS-Pain Interference), number of months since 

amputation, hours of daily wear time per, age, and gender. 

To analyse the data, a multivariate linear regression model was run (forward enter method) with patient well-

being as the predicted variable. Secondarily, in addition to the multivariate model, each variable was separately 

analysed through a univariate linear regression to assess individual effects.  This retrospective database review was 

approved by Western Investigational Review Board (Protocol #20170059). 

RESULTS 

There were 250 individuals with upper limb amputation that had an outcome of record for analysis. The majority 

had a transradial or wrist disarticulation amputation (73.2%), and reported amputation due to trauma (38.8%, or 66.4% 

of those with reported etiology). Slightly less than half reported having an electronic arm (46.0%). 
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The overall regression model was statistically significant (R = 0.675, F(8,241) = 25.162, p < 0.001; Table 1). 

 

Table 1: Correlates to Well-Being among Upper Limb Amputees  

R=0.675 B Standard 
Error 

β t P 

(Constant) 2.280 0.980 
 

2.33 0.02* 

Activity/Participation (APSRA) 0.077 0.019 0.335 4.03 <0.01* 

Prosthesis Satisfaction (TAPES) 0.200 0.051 0.240 3.90 <0.01* 

Pain Interference (PROMIS) -0.328 0.114 -0.190 -2.88 <0.01* 

Physical Function (PROMIS-9 UE) 0.028 0.014 0.152 1.94 0.05* 

Daily wear time (hours) -0.023 0.024 -0.059 -0.97 0.34 

Time since amputation (months) 0.000 0.001 -0.009 -0.15 0.88 

Gender (male) -0.040 0.301 -0.008 -0.13 0.90 

Age (years) -0.001 0.008 -0.004 -0.08 0.94 

DISCUSSION 

This retrospective analysis provides some insight into those factors that appear to correlate most strongly with 

improved satisfaction and quality of life among individuals with major upper limb amputation or deficiency.  While 

causality cannot be determined, the relationships between these various constructs provide a foundation for how the 

rehabilitation of this population may be best approached. 

We assessed physical function through a custom short form of the PROMIS measure of physical function that has 

been validated within upper limb prosthesis users (PROMIS-9 UE).10  Because of the tendency for prosthesis users to 

default to their sound side extremity to perform many unimanual activities, the items included in the custom PROMIS 

scale are bimanual tasks.  A limitation of this measure is that it does not inquire as to whether an individual task is 

performed with or without the use of the prosthesis.  It is possible that some users may employ alternate strategies to 

complete some of the items on the short form.  However, the bimanual nature of these tasks suggests that the 

engagement of a prosthesis would have been more likely for many if not all of our respondents, especially given the 

overlapping correlations with higher reported rates of prosthesis satisfaction. 

We observed a strong relationship between self-reported bimanual physical capacity and well-being.  By contrast, 

the correlations between well-being and daily prosthetic wear times were only modest.  This is consistent with prior 

published observation.  Ostlie et al observed that despite good demonstrated prosthetic skills and high levels of 

prosthetic satisfaction and perceived usefulness, individuals with upper limb amputation reported engaging their 

prostheses to complete only about half of their ADLs with a stronger tendency towards prosthetic use observed in 

bimanual activities.8  Chadwell et al also reported no correlation between prosthetic proficiency and daily prosthesis 

use.11  Thus, it appears to be the user’s ability to perform bimanual upper limb tasks when necessary, rather than their 

actual prosthesis wear times, that is more closely related to the overarching constructs of well-being and quality of 

life. 

The relationship between well-being, upper limb function, activity and participation scores and prosthesis 

satisfaction warrant further study and consideration.  It may be that those individuals with higher levels of physical 

function were more able to participate in their social roles and activities and, as a result, reported higher satisfaction 

and quality of life.  Alternately, it may be that those individuals who were managed with prostheses more closely 

tailored to their activities and various roles reported both greater prosthesis satisfaction and higher levels of activity 

and participation, collectively culminating in higher satisfaction and quality of life scores.  Causality between these 
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interrelated factors may be difficult to ultimately assign.  Rather, their close associations should be seen as a strong 

rationale to pursue bimanual function with a prosthesis tailored to individual activity and participation requirements. 

The correlation between reduced pain interference and increase well-being aligns with clinical observation.  

Individuals with upper limb amputation and deficiency often report a range of pain types and intensities.2,7  These can 

include residual limb pain, phantom pain and pain related to over-use in the sound side extremity and through the 

upper back, neck and torso.  Any of these pain types can ultimately have profound impacts upon well-being that would 

be difficult to overcome.   

CONCLUSIONS 

The constructs of QOL and SAT have been represented in the broader construct of Well-Being.  Our data suggest 

that greater levels of Well-Being are correlated with higher levels of functional capacity with bimanual activity as 

measured with the PROMIS-9 UE, higher levels of activity and participation as measures with the PROMIS-APSRA, 

higher levels of satisfaction with prostheses as measured by the TAPES-R, and reduced levels of pain interference.  

By contrast, daily reported wear times, times since amputation, age and gender failed to correlate strongly with Well-

Being.  Prosthetic capacity in bilateral function, facilitation of activity and participation, satisfaction with prostheses 

and managing the complex pain experiences that can occur within this population appear to be key considerations in 

enhancing their overall well-being. 
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ABSTRACT 

Sonomyography (SMG) is a promising alternative to electromyography (EMG) for extracting control signals from 
functional muscle activity in real time. SMG uses ultrasound imaging to non-invasively record superficial and deep 
muscle activity, making it possible to differentiate the independent contributions of individual muscles during 
functional movements. Previous challenges surrounding the miniaturization of ultrasound instrumentation have 
prevented exploration of SMG as a feasible modality for prosthesis control. In this paper, we describe our work 
developing a 4-channel wearable ultrasound system capable of tracking in vivo muscle interfaces using frequency-
modulated continuous wave imaging. 

CLASSIFYING GRASPS USING SONOMYOGRAPHY 

Surface EMG remains the primary method for sensing muscle activity to actuate a prosthetic hand. However, 
EMG suffers from poor amplitude resolution, a low signal-to-noise ratio, and is subject to crosstalk from adjacent 
muscles [1], [2]. These barriers can make it difficult to derive a rich set of control signals for intuitively controlling 
multiple degrees-of-freedom within a multiarticulate prosthetic hand. SMG is an alternative sensing modality that uses 
ultrasound imaging of muscle contractions to spatially resolve individual muscle activities with sub-millimeter 
precision. Because SMG enables spatiotemporal characterization of both superficial and deep muscle activity and is 
not subject to intermuscular crosstalk, SMG makes it possible to differentiate the independent contributions of 
individual muscles during voluntary movement. Control signals for driving a prosthetic hand can thus be extracted 
from the ultrasound signals using machine learning models (Fig. 1). 

Similar to EMG control, SMG control employs a supervised learning framework that uses classification 
algorithms to compare features of ultrasound signals to training data. Ultrasound images of forearm muscle tissue 
have enough unique spatiotemporal information for classification algorithms to differentiate between various hand 
grasps. Our benchtop testing has revealed that SMG can identify five individual digit movements in able-bodied 
individuals with 97% cross-validation accuracy [3] and fifteen complex hand grasps with 91% cross-validation 
accuracy (Fig. 2) [4]. We also found that, with minimal training required, SMG can identify five grasps for individuals 
with upper limb loss with 96% cross-validation accuracy [5], [6].  These results indicate that SMG is a feasible means 
to classify hand grasps from muscle tissue for prosthesis control. 

We investigated grasp classification using a sparse set of ultrasound scanlines to understand the minimum 
hardware requirements for a wearable ultrasound system [7]. We recorded ultrasound images from the forearms of 
five able-bodied subjects performing five grasps (power grasp, pinch, index point, key grasp, wrist pronation) using a 
128-element linear array transducer. We then selected different subsets of scanlines to quantify the extent to which 
classification accuracy was affected. Even with a subset of only four scanlines, classification accuracy was virtually 
unchanged (94 ± 6% for 128 scanlines, 94 ± 5% for 4 scanlines). This demonstrates the feasibility of using a small 
number of single-element transducers rather than a full array, which simplifies the instrumentation that would need to 
be incorporated into a prosthesis socket. We thus chose to implement a wearable SMG system using only 4 individual 
transducers. 
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Figure 1. Schematic showing our approach to prosthesis control with SMG. (A) Muscle deformation over time is 
tracked with an ultrasound transducer placed on the forearm. The figure shows an able-bodied subject performing 
index finger flexion and middle finger flexion. The corresponding ultrasound images show different muscle 
compartments deforming for each movement. (B) M-mode ultrasound images (depth over time) show deformation 
of different muscle compartments over time corresponding to individual finger movements (red, green, blue 
segments). (C) Control signals are extracted based on the muscle deformation associated with individual finger 
movements (red, green, blue traces) and are then mapped to movement of a prosthetic hand. 

 

DEVELOPMENT OF A WEARABLE ULTRASOUND SYSTEM 

We have developed a 4-channel wearable SMG system for controlling a prosthetic hand (Fig. 2). Our 
implementation employs frequency-modulated continuous wave imaging instead of traditional pulse-echo approaches, 
which enables miniaturization of ultrasound parts using low-voltage commodity hardware and allows low-frequency 
processing speeds. A key feature of frequency-modulated continuous wave imaging is the use of a linear chirp signal 
to encode the depth of ultrasound reflections as a range of frequencies, which bypasses the need to transmit short-
duration high amplitude pulses to create a depth-resolved map of the received reflections. We anticipate that our 
implementation of low-power ultrasound imaging will serve as the foundation for future prosthesis controlled by 
SMG. 

Our ultrasound system consists of an AD5930 chirp generator, four single element ultrasound transducers, a 
power regulation subsystem, hardware for four-channel signal processing, and an external NI-6210 DAQ. The 
transducers are formed as single element PZT crystals with a 4.25 MHz center frequency and sized to be 7 mm in 
diameter and 0.5 mm thick. The PZT crystals are dampened with a silicone backing layer and mounted in a 3D-printed 
bracket that can be secured to a forearm with an elastic strap. The power subsystem is designed to take a 7.4 V battery 
input and provide ±5 V for the signal processing hardware. The signal processing hardware for each channel consists 
of a radio frequency (RF) amplifier, a demodulator, an audio frequency (AF) amplifier, and a low-pass filter. Because 
the depth is encoded as frequency, we low-pass filter the signal at 100 KHz to limit the imaging depth to 15 cm. The 
DAQ samples the output of the AF amplifier at 250 kS/s, and controlled with Matlab for the classification algorithms.   
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Figure 2. Left: The prototype of our 4-channel wearable ultrasound system. Right: System diagram of the 

hardware components. 

 

We have also made some progress extending our wearable system to include an embedded processor capable of 
executing machine learning classification algorithms in real-time. We recently implemented a Linear Discriminant 
Analysis algorithm on the embedded processor and found it could predict a user’s hand grasp with > 90% accuracy 
during benchtop testing, which is comparable to the classification accuracy obtained when analyzing the ultrasound 
signals using MATLAB (Fig. 3). 

 

  
Figure 3. Offline grasp classification accuracy obtained using an embedded processor when testing two able-bodied 
subjects. 

 

DISCUSSION 

We believe SMG demonstrates numerous advantages over EMG, making it a promising modality for restoring 
dexterous movement to individuals using upper limb prostheses. One of the primary benefits of SMG is that muscle 
activity can be sensed with high spatial specificity, even in deep-seated muscle compartments. As a result, crosstalk 
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from muscles that are not associated with the intended movement is effectively suppressed. It is also noteworthy that 
full-resolution ultrasound imaging is not required to achieve robust classification. Classification accuracies are not 
affected even when a subset of only four ultrasound scanlines are used. Single-element transducers may be used 
instead of a full array, reducing the instrumentation required for implementing SMG control in standalone prostheses. 
Our testing has found that learning to use SMG requires minimal training. In fact, transradial amputees were able to 
achieve 96% classification accuracy for 5 grasps after only a few minutes of training time [5].  

Our wearable SMG system can reliably record m-mode ultrasound imaging signals which can be used to classify 
hand grasps. Our future work focuses on implementing a wearable SMG system into an upper limb prosthesis to 
perform hand grasp classification in real-time. We have made considerable progress towards miniaturizing the front-
end signal processing components, as well as implementing the grasp classification algorithms within an embedded 
system so that classification and control can be performed untethered to a computer. We are also working on packaging 
all the hardware components to fit within a socket alongside the hardware to drive a multiarticulate prosthetic hand. 
Our goal is to develop a complete SMG prosthesis control system for users to test within their own homes [8].  
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ABSTRACT 

This work combines for the first time structural and computational synergies defined by neuronal information. 

The main idea is to investigate the existence of motor neuron synergies and their potential as sources for myoelectric 

control. First, we developed a new version of the soft hand with 2 degrees of actuation (DoA) for prosthetic 

applications. Then, we used HD-sEMG to study the behaviour of motor units in different manipulation tasks and to 

identify motor modules or neural synergies. Based on this dimensionality reduction in both the mechanical prosthetic 

design and the neural control, we propose a method to map the neural information into prosthesis control. With this 

approach, we first show that neural synergies have greater dimensionality than classic muscle synergies. This property 

and a greater degree of independence determine the possibility of a natural, robust and simultaneous control of several 

DoA by neural synergies. The proposed method can be implemented into an available framework of online 

decomposition (i.e. online extraction of motor units) in order to create a platform to study different myoelectric control 

methods and compare their performance in a virtual environment, and in the real-time control of the SoftHand Pro-2. 

The creation of this platform permits further developments on the existence of modules in upper-limb motor control, 

the relation between different synergistic levels and its use for assistive and rehabilitative robotics with different type 

of patients. 

INTRODUCTION 

Modularity is present in both structural and computational components of a control architecture, and it has a 

functional purpose. It is commonly assumed that the remarkable versatility and adaptability in motor control is the 

result of employing modularity as the key organizational principle of the central nervous system [1]. Research on 

synergistic control has focused on developing analytical techniques to reveal the existence and the origin of the 

reduction in the dimensionality of the hand control space. The framework proposed in [2] suggests that the spinal 

circuits could explain many experimental observations about synergies revealed by studies of hand kinematics, 

kinetics, and EMG signals. Compared to animals and humans, state-of-the-art robotic hands still show limited and 

inflexible motor skills. Nonetheless, advances in robot technology allow researchers to explore and develop into how 

the motor, sensory, and cognitive functions might be integrated into meaningful architectures. The creation of artificial 

systems embedding synergies represents a benchmark to explore different concepts of modularity and to 

experimentally investigate possible interactions between motor and cognitive processes, which are fundamental for 

human understanding.  

Postural synergies are considered to guide and simplify the design of hands, while allowing a high level of 

dexterity in the coordination of multiple joints. We developed a prosthetic version of a multi-synergistic hand (i.e. the 

SoftHand Pro-2) that presents two synergies, capable of reproducing continuous movement of all fingers in opposite 

directions. Improving upon the traditional advanced robotic hands, multi-synergistic permit the continuous mapping 

of different grasp patterns and their transitions. Moreover, multi-synergistic robotic hands could theoretically yield in-

hand manipulation of objects. Note that to implement in-hand manipulation in fully actuated robotic hands, 

sophisticated algorithms and sensing strategies are generally required. The SoftHand Pro-2 could manipulate objects 

of different shapes with just two synergistic behaviors and requires a simpler control strategy. However, because of 

its synergistic nature, the control modality must match this concept and be also synergistic in order to create a proper 

mapping. Individual fingers movements, which are needed for simultaneous and proportional control during in-hand 

manipulation, are extremely hard to decode from sEMG sensors on extrinsic muscles (the common condition for 
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transradial amputee subjects). To overcome peripheral coupling when a task requires independent finger actions [3] 

or for several coordinated multi-digit actions [4], finer modulation of neuromuscular activity might be necessary. This 

work proposes an alternative myoelectric control strategy based on the functional organization of motor units (MU) 

and neuronal synergistic information. We hypothesize that this methodology presents higher dimensionality and better 

specificity than other alternatives, such as muscle synergies. Moreover, this control method may not only be adequate 

to command a synergistic prosthetic hand, but the integration of both structural and computational synergies 

contributes to the creation of a framework to further develop on the existence of modules in upper-limb motion control 

and its application for assistive and rehabilitative robotics. 

This work represents a unique opportunity that combines the expertise in neural interfacing (ICL, London) and in 

soft-synergistic robotics and prosthetic hands (IIT, Italy). Although this investigation presents several applications, its 

major potential applies to the field of prosthetics, where robotic devices become part of subject’s missing body parts. 

We hypothesize that the lack of modularity as a principal direction in the design of artificial arm mechanics and control 

algorithms burdens the acceptance of prostheses and a natural bionic integration. This study attempts for the first time 

to match neural synergistic information with kinematic synergies. We decoded the activity of motor neurons 

innervating the hand while 9 participants exerted isometric forces during different wrist and hand movements related 

to the corresponding kinematics of the prosthetic arm. We then identified components explaining the variance of the 

motor neuron outputs, named motor neuron synergies (MNS, firstly introduced in [5]). For a better understanding of 

the functional role of MNS, and observe their applicability in myoelectric control, we compared them with synergies 

extracted from EMG amplitudes, i.e., muscle synergies. This work provides insights into the organization of neural 

inputs to spinal motor neurons from an offline analysis and proposes the first myoelectric control that uses neural 

synergistic information to control robotic hands which, to date, has been inferred through analysis of muscle synergies. 

We plan to apply this myoelectric control to the physical prosthetic hand, designed with postural synergies, and test 

its feasibility in online experiments.  

This work stems from a collaboration within the ERC Synergy Project Natural BionicS, which is an international 

and multidisciplinary collaboration of European researchers to create fully integrated, symbiotic replacements for 

human limbs. The consideration of computational synergies introduces a completely fresh perspective for myoelectric 

control and appear especially interesting for multi-synergistic robotic devices. Furthermore, this collaboration aims at 

providing a foundation for merging neuroscientific and robotic principles. Promoting the combination of both concepts 

(motor neuron and kinematic synergies), we expect to provide prosthesis users with dexterous robotic systems with 

more intuitive and natural control. 

DEVELOPMENT OF MULTI-SYNERGISTIC HANDS 

The selection of appropriate prescriptive synergies in robotic devices is a difficult task as the observed behavior 

in humans (descriptive synergies) does not necessarily reveal the required control used by the nervous system 

(prescriptive neural synergies). Defining task-relevant prescriptive synergies is further complicated as their 

performance depends on the specific parameters and context of the task. The earlier developed SoftHand Pro is able 

to realize a vast range of grasps, and provides improved adaptability due to ts physical compliance and its synergistic 

actuation (i.e. by an designed tendon-driven differential mechanism) for improved adaptability. Despite its 

effectiveness in many practical conditions, this artificial hand presented some limitations in terms of dexterity when 

compared to a natural hand. The use of a single degree-of-actuation (DoA)prevents the execution of more complex 

tasks, like fine pre-shaping of fingers and in-hand manipulation. As a consequence, the SoftHand Pro-2 has been 

developed for prosthetic applications and for taking advantage of recent advances in the concept of neural synergies.. 

This is an under-actuated soft prosthetic hand with two synergistic behaviours. The combination of multiple soft 

kinematic synergies provides a continuous workspace that, in theory, is able to reproduce several hand postures and 

in-hand manipulation with a natural approach. The aim is to generate additional motions with minimal changes in the 

original mechanics of the SoftHand Pro, which has been already tested in clinical environments and real conditions 

with positive outcomes [6]. This framework turns transmission friction from a disturbance into a design feature, as 

suggested in [7], doubling the DoAs with little additional complexity. The vision of associating this mechatronic 

design to specific neural structures is different from any other current approach to prosthesis design. 
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Mechanical design 

The SoftHand Pro-2 exhibits a total of 15 joints mostly embedding the 

flexion/extension of its fingers (see Figure 1). One revolute joint is present 

at the thumb, accounting for its abduction for a better opposition. The 

remaining 14 joints embedded in fingers are compliant rolling-contact 

element (CORE) joints. Elasticity is introduced in each joint. A single 

tendon moves from the palm base, connecting all the fingers, and two 

motors actuate the tendon, pulling it from its two sides. If the motors move 

in the opposite direction, the tendon length is shortened, and the SoftHand 

Pro-2 closes exhibiting a power grasp. If instead, only one motors moves, 

the tendon pulls from the corresponding side, partly closing the hand and 

generating a non-power grasp, but a rotation of the fingers from side to side, 

which can generate pinch to index point postures. 

 

Hand capabilities 

This hand is able to perform both precision (i.e. pinch or tripod) and 

power grasps, as well as to manipulate objects while maintaining a stable 

grasp through the embedded intelligence in its autonomous finger contact 

forces. The hand demonstrates that a larger variety of grasping and manipulation tasks can be theoretically performed 

by combining only two DoAs with softness and synergistic behaviors. The capability of in-hand manipulation, such 

as for the pouring of a liquid may be also executed by exploring the two synergies at different intensity levels without 

any compensation at the wrist level (usually related to wrist abduction/adduction). Because of the exploration of 

friction, sequential control inputs, may result also in different hand configurations, which is considered a feature to be 

explored, especially if a patient uses proportional velocity control (PVC). Even though the problem of manipulation 

modelling is solved for fully actuated hands (i.e. when the hand kinematics are injective), this is more complex for 

synergy-based hands. However, prosthesis users would most of the time have visual feedback of the manipulated 

object. Therefore, with a more natural control of the prescriptive synergies of the artificial hand, the additional feature 

of in-hand manipulation may become a feasible capacity. This feature is explored in this work through the use of 

motor neuron synergies. 

MOTOR NEURON SYNERGIES 

One motor neuron can receive inputs from several corticospinal inputs, mediated by premotor interneurons. A 

motor neuron synergy (MNS, termed in [5]) corresponds to a stable pattern of muscle activation (dynamic system), 

observable already at the premotor neurons level. Contrarily, the extraction of muscle synergies considers the 

spatiotemporal organization only from individual muscles. The concept of MNS is compatible with the existence of 

motor primitives, which could correspond to a set of synergies that are simultaneously activated for the coordinated 

control of a more complex system. In practice, to extract neural synergistic organization, we factorized the output 

spike trains of motor neurons innervating the extrinsic hand muscles found at the upper forearm level (common area 

to place EMG sensors in transradial amputated subjects). In addition, it has been suggested that the descending motor 

commands may control the dynamics of a system by modulating the shape of its synergies. The theoretical framework 

in [8] incorporates the notion of variable time shifts for individual synergies, that could permit the quantification of 

the degree of flexibility of a synergy related to the width of its valley when activated. The inclusion of fixed and 

flexible synergies in the control loop are of interest for the precise control of prostheses and perturbation avoidance. 

Here, we recorded data from different able-bodied subjects while performing isometric contractions during different 

manipulation tasks. Then, we concatenate all EMG signals recorded through HD-sEMG sensors to extract common 

features among hand positions. The methodology proposed combines EMG signal decomposition for the extraction 

of MU, and the application of non-negative matrix factorization (NMF) to observe neural synergistic information. 

Then, we propose a mathematical relation among upper-limb movements included (which are feasible to replicate 

with the hardware) and the extracted MNS. Doing so, we define the motor inputs or control commands necessary for 

the use of the prosthesis and an appropriate mapping of the subject intentions into robotic postures. Figure 2 shows an 

example of the recorded data from a pilot subject and the offline analysis of their MNS. The matrix W is the time-

invariant weights of the synergies observed in 63 MU. The matrix H shows the time-variant activation of the defined 

synergies and their morphology according to the recorded tasks, visible at the bottom of Figure 2. Results show the 

 

Figure 1: Final design of the novel 

prosthetic hand, the SoftHand Pro-2. 
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repetitive use of MU in different hand postures, and accordingly, how this is translated into common neural synergies 

for different hand configurations. 

 

 

CONCLUSIONS 

Preliminary results validate the potential of the proposed vision and the use of neural synergies for the control of 

postural synergies embedded in a prosthetic hand as an alternative myoelectric control that could permit more 

advanced manipulative skills with a natural approach. The methodology proposed can be implemented in a 

computationally efficient real-time interface based on the decoding of the activity of spinal motor neurons from 

wearable HD-sEMG sensors [9], which would permit the real-time testing of the control method while actively 

controlling the prosthesis with different subjects. Future work aims at the use of the resulting platform in the Medical 

University of Vienna with different types of patients (e.g. congenital, amputated subjects or patients with certain 

surgical conditions such as TMR), that will allow the investigation of how neuronal information varies across users. 

This framework permits future studies on the effect of modularity in the reduction of cognitive load in patients. 
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Figure 2: Example of motor neuron synergies from a pilot study. a) show the resulting matrices from NMF applied 

to motor units (MU), b) the reconstructed MU from the defined MNS. The vertical dashed lines in a) H matrix and 

b) represent the concatenation of the different manipulation tasks recorded and combined. 

a) 
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ABSTRACT 

Sonomyography (SMG), or ultrasound-based sensing of muscle deformation, is an emerging modality for upper 
limb prosthesis control with potential to significantly improve functionality. SMG enables spatiotemporal 
characterization of both superficial and deep muscle activity, making it possible to distinguish the independent 
contributions of individual muscles during functional movements. Early offline studies have shown that SMG is 
capable of accurately classifying motor intent among able-bodied individuals, but it has not yet been shown whether 
individuals with upper limb absence can successfully use this modality for prosthesis control. This paper describes 
our ongoing work towards implementing SMG control for individuals with upper limb absence in offline and real-
time settings. We provide strong evidence supporting the feasibility of using SMG to control upper limb prostheses. 

INTRODUCTION 

Although designs of electromechanical prosthetic hands have improved over time, surface electromyography 
(EMG) remains the most common modality for sensing and decoding user intent. Unfortunately, using EMG to control 
a prosthetic hand with multiple degrees of freedom can be challenging for individuals due to the poor amplitude 
resolution and low signal-to-noise ratio inherent in EMG signals [1]. Sonomyography (SMG) is an alternative 
approach that uses ultrasound imaging of muscle deformation to spatiotemporally resolve both surface and deep 
musculature in the residual limb. Using SMG, it is therefore possible to derive a rich set of prosthesis control signals 
that may better account for the independent contributions of individual muscles. For example, we previously used 
SMG to identify five individual digit movements in able-bodied individuals with 97% offline cross-validation 
accuracy [2] and fifteen complex hand grasps with 91% offline cross-validation accuracy [3]. More recently, we have 
extended this work to better understand whether SMG is a clinically viable control modality for individuals with upper 
limb absence. This paper will discuss our ongoing work in this area and highlight opportunities for future study. 

DEVELOPING PROFICIENCY WITH SONOMYOGRAPHY 

One factor that may affect the feasibility of using SMG for prosthesis control is the length of pre-prosthetic 
training time required for individual with upper limb absence to learn to use it. Prior to receiving a prosthesis, patients 
must develop an ability to produce control signals that are sufficiently consistent and separable for accurate grasp 
classification. The pre-prosthetic training process can be lengthy and difficult in the context of EMG control [4], which 
presents a barrier to adoption of a prosthesis. However, our testing with SMG suggests that patients can rapidly 
complete pre-prosthetic training. 
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In a sample of eight individuals with 
transradial limb absence, we characterized grasp 
classification performance during their initial and 
subsequent exposures to SMG in order to 
understand how proficiency develops over time. 
Participants were asked to repeatedly perform a 
set of 4-7 grasps while ultrasound images of their 
residual limb musculature were recorded using a 
commercial ultrasound transducer. Grasps were 
self-selected based on what each participant felt 
was intuitive to perform. The images were saved 
to a database and subjected to leave-one-out 
cross-validation with a modified 1-nearest-
neighbor classifier [5]. This process was 
completed once while the participants were naïve 
to SMG control to establish baseline 
performance. To assess whether performance 
could improve with further instruction, it was 
then repeated three times while participants received verbal and visual biofeedback about their performance. Lastly, 
participants returned for a second session on a different day to assess between-day repeatability. Despite being naïve, 
the participants achieved high classification accuracy during their initial exposure to SMG (96.2 ± 5.9%; Figure 1). 
Moreover, the accuracy did not systematically change with the provision of biofeedback or between days. Our findings 
suggest that individuals who are naïve to SMG can quickly and consistently achieve reliable grasp classification [5]. 

USING SONOMYOGRAPHY WITH PROXIMAL LIMB ABSENCE 

Our initial offline investigations of SMG focused on able-bodied individuals and individuals with transradial limb 
absence. However, we also investigated whether SMG may be a suitable control modality for individuals with limb 
absence at more proximal levels. Absence of the forearm may create challenges for using SMG because the muscles 
associated with wrist, hand, and finger control are primarily located in the forearm. To explore this issue, we asked an 
individual with transhumeral amputation to perform 11 hand motions (including six grasps and flexion of each 
individual digit) interspersed by periods of rest. The participant achieved high classification accuracies during both 

 

Figure 1: Average and individual classification accuracies 
during participants’ first exposure to sonomyography. 

 

Figure 2: Confusion matrix for the motion end states achieved by an individual with transhumeral 
amputation. Integer values in each cell represent the total number of SMG image frames that were classified. 
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the motion end states (94.04%; Figure 2) and rest phases (98.34%) [6]. This promising result shows remarkable 
potential for using SMG to recognize individual finger movements and complex grasps in individuals with proximal 
limb absence. However, we acknowledge that our participant may have been uniquely able to achieve this outcome 
due to spontaneous muscle reinnervation, although his amputation surgery did not include targeted muscle 
reinnervation. More individuals must be assessed to understand how SMG can be best implemented in this population. 

FUNCTIONAL TASK PERFORMANCE USING A SONOMYOGRAPHIC PROSTHESIS 

Although we have shown that robust offline classification performance is possible with SMG, we also sought to 
understand the feasibility of using SMG to control a prosthesis in real-time functional settings. In contrast to the 
tightly-controlled settings in which offline classification performance is typically assessed, the use of a physical 
prosthesis involves many variabilities that can degrade classification performance. Notably, changes in the ultrasound 
imaging angle during arm movement could affect the acquired images, potentially causing misclassification. Thus, it 
must be confirmed whether classification is stable as users move their arm through their entire reachable workspace.  

As a first step to understanding this issue, we asked an individual with bilateral limb absence at the wrist 
disarticulation level to perform a series of functional tasks using a prosthesis controlled by SMG. To collect data for 
training a linear discriminant analysis classifier, the participant moved her arms throughout her reachable workspace 
in a pre-defined pattern while maintaining a set of muscle contractions. Each contraction was mapped to a specific 
grasp within the prosthetic hand. Tripod grasp was initiated by wrist flexion, index finger point was initiated by wrist 
extension, and rest was initiated by a relaxed muscle state. 

The participant then performed three functional tasks that involved grasping and moving one-inch wooden blocks. 
These tests were repeated every 30 minutes across three hours of continuous prosthesis wear without retraining the 
classifier. Box and Blocks Test (BBT) performance was measured by the number of blocks transferred over a barrier 
in one minute. Targeted Box and Blocks Test (tBBT) performance was measured by the time required to move 16 
blocks over a barrier into predetermined positions. Rainbow Test performance was measured by the time required to 
move blocks located at various heights from a white board to a box at waist height. During each break between tests, 
the participant turned off the prosthesis and performed pre-defined tasks that were staggered to require increased arm 
movement over time. In addition to the test outcomes measures, we quantified the number of transient classification 
bouts to characterize the efficiency of grasp selection. A transient bout was defined as an instance when the classifier 
predicted a grasp for less than five consecutive frames. Fewer transient bouts indicate increased efficiency. 

The participant successfully completed all tasks throughout the three-hour testing period [7]. The outcome 
measures remained generally stable over time (Figure 3), although we did observe a slight improvement in test scores 
during BBT with the left arm (p = 0.038) and during tBBT with the right arm (p = 0.011). There was only one negative 
effect of socket wear time on performance, as evidenced by a small increase in the number of transient bouts during 
the Rainbow test with the left arm (p = 0.027). Our results show that training a classifier to predict hand grasps while 
moving the arm throughout the reachable workspace is a practical strategy for reducing misclassification related to 
changing arm position. Additionally, this study supports the feasibility of using SMG to control upper limb prostheses 
in real-world applications. 

CONTINUING WORK 

As part of our continuing work towards demonstrating the utility of SMG control, we are working to develop 
wearable low-power ultrasound systems that can be integrated into a prosthetic socket. The functional tests reported 
in this paper were conducted with the participant tethered to a tablet-based commercial ultrasound system that could 
not easily be transported. We expect to see improved real-world performance when using a system optimized for SMG 
control that allows the user to move freely. We also anticipate that an optimized system would enable users to wear 
an SMG sensor for prolonged periods of time, permitting additional study on the stability of grasp classification during 
daily activities. 

We envision a future with SMG as a viable option for upper limb prosthesis control, and we encourage research 
that examines the capacity of SMG to increase functional outcomes and satisfaction among prosthesis users. Future 
work will focus on systematically evaluating the functional benefits of SMG control, such as whether using SMG 
contributes to higher scores on standard clinical tests, improved quality of movement, greater patient-reported 
satisfaction, and reduced cognitive load. Although myoelectric control strategies continue to demonstrate remarkable 
clinical utility, we anticipate situations in which SMG control would be considerably advantageous. There is also 
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opportunity to examine hybrid approaches using both SMG and EMG to enable more intuitive control for users with 
upper limb loss.  
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Figure 3: Functional outcome measures achieved during testing (BBT = Box and Blocks Test; tBBT = 
Targeted Box and Blocks Test) 
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ABSTRACT 

A significant disparity exists between the functionality promised by modern multi-grip myoelectric prostheses 

and the reality of myoelectric control using clinical-standard sockets and electrodes. Unpredictable prosthesis 

behaviour means users will often choose not to use their prosthesis for certain tasks. One source of unpredictability in 

upper-limb prostheses are unintended device activations, that is to say prostheses opening or closing when the user 

did not intend for the action to occur. Unintended device activations occur when the output of electromyography 

sensors reach a given threshold. During closed-loop control it is usually not possible to determine whether sensors 

reach threshold due to mechanical disturbances inducing motion artefacts or because of genuine, but unintended, 

muscle activity. We present preliminary data from experiments which use arrays of sensors to characterise how and 

why artefacts may occur in clinical-standard upper-limb prosthesis sockets. Current data show early trends in physical 

positions which lead to unintended activation and shows some artefacts are concurrent with intended muscle activity. 

INTRODUCTION 

Myoelectric upper-limb prostheses suffer from high rejection rates [1]. Lack of functionality, or commonly a lack of 

functional gain in wearing a device, remain key factors in upper-limb prosthesis rejection [1,2,3]. Modern multi-

function devices offer a range of grasp patterns; however, users of myoelectric devices typically find them difficult to 

control [4]. This lack of control, or lack of ability to predict how a prosthesis will move, has been posited as a reason 

for passive use of active devices and for device rejection [4]. A source of unpredictability in modern myoelectric 

devices is the myoelectric interface with the skin [6]. While experimental electromyography (EMG) research typically 

uses EMG sensors adhered to the skin, upper-limb prosthesis users control their devices via sensors housed in custom 

built sockets. This leads to mechanical coupling of the sensors, which can produce artefactual EMG as sensors move 

relative to the skin [5]. These artefacts are likely to contribute to unintended device activation, a key factor limiting 

the degree to which users can be confident in device behaviour. 

In this paper we present preliminary results from a set of closed-loop experiments which aim to characterise and label 

artefactual EMG obtained using clinical grade sensors. To achieve this, we fitted clinical bypass sockets or prosthesis 

simulators with a range of sensors and compared the data acquired to create ground truth labels for artefactual EMG. 

METHODS 

Participants 

Three participants (1 male, 2 female) who are anatomically intact and free from neurological or motor disorders 

were recruited. The study was approved by the Local Ethics Committee at Newcastle University (ref: 20-DYS-050). 

All participants provided written informed consent prior to the start of the experiment. 

Experimental setup 

Limb-intact participants performed a simple closed-loop myoelectric control experiment while wearing an 

instrumented clinical bypass socket. The bypass socket of one participant was made using the traditional casting, 

rectification and lamination approach, and two were created using a hybrid approach combining digital scanning with 

traditional clinical techniques [5]. An example bypass socket is shown in Figure 1a; the sockets are designed to 

simulate a hybrid supracondylar design. Sockets were fitted with two clinical standard surface electrodes (RSL Steeper 

SEA200). A two axis soft flex sensor (Bendlabs) was mounted on the posterior part of the socket and connected to 
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participants’ upper arm to capture elbow flexion and extension. The clinical standard electrodes and the soft flex 

sensor were connected to an Arduino Nano sampling at 500 Hz. Eight EMG sensors (Delsys Quattro) were positioned 

in a band around the forearm distal to the clinical electrodes and fixed in place with a bandage. The Delsys Quattro 

units were placed on the exposed part of the. Data from the Delsys sensors and the Arduino Nano were synchronised 

and sampled on a PC using the AxoPy experimental library for human-computer interfacing [6]. 

Experimental Calibration 

Participants performed a flex sensor calibration routine which involved moving their elbow through five positions. 

Two arm orientations were assessed, referred to as vertical and horizontal. In the vertical condition, participants 

performed a calibration with the shoulder relaxed such that flexion and extension of the elbow moved the forearm in 

the vertical plane. In the horizontal condition, participants performed the same calibration with the arm abducted to 

90 such that flexion and extension of the elbow moved the forearm in the horizontal plane. Within each condition, 

the five elbow positions attempted to capture participants’ range of movement on one axis, with targets one and five 

capturing top and bottom in the vertical condition and left and right in the horizontal condition. The arm position for 

target three aimed to be perpendicular to the display providing visual feedback in both cases. 

Electromyography data from the clinical electrodes were calibrated to provide normalized muscle activity for use 

in the closed-loop experiment. Participants performed a calibration during which they were asked to perform activity 

representative of rest, yr, and comfortable contraction, yc. Normalized muscle activity, ŷ, was calculated according to 

ŷ = (y – yr) / (yc – yr) and used throughout the experiment.  

Experimental protocol 

Participants performed four experimental blocks comprised of 40 trials under two conditions. A visual depiction 

of the experimental protocol is shown in Figure 1b. 

 

 

At the start of a trial participants were presented with five circles. In the vertical condition, the five circles were 

aligned vertically (Figure 1b1). A target was presented (Figure 1b2) to prompt participants to move their arm to the 

correct position. Once in position (Figure 1b3), an arrow was presented to indicate which muscle group to activate 

(Figure 1b4). In the vertical condition a right arrow prompted activation of the extensors and a left arrow indicated 

activation of the flexors. In the horizontal condition an up arrow indicated activation of the extensor and a down arrow 

activation of the flexor. In the second block of each condition, participants received feedback if they reached 

normalised activation level ŷ = 1 (Figure 1b5). Participants used a single left-handed joystick (FragFX FragChuck, 

SplitFish Gameware) to pause the experiment to avoid fatigue. The first two blocks were performed in the vertical 

condition and the second two in the horizontal condition. 

RESULTS 

Two analyses are ongoing. The first is intended to probe the degree to which limb and socket position and 

orientation influence unintended myoelectric activations. The second is a manual data labelling exercise to 

 

Figure 1: (a) Example bypass socket. (b) Visual prompts used in vertical arm position experimental protocol. 1: 

Participant views five vertical positions with current position highlighted. 2: Target position is presented. 3: 

Participant moves arm to target position. 4: Prompt indicates to activate the flexor (left arrow) or extensor (right 

arrow). 5: Feedback may be presented if muscle activity reaches threshold value.  
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differentiate different forms of myoelectric artefacts. Due to the limited number of participants tested no statistical 

analyses were performed.  

Arm position 

Trial data were differentiated into correct and incorrect activations according to whether or not normalised 

activation level ŷ ≥ 1 was reached on the prompted clinical electrode channel prior to any unintended activation of the 

other clinical electrode. Classification results for the five limb positions in the horizontal and vertical conditions are 

shown in Figure 2a and 2b respectively. In the horizontal condition, Figure 2a, results trend lower as the elbow is 

flexed and the forearm moves across the body. In the vertical condition, Figure 2b, lower classification results are 

observed as the arm is fully extended. Figures 2c and 2d show a breakdown of misclassification results for two 

participants. In both participants, misclassification distributions in the horizontal condition are distinct from those in 

the vertical condition. 

 

Manual artefact analyses 

Experimental data were manually analysed on a trial-by-trial basis. Electromyography sensor data obtained from 

clinical surface electrodes were compared to those obtained from the array of Delsys sensors. Trials in which the 

clinical data could not be explained by EMG activity observed in neighbouring Delsys electrodes were labelled as 

artefacts. Two common artefact types observed across participants are shown in Figure 3. Both Figure 3a and Figure 

3b show artefactual EMG activity observed in the clinical electrode on the extensor side, during a flexor contraction. 

In both cases, artefacts occur concurrently with both the intended muscle activation and a degree of unintended co-

activation. Our working hypothesis is that this activity represents unintended electrode shift caused by intentional 

muscle activation on the contralateral side of the bypass socket. 

Figure 2b shows a change in baseline activity on the clinical electrode occurring at eight seconds, following an 

EMG artefact. During inspection it was observed that changes in baseline activity at the end of a trial period often led 

to the succeeding trial commencing with a similar shifted baseline. 

 

c  

Figure 2: (a) Percent of correct activations in the horizontal condition. (b) Percent of correct activations in the 

vertical condition. (c) & (d) Misclassifications for two participants broken down into the horizontal and vertical 

experimental conditions. 
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CONCLUSION 

We have demonstrated a proof of principle method whereby myoelectric artefacts can by observed and recorded 

in a clinical simulation socket. This work is being undertaken as part of a larger project which aims to develop a joint 

mechanical electrical method to ameliorate electrode artefacts in clinical standard upper-limb prosthesis sockets [7]. 

The primary goal of this phase is to characterise any consistency in arm positions contributing to the generation of 

artefactual EMG and create ground truth artefactual EMG data for analysis. Current results trend towards more EMG 

artefacts being generated at limb position extremities, and changes dependent on limb orientation. We aim to run 

complementary studies in participants with limb absence using a modified socket design and fewer probe electrodes. 
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Figure 3: Sample artefactual EMG activity observed in clinical standard electrodes. Both figures show activity 

observed in the flexor and extensors via clinical standard electrodes on the bottom row. The upper row shows the 

nearest neighbour Delsys sensor. (a) Sample showing single peak artefact. (b) Sample showing double peak artefact. 

MEC 2022

65



DEMONSTRATION OF AN OPTOGENETIC NEURONAL CONTROL INTERFACE 

 

Arjun K. Fontaine1, Jacob Segil3, John H. Caldwell2, Richard F. Weir1 

Departments of 1Bioengineering and 2Cell and Developmental Biology, 

University of Colorado Denver|Anschutz Medical Campus, Aurora, Colorado, USA 
3Engineering Plus Program, University of Colorado Boulder, Boulder, Colorado, USA 

ABSTRACT 

Improved nerve interface approaches are sought for prosthesis control and sensory feedback as well as visceral organ 

study/modulation.  Optical approaches that can read-in and read-out neural activity have advantages over electrode-based 

systems in terms of selectivity and non-invasiveness.  To address limitations of existing nerve interface designs, we present an 

optical approach capable of reading activity from individual nerve fibers using activity-dependent calcium transients.  Here we 

demonstrate the feasibility of using activity-dependent calcium transients to a control prosthetic hand. This work provides a 

proof-of-concept for an optogenetic nerve interface demonstrating as it does our ability to read-out signals at the axonal scale 

in real-time and apply it to a devices control. 

INTRODUCTION 

We are developing a Bidirectional Optogenetic 

Neural Interface to read-in and/or read-out action 

potentials from a nerve with the goal of creating a 

neural interface that is selective yet minimally 

invasive to the nerve. There are significant drawbacks 

to current nerve interface approaches. They either lack 

specificity - they use nerve cuff electrodes, such as the 

Flat Interface Nerve Electrode (FINE) Array[1] that 

must sit on the outside of the nerve and measure 

signals originating inside the nerve bundle, or they 

involve penetrating the nerve with needle electrodes - 

such as Longitudinal Intrafascicular Electrodes 

(LIFE)[2] or the Utah Slant Array[3]. Penetrating electrodes tend to be hard and rigid, resulting in a stiffness mismatch that 

causes irritation and necrosis, decreasing longevity. Instead of using electrical interfacing with the nerve, we will use light 

activated ion channels (opsins) and fluorescence protein Ca2+ or voltage indicators that allow stimulation and recording of 

action potentials of specific afferent or efferent neurons using viral vector transfection.  Our Optogenetic Neuronal Interface is 

based on a fiber optic coupled  miniature two-photon microscope with electrowetting adaptive optics [4-7].  

The Bidirectional Optogenetic Neuronal Interface system is 

based on the principal of two-photon (TP) excitation[8,9].  In TP 

excitation, a fluorophore is excited by short pulses of laser light. 

TP excitation offers intrinsic axial cross sectioning because the 

process only occurs at the focus of the objective lens. The 

technique offers resolutions of 175 nm lateral and 451 nm axial 

for 900 nm light focused with a 1.2 NA objective.  This 

approach, when combined with a lateral scanning head, provides 

axon scale resolution that can be used to selectively interrogate 

an axon while excluding signals from the remaining tissue.  

Peripheral nerve read-out of activity using calcium-sensitive 

fluorescent reporters: We have demonstrated read-out of 

genetically expressed activity-dependent calcium indicators, such as GCaMP6f, has been demonstrated in other work in 

vitro[10] [Figure 1 & Figure 2]. We have also shown how a viral vector might be used as a mechanism for delivery of long-

term optical protein expression in mouse neurons for optical read-out [11]. Selective photo-stimulation (read-in) in nerve: 

We have also demonstrated the ability to selectively read-in (or stimulate) to nerves optically [Figure 3].  

Figure 1: Action potential elicited calcium signal detection in tibial nerve 

axon nodes of Ranvier [1].  

Figure 2: Action potential elicited calcium signal detection in 

vagus nerve axons with GCaMP6f. 
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Here we further demonstrate the feasibility of 

using optical approaches for prosthesis control by 

imaging the axonal fluorescence produced by 

action potentials travelling in an in vitro mouse 

nerve and using the change in image intensity to 

drive a prosthetic hand in real-time. This work 

provides a proof-of-concept for an optogenetic 

nerve interface demonstrating as it does our 

ability to read-out signals at the axonal scale in 

real-time and apply it to a devices control.  

 METHODS 

Nerve Preparation: The sciatic nerve and its 

tibial nerve branch are excised from adult wild 

type mice and loaded from the tibial end with a 

synthetic calcium indicator (2 mM Calcium 

Green-1 Dextran, ex/em = 506/531 nm) dissolved 

in a buffer containing 130 mM KCl and 30 mM 

MOPS, pH 7.2 in  accordance with 

Supplementary Figure 1, Fontaine et al, 2017 

[11] (Figure 4) . The tibial end is freshly cut in a 

zero-calcium buffer to ensure open axon cylinders 

before being suctioned into a tight-fit electrode 

with the dye buffer to facilitate longitudinal 

axonal dye-loading via diffusion and/or axoplasmic transport. The suction electrode on the tibial nerve also serves to record 

electrical activity within the nerve. The sciatic end of the nerve is drawn into a suction electrode for electrical stimulation of 

compound action potentials (CAPs).  All experiments were performed in accordance with our Institutional Animal Care and 

Use Committee (IACUC) regulations and approved protocol. 

Electrophysiology: CAPs are 

generated and recorded 

throughout the experiment 

using 50 μs square pulses to 

confirm and monitor nerve 

viability. The stimulation 

voltage threshold for maximum 

CAP amplitude is determined. 

CAP amplitudes were 

monitored throughout the 

duration of the incubation 

period, to confirm stable nerve 

health.  

Optical Imaging/Recording: Dye labeled axons were imaged in a region of nerve near the tibial recording electrode. The nerve 

was gently pressed to the optical glass of the chamber with low-tension silk strings attached to a small weight for imaging on 

an inverted microscope. Placement of the small ‘harp-like’ device did not affect the CAP. Fluorescence imaging was performed 

on a spinning disk confocal microscope (Intelligent Imaging Innovations, Marianas). A 515nm laser line was used to excite the 

Calcium Green-1. Pixels were binned (2x2) to improve the frame read-out time for fast imaging. To record calcium transients, 

time-lapse images were acquired at 12-20Hz (motor update rate), during which the nerve was stimulated by an electrical 

stimulator triggered via TTL pulses from the microscope. Fluorescence was imaged onto an EMCCD camera (Photometrics 

Evolve) through a 525/50nm emission filter. Images were collected with a 63X, 1.4NA oil-immersion objective lens. 

Photobleaching of the signal was kept minimal by the reduction of laser power and exposure, and any mild decay due to 

photobleaching was not removed.  

Prosthetic Hand Modification: The electronics in the original Bebionic v2 hand (RSL Steeper, UK) (Figure 5) were replaced 

with a custom motor controller system (Sigenics Inc., Chicago, IL) and included a central Arduino controller board and six 

Figure 4:  Nerve dye-loading, electrophysiology & imaging configuration 

Figure 3: Spatially selective photo-stimulation elicits differential vitals responses.  

(a-c) Regions (1-3) of 1040nm photo-stimulation within the cervical vagus nerve 

of an anesthetized ChAT-GCaMP6s mouse.  (d-f) Corresponding vitals responses 

to photo-stimulation; region 1 elicits an increase in heart rate and a decrease in 

oxygen saturation; region 2 elicits a decrease in heart rate and no change in 

oxygen saturation; region 3 elicits a decrease in oxygen saturation. 1040nm 

stimulus was applied for 4 seconds with 20 ms pulses at 20 Hz.   
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satellite boards referred to as ‘penny boards’ (as they were the size of a 

penny). Each penny board was connected by a four-wire I2C bus with each 

board associated with an individual finger for finger flexion/extension with 

two for the thumb to drive flexion/ extension and abduction/ adduction. For 

velocity control motor commands indicating the speed and direction of 

motion for the driven finger were sent from a Matlab script to the Arduino 

(SparkFun Electronics, Boulder, CO) which converted the serial commands 

into I2C commands. Position encoder values from the prosthetic finger 

motor were recorded simultaneously and converted to joint angle 

measurements post hoc. For the Bebionic the fingers can flex from 0-95o and 

run at a max speed of about 2 rads/sec. For position control, desired finger 

position is sent over the I2C bus to the motor controller and a local on-board 

PID loop handles positioning of the finger.  

Control Interface and Method: A standard laptop computer running 

SlideBook 6.0 software (Intelligent Imaging Innovations) took the raw time-

lapse images from the microscope and sent them to a custom Matlab program 

(Mathworks, MA) which calculated the intensity of the region-of-interest 

(ROI) on the selected axon and based on the 

computed value sent commands to the motor 

controllers of the prosthetic hand via a serial link. 

A setup function in the Matlab script established 

the serial communication between the computer 

and the prosthetic hand. A second function 

received the time-lapse captures from SlideBook 

and translated the image data into an optical signal 

by averaging nodal ROI pixel intensities in each 

frame. The change-in-intensity is the control 

signal-of-interest. We see a baseline intensity for 

zero firing rate and a 15-18% for a firing rate of 

125Hz. Since baseline is not constant, we set a 

threshold of 2%. This gives us our command 

signal range: for 0-125hz we expect a 2-18% dF/F 

which should map to 0-100% of our command 

signal for the motor. Initially we mapped the 

optical signal to the prosthetic finger velocity in 

an open-loop velocity control paradigm that is 

standard-of-care [12]. The hand was set up in a 

“cookie-crusher” configuration so single-site 

control could be used. In this case when the 

amplitude of the signal rises above the optical 

signal threshold the finger was driven in flexion at 

a speed proportional to the change-in-intensity. 

Velocity gains were adjusted to achieve a full 

range of motion.  

RESULTS 

An axon which fluoresced in response to the 

simulated motor command was selected. The 

calcium response originated at the center of the 

selected node-of-Ranvier and propagated bi-

directionally into the internodal region of the 

axon. The nodal region, which was used for the 

motor command signal, showed approximately 

Figure 5: (a) Commercially available Bebionic v2 

hand (b) Modified Bebionic hand used for finger 

actuation experiments. Custom electronics were 

installed in order to control individual motors within 

the prosthesis. The Bebioinc has motor encoders 

that can measure finger position and be used in 

closed -loop control.. 

Figure 6: Real-time prosthetic digit actuation by action potential evoked calcium 

fluorescence signal in a peripheral nerve axon. (a) Confocal images of a 

CalciumGreen-1-Dextran-loaded axon node-of-Ranvier used to control finger 

actuation, shown before, during and after the activity-induced fluorescent signal 

(scale bar 10μm). (b) Quantitative trace of the calcium-fluorescence signal in 

response to the 1s, 100Hz train of action potentials (black bar). (c) Prosthetic 

hand’s middle finger flexes and extends under control of the optical signal from 

panel b. Virtual red dot denotes the tip of the middle finger driven in the 

experiment. (d) Corresponding finger joint angle illustrates digit flexion 

occurring during supra-threshold optical control signal. 
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12% change (dF/F) in fluorescence intensity. This signal amplitude was 

comparable to that achieved in prior work for an action potential pulse train 

frequency of 100 Hz [12]. Since an open-loop velocity control paradigm was 

employed, the digit was driven in flexion for the duration of the supra-

threshold optical signal at a rate proportional to the signal intensity (about 1.5 

rads/sec). Upon cessation of the command signal the finger is driven in 

extension at max speed (2 rads/sec) until the hand is fully open, per the cookie-

crusher paradigm (Figure 6). 

Proportional Control was demonstrated using previously recorded signals 

collected for a range of action potential pulse trains frequencies which were 

then used post-hoc to drive fingers in a position-control paradigm. As 

characterized in earlier work [10] average fluorescence amplitudes of 

sustained stimulus are linearly modulated by the action potential pulse train 

frequency. Such graded signals therefore encode intensity of the motor 

command. The fingers flexed to a position proportional to the intensity change 

produced by action potential pulse train frequency which was modulated 

between 25-125Hz (Figure 7). 

While previous studies have optically stimulated peripheral nerve axons 

for functional modulation of motor units [13-15] using the light-activated 

ChannelRhodopsin2 (ChR2) there is an absence of literature describing the use 

of optically obtained signals from peripheral axon activity for device control. 

However, the range of action potential frequencies used to drive the prosthesis 

in this study is within a physiologically relevant range since action potential 

pulse train frequency typically varies between 15-500Hz (in the non-refractory 

range). The control signal was derived from a 1 second, 100 Hz action potential 

burst would likely correspond to a low-side motor command. The present experiments demonstrate the potential for read-out 

and control using an ex vivo model. In other work [11] we have demonstrated that similar signals (dF/F) can be obtained using 

a genetically encoded calcium indicator, GCaMP, with a retro-viral (rAAV) delivery. 

CONCLUSIONS 

Proof-of-concept for an optogenetic nerve interface is demonstrated by showing our ability to read-out signals at the 

axonal scale in real-time and apply it to the control of a prosthetic hand. Optical signals generated by frequency modulated 

action potentials in an axon were transduced to provide proportional prosthetic finger actuation. 
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Figure 7: Motor flexion of the prosthetic digit is 

graded by the action potential pulse train frequency 

of the optical calcium signal. (a) Graded calcium-

fluorescence transients in an axon node-of-Ranvier 
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frequencies. (b) Resulting finger joint angles of the 

prosthetic finger as driven with control signals 

from panel a. 
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ABSTRACT 

Current methods for motor unit (MU) based human-machine interfacing do not scale well with the expansion of 

output functionality. This is due to the high computational demands of the initial MU parameter extraction via 

decomposition of high-density surface electromyography recordings. We propose an alternative approach that relies 

on task-specific batch decomposition processes along with a MU subset selection step to address feature redundancy. 

Offline analyses were conducted using EMG and kinematics pertaining to 18 wrist/forearm motor tasks recorded from 

11 able-bodied subjects. The mutual information-based minimal Redundancy Maximal Relevancy (mRMR) feature 

selection framework was tested and compared to Maximal Relevancy (MR) and two arbitrary selection methods. 

Subset MUs were then used for joint kinematics estimation corresponding to those 18 motor tasks by three different 

regressors. The mRMR selection scheme was found to retain MUs with the highest predictive power. When the portion 

of tracked MUs was reduced to 25%, regression accuracy decreased by only 3.5%. 

INTRODUCTION 

The firing times of motor neurons are the most basic unit of neural drive responsible for instigating muscle force 

generation. Such information could be leveraged to facilitate more intuitive and dextrous human-machine interfacing 

(HMI). The application of blind source separation techniques on high-density surface electromyography (EMG) 

recordings has been previously used to estimate the motor unit (MU) firing times embedded within the surface signal 

[1], [2]. Such methods have been extended to online applications which permit real-time interfacing driven by the 

direct firing activity of MUs. So far, this has been demonstrated in control of up to 2 Degrees of Freedom (DoFs) [3], 

[4].  

Current methods for MU-based interfacing do not scale efficiently with the expansion of supported functionality 

due to the high computational demands of the initial decomposition phase. In particular, the gradient-based and fixed-

point iteration methods used to optimize separation vectors scale poorly with the significant increase in data that 

accompanies each supported function. We propose conducting this initial extraction of MUs in a task-wise manner 

with separate batch processes to leverage distributed computing resources and to reduce the overall initialization time 

of the interface. To address the resultant redundancy in extracted sources, a MU subset selection step is implemented 

using feature selection techniques. 

The feasibility of the proposed interfacing pipeline was analysed in cross-validation format using EMG from 18 

motor tasks pertaining to the single and pair-wise combined activations of three wrist/forearm DoFs. From the train 

data set, MUs were identified via task-wise batch decomposition and MU subset selection was performed. The 

minimal Redundancy Maximal Relevancy (mRMR) feature selection scheme proposed in [5] was tested along with 

Maximal Relevancy (MR) and two arbitrary schemes based on randomness and MU activity. From the test data set, 

the activities of subset MUs were extracted with an online decomposition algorithm and used for kinematics 

estimation. Results using three regression algorithms: linear regression (LR), multilayer perceptron (MLP) and kernel 

ridge regression (KRR) were obtained. Assessment of the selection criteria was made based on the changes to open-

loop estimation accuracy as subset sizes were reduced.  
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METHODS 

Subjects 

Eleven healthy subjects, seven male and four female, all right-handed, aged 26-34, participated in the experiment. 

The study was approved by the local ethical board of Aalto University and all participants gave their written informed 

consent in accordance with the Declaration of Helsinki. 

Experimental Protocol 

High density EMG was recorded from each subject’s dominant side with three 8x8 electrode matrices spaced 

evenly around the bulk of the forearm. The channels were sampled at 2048 Hz by a benchtop bioamplifier (OT 

Bioelettronica, IT). Wrist joint angles and rotation were recorded at a rate of 80 Hz with three wireless Inertial 

Measurement Units (IMUs) (Xsens Technologies B.V, NL) attached to the posterior sides of the upper-arm, mid-

forearm and hand. Subjects were seated upright with their recorded limb relaxed by their side. Three repetitions of 

single and pair-wise combinations of motions pertaining to wrist flexion/extension (FL/EX), radial/ulnar deviation 

(RD/UD) and forearm pronation/supination (PR/SU) were recorded with trapezoidal activation profiles of 2 s ramp 

time and 10 s plateau time resulting in a dataset of 18 motor tasks. Recordings and analyses were carried out using an 

in-house developed Matlab (MathWorks Inc, MA, USA) framework. Offline analyses were conducted in cross-

validation format where the training set comprised of two repetitions of each motor task while the test data was formed 

from the remaining repetitions. Initial MU extraction, subset selection, and estimator training were conducted with 

the train set while the pseudo-online decomposition algorithm was applied to the test set to simulate the real-time 

interfacing.    

Batch and Online Decomposition 

The batch decomposition methodology employed in this work follows that of [1] while the online decomposition 

algorithm is based on the methods proposed in [3], [6]. In brief, the batch algorithm sequentially estimates a set of 

separation vectors, 𝐁, that compensates for the action potentials of their respective MUs and de-mixes the source 

activities, 𝐒, from an extended EMG, 𝐙̃, that has been centered and then whitened with 𝐖: 

𝐒𝑐 = 𝐁𝑐
′𝐖𝑐(𝐙̃𝑐 − E[𝐳̃𝑐(𝑘)]𝟏)

 (1) 

where 𝟏 is a vector of ones of appropriate size, subscript 𝑐 ∈ {1, … , 𝐶} denotes the enumerated coding of a motor task 

and 𝐶 = 18 in this work. Peak detection on each source signal, then k-means++ binary clustering of the peaks gives 

a set of spike cluster limits, Ψ = {(ℎ𝑖𝑛 , 𝑙𝑜𝑛), 𝑛 = 1, . . , 𝑁}. Following a refinement step, sources are vetted by their 

silhouette (SIL) score which is analogous to a pulse-to-noise ratio and lagged versions of extracted sources are 

discarded. The pseudo-online decomposition algorithm thus applies the pre-conditioning and separation vectors to 

unseen data for source extraction while stored clusters inform the estimation of spike times. The schematic for this 

process is given in Fig 1B which also shows the computation of the decomposed spike count feature vector, 𝐱(𝑡), from 

windowed EMG, 𝐙(𝑡). 

MU Subset Selection 

A full feature matrix is first constructed by extracting the activities of all identified MUs over the full training 

data set. This is achieved by applying the online decomposition algorithm to extract the activities of MUs initially 

identified from individual motor tasks over the entire repertoire of training movements (Fig. 1A). To formulate the 

selection methods, it is convenient to define the activity of each MU as a random variable within set 𝐹 =
{𝑥𝑛 , 𝑛 = 1, . . , 𝑁}. The subset selection step now identifies a subset, 𝑆, based on some optimality criterion and future 

deployment of the online decomposition algorithm would only need to extract the activities of MUs within S. 

Under the MR selection scheme, the MUs whose activities share the highest mutual information with the motor 

task annotation, ℓ, are prioritized: 

max
𝑆⊆𝐹

∑ I(𝑥𝑛; ℓ).

𝑥𝑛∈𝑆

 (2) 

where I(; ) returns the mutual information between its argument variables. 

MEC 2022

71



  

Figure 1: (A) Initialization process of the proposed MU-based interfacing. (B) Schematic for batch and 

online decomposition techniques showing the parameters that are transferred. 

The mRMR scheme sequentially compiles 𝑆 where, in each step, candidate MUs are also penalized by the mutual 

information they share with MUs that have already been selected. The criterion to satisfy at each step now writes as 

max
𝑥𝑛∈𝐹−𝑆

I(𝑥𝑛; ℓ)

1
|𝑆|

∑ I(𝑥𝑛; 𝑠)𝑠∈𝑆

. 
(3) 

For comparative purposes, two naive selection schemes were also tested. The first is to select MUs by random 

while the second method prioritized MUs that were most active during the training movements. 

Regression Algorithms 

In LR, a linear mapping between 𝑆 and kinematic labels (𝐲) is established by the Penrose-Moore pseudoinverse 

method. For MLP-based estimation, single hidden-layer feedforward networks using the tanh activation function are 

trained via the Levenberg-Marquardt backpropagation algorithm with each DoF estimated by a dedicated network 

while the optimal hidden-layer node counts are obtained via grid search. With KRR, a mapping is formed by the inner 

products between samples projected to a higher dimensional kernel feature space. The radial basis function is 

employed. Two hyperparameters, the ridge regularization scale and the kernel spread, are optimized via grid search. 

Statistical Analysis 

Decoding accuracy was gauged by the coefficient of determination (R2) between estimated kinematics and ground 

truth. Repeated-measures ANOVA followed by Bonferroni-corrected pairwise comparisons were used to detect 

statistically significant differences between the different selection scheme and subset size combinations tested for each 

regressor.   

RESULTS 

On average, 20.3 ± 8.8 viable MUs were extracted via batch decomposition from the two training repetitions of 

each motor task.  

Decoding performances from the different subset selection scheme and subset size combinations are shown in 

Fig. 2. Statistically significant differences were detected amongst the subset selection-size combinations for all 

decoding algorithms. Apart from the LR results, mutual information-based selection schemes (MR/mRMR) prevented 

significant performance drops when the number of MUs extracted for estimation were reduced by 50%. 

Table I shows the average R2 values yielded with subset sizes reduced to 25%. Overall, mRMR-selected MUs 

retained the highest predictive power and resulted in the lowest performance drops (-3.5%) while randomized selection 

performed the worst (-14.8%). 
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Figure 2: Violin plots of estimation performance of different regressors, MU subset selection methods, and MU 

subset sizes. Light shaded areas represent probability density functions estimated by kernel density estimation, 

while darker shaded blocks show the 1st-3rd quartile range. Corresponding medians are indicated by black notches. 

Statistically significant differences with corresponding full MU set are indicated by asterisks. 

 

Table 1: Regression-based decoding performance (R2) at MU subset size = 25% 
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Full set 

LR MLP KRR Average 

0.73±0.07 0.76±0.06 0.82±0.06 0.77±0.07 

Random 
0.58±0.11 0.67±0.09 0.71±0.08 0.65±0.11 

-20.6% -11.7% -12.6% -14.8% 

Max Activity 
0.6±0.10 0.68±0.09 0.74±0.08 0.67±0.11 

-18.5% -10.1% -9.7% -12.6% 

MR 
0.63±0.09 0.70±0.09 0.75±0.08 0.69±0.10 

-14.6% -7.1% -7.8% -9.7% 

mRMR 
0.69±0.08 0.75±0.08 0.79±0.07 0.74±0.09 

-6.8% -0.08% -3.0% -3.5% 
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ABSTRACT 

The long-term goal of this research is to restore intuitive and proportional motor control to stroke patients with 
an assistive exoskeleton. Stroke is the leading cause of disability in the United States, with 80% of stroke-related 
disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current 
electromyographic-(EMG)-controlled assistive exoskeletons do not allow for fine force regulation. That is, current 
control strategies provide only binary, all-or-nothing, control based on a linear threshold of EMG activity. In this case 
study with one hemiparetic stroke patient, we show that state-of-the-art EMG control algorithms can provide 
proportional control of a bionic arm despite weak and spastic muscle activity. The participant completed a virtual 
target-touching exercise with an EMG-controlled bionic arm by attempting to grasp (close) or extend (open) their 
hand. The participant completed the task under two conditions, with EMG from their paretic arm and with EMG from 
their healthy, contralateral arm. For grasping, there was no statistical difference in task performance for the paretic 
and healthy arms, but there was a significant decrease in the EMG signal-to-noise ratio for the paretic arm. For 
extension, there was a significant decrease in both task performance and EMG signal-to-noise ratio for the paretic 
arm. Despite these differences, the participant was still able to complete the target-touching task with the paretic arm. 
These preliminary results show it is possible, for at least some patients, to provide proportional control of assistive 
devices using weak and spastic EMG. Importantly, information regulating fine force output is still present in EMG 
despite a visually immobile arm due to hemiparesis. Future work will validate these findings with additional stroke 
patients with varying presentations of hemiparesis and move into controlling upper-limb exoskeletons. 

INTRODUCTION 

Stroke is the leading cause of disability in the United States, with more than 795,000 people suffering from a 
stroke each year. Eighty percent of stroke-related motor deficits are in the form of upper-limb hemiparesis [1]. 
Hemiparesis makes it difficult to complete activities of daily living and thereby reduces quality of life and autonomy. 
Upper-limb exoskeletons controlled by electromyography (EMG) have been shown to assist patients with hemiparesis 
in activities of daily living [2]. However clinical upper-limb exoskeletons typically use a binary, “all-or-nothing” 
control algorithm that makes it difficult to perform fine motor activities such as manipulating fragile objects. Previous 
studies investigating proportional EMG control from stroke patients have focused on force (torque) control of an 
elbow exoskeleton [3] and robot-assisted wrist movement [4]. However few studies have investigated the feasibility 
of proportional EMG control of the position of the hand for stroke patients. 

Proportional control of myoelectric prostheses has been achieved through a variety of different algorithms, 
including k-nearest neighbors [5], support vector machines [6], Kalman filters [7], convolutional neural networks 
(CNNs) [8], [9], long-short term memory networks [10], and recurrent CNNs [11]. In this case study, we explored if 
a Kalman filter could also provide proportional control of a myoelectric prosthesis for a single patient with 
hemiparesis. We show that proportional control can be readily achieved using this widely-used algorithm despite 
significantly lower EMG signal-to-noise ratio and a visually immobile arm. We also show that, for at least some 
movements, the quality of the proportional control can be similar to that from healthy EMG. 

MEC 2022

74



METHODS 

Human Subjects 

This case study involved a single human subject. Informed consent and experimental protocols were carried out 
in accordance with the University of Utah Institutional Review Board. The participant was male, 44 years of age, and 
experienced a stroke four years prior to the study. At the time of the study, the participant had severe spastic 
hemiparesis on the left side of his body. The participant scored a 1 on the Manual Muscle Test, indicating no visible 
movement of the arm but a palpable tendon prominence and flicker contraction. The participant scored a 3 on the 
Modified Ashworth Scale, indicating a considerable increase in muscle tone that made passive movement of the hand 
difficult.  

Signal Acquisition 

Surface EMG (sEMG) from the participant was collected using a symmetric bilateral pair of custom EMG sleeves 
[8], such that each electrode roughly targeted the same muscle group across sleeves. EMG was sampled at 1 kHz and 
filtered using the Summit Neural Interface processor (Ripple Neuro Med LLC) as described in [7]. EMG features used 
for estimating motor intent consisted of the 300-ms smoothed mean absolute value on 528 channels (32 single-ended 
channels and 496 calculated differential pairs) calculated at 30 Hz, as described in [7].  

EMG signal-to-noise ratio (SNR) was calculated by taking the mean absolute value of the EMG signal during 
movement and dividing it by the mean absolute value of the EMG signal during rest. EMG SNR was calculated for 
the 32 single-ended channels (i.e., one SNR value per each electrode for the sleeves on the right and left arms). EMG 
SNR was calculated separately for grasping (closing the hand) and extension (opening the hand). 

Experimental Setup 

The participant was instructed to mimic preprogramed movements of 
a virtual prosthetic arm (MSMS, John Hopkins Applied Physics Lab) with 
either their healthy or paretic arm. sEMG was recorded while the participant 
mimicked those movements (Fig. 1). Preprogramed movements included 
hand grasping (simultaneous flexion of D1-D5) and hand extension 
(simultaneous extension of D1-D5). Each movement consisted of a 0.7-s 
rise time, 3-s hold time, and a 0.7-s return to baseline, as described in [7], 
[9]. The participant completed ten trials of each movement. This exercise 
was completed separately for the healthy arm and the paretic arm.  

EMG Control Algorithm 

The EMG control algorithm used in this study was a modified Kalman 
Filter (MKF) [7]. The MKF provides an efficient recursive algorithm to 
optimally estimate the probability of hand movement when the likelihood 
model (i.e., the probability of the EMG activity given current hand position) 
and prior models (i.e., the state model of how position changes over time) 
are linear and Gaussian. In the implementation presented here, the MKF 
predicts the instantaneous position of the hand based on EMG activity of 
the arm at the current time point. The main difference between this study 
and [7] is that no threshold was applied to the output of the MKF. 

Virtual Target-Touching Task 

To evaluate proportional control of both arms, the participant completed a target-touching task controlling the 
virtual arm and attempting to move it into a target window. In this task the targets were placed at 50% of the maximum 
flexion and extension. Importantly, training data for the MKF was collected at 100% of the maximum flexion and 
extension, and thus, the task provides a measure of how well control extrapolates to novel intermediate positions. For 
each trial, the participant was instructed to stay within the target window for 5 seconds. The participant was instructed 
to relax between trials for 2 seconds for the healthy arm and 10 seconds for the paretic arm. The targets had a ±10% 
error tolerance, such that the participant received visual feedback indicating when they were within the target window. 

 
Figure 1: Experimental Setup. Participants 
were instructed to mimic the preprogramed 
movements of the virtual arm with their 
healthy arm or paretic arm. EMG activity was 
recorded using a symmetric bilateral pair of 
custom 32-electrode EMG sleeves. 
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The participant completed 20 trials of hand grasping and 20 trials of hand extension for both the healthy and paretic 
arms. 

The root mean square error (RMSE) was calculated between the target window and the participant’s kinematic 
output, such that values within the target window resulted in an RMSE of 0. The percent time within the target window 
(PTT) was calculated as the total time that the participant’s kinematic output was within the target window out of the 
total duration of the task (five seconds).  

Statistical Analysis 

SNR, RMSE and PTT data were tested for normality using the Anderson-Darling test of normality. Paired t-tests 
were then performed between the healthy and paretic for each performance metric.  

RESULTS 

Paretic EMG had Lower SNR for Both Hand Grasping and Hand Extension  

EMG activity during instructed hand grasping was visually similar between the paretic and healthy arms (Fig. 
2A). In contrast, EMG activity during instructed hand extension was substantially less for paretic arm compared to 
the healthy arm (Fig. 2B). For both hand grasping and hand extension, SNR was significantly less for the paretic arm 
compared to the healthy arm (Fig. 2C).   

Proportional Control Possible for Both Arms, but Worse for Paretic Hand Extension 

The participant was able to complete the virtual target-touching task with EMG control from both their healthy 
and paretic arms. Kinematic output was similar between the paretic and healthy arms during instructed hand grasping 
(Fig. 3A). The average kinematic output was also similar between the paretic and healthy arms during instructed hand 
extension, however, kinematic output was less precise for the paretic hand, as evidenced by a larger standard deviation 
(Fig. 3B). For hand grasping, the participant had no significant differences between their paretic and healthy arms for 
RMSE (paretic arm 12.2% worse; Fig. 3C) and PTT (paretic arm 2.6% better; Fig. 3D). For hand extension, the 
participant’s performance was significantly worse for their paretic arm compared to their healthy arm; RMSE was 
128% worse (** p<0.01, paired t-test) and PTT was 52.4% worse (** p<0.01, paired t-test).  

Importantly, despite significantly worse performance with the paretic arm for hand extension, the participant was 
still able to control the hand proportionally and complete the virtual target-touching task. The RMSE and PTT values 
reported here are similar to those found with amputees (RMSE means ~0.1; PTT means ~0.5 (Citterman et al., MEC 
2022)) and healthy participants (RMSE mean ~0.15, PTT between 0.14 and 0.43) [12]. Thus, even the worst control 
the participant experienced was equivalent to that of other healthy participants. The participant was particularly excited 
about their ability to finely control the virtual bionic arm, despite the fact that his hand did not visually move. In a 
spontaneous moment of joy, the participant took out his phone to record a video of the virtual hand gently opening 
and closing. 

  
Figure 2. EMG activity from paretic and healthy arms during instructed hand grasping and hand extension. A) The average EMG feature 
(mean absolute value) of the healthy arm (blue) and the paretic arm (red) during instructed hand grasping (black line). Data show mean and 
standard deviation. B) The average EMG feature of the arm during instructed hand extension. C) SNR of the paretic EMG was lower than 
that of the healthy EMG for both movements. Data show SNR from the 32 electrodes for both the EMG sleeves on the paretic and healthy 
arms. Data show mean and standard error of the mean. ** p<0.01, paired t-test, n=32 electrodes.  
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CONCLUSSION 

This case study with one participant shows 
promise in advancing and improving control for upper-
limb exoskeletons for use after stroke. We specifically 
show that even though there are significant differences 
between the EMG signal between the healthy and 
paretic arms, widely-used myoelectric control 
algorithms can still extract useful information related 
to fine force regulation and provide proportional 
control in real-time. We also show that for at least 
some movements, performance can be equivalent to 
that of healthy EMG. Future work will extend this 
study to more participants and validate real-time 
proportional control with an exoskeleton manipulating 
fragile objects. 
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Figure 3. Performance of the virtual target-touching task for the healthy 
arm (blue) and paretic arm (red).  A) Participant’s kinematic output 
when attempting to perform a partial hand grasp (50% output). Data 
show the mean and standard deviation of the kinematic output across 
the 20 trials of the task. The green area represents the target window 
that the participant was attempting to remain within. B) Participant’s 
kinematic output when attempting to perform partial hand extension 
(50% output). C) The RMSE between the participant’s kinematic 
output and the target window was significantly greater for the paretic 
arm for hand extension (i.e., the paretic arm had significantly worse 
performance). No significant difference was found for hand grasping. 
Data show the mean and standard error of the mean across the 20 trials 
of the task. D) Similarly, the PTT was significantly less for the paretic 
arm for hand extension (i.e., the paretic arm had significantly worse 
performance). No significant difference was found for hand grasping. 
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ABSTRACT  

It is important for myoelectric control schemes to be robust to various non-stationarities in electromyography (EMG) 

signal such as unintended activations and contraction level variations. In order to address this limitation, the present 

study compared performance measures of two EMG processing pipelines with two filtering techniques: frequency 

division technique (FDT) and standard bandpass processing (Bandpass) in a simultaneous and proportional 

myoelectric control (SPEC) scheme for two contraction levels (medium and high). Twenty able-bodied participants 

(14 males and 6 females, age 23.4 ± 3.0) performed wrist movements (flexion/extension, rotations and combined 

movements) in two degrees-of freedom (DOF) virtual tasks. FDT had a mean completion rate (CR) of 95.33%, which 

was significantly higher than the SPB technique with a CR of 64.08% (p<0.001). FDT method performed significantly 

better in all other performance indices in at least one movement type. Furthermore, there was no significant difference 

in the performance of FDT between medium and high contraction levels, while there were such differences for 

bandpass filtering. This study showed that FDT is advantageous in regression based online myoelectric control as it 

generates a more accurate, robust and contraction level invariant scheme for performing prosthetic hand movements. 

This study is the first to use frequency-based features with a SPEC scheme and shows promise for more intuitive 

prosthetic devices.  

INTRODUCTION  

Myoelectric prostheses use EMG signals for performing prosthetic functions. Conventional control of a 

myoelectric prosthesis involves mapping the amplitude of EMG signals to the desired prosthetic function. Challenges 

with the direct control scheme such as EMG crosstalk have led to the use of pattern recognition (PR), a machine 

learning approach that classifies EMG features to activate different prosthetic functions [1]. Currently, the state-of-

the-art PR technique uses linear discriminant analysis (LDA) classifiers applied to a set of time domain (TD) features 

[2]. However, PR techniques only allow control of one DOF at a given time (sequential control) which is contrary to 

the natural control flow of the neuromuscular system. In order to achieve a more natural hand movement, simultaneous 

rather than sequential control is more desirable. Recently researchers have explored regression techniques, which 

allow for simultaneous and proportional control of the prosthesis [3, 4]. It has been found that linear regression (LR) 

performed superior to PR in an online closed loop setup [4]. The promising results of regression techniques has 

warranted further research to improve control of current prosthesis.  

However, regression and PR techniques demonstrate relatively poor performance in real-world conditions due to 

the non-stationarities in EMG patterns and the noise introduced from different sources [5]. These variations or the 

non-stationaries in EMG may be caused by several factors including variations in training muscle contraction levels 

[6] and activation of an undesired degree of freedom [7, 8] are critical. One filtering approach using a frequency 

division technique (FDT) was proposed to increase varying contraction levels  in PR-based myoelectric control [9], 

and this approach was demonstrated in a closed-loop online PR experiment [10], where. the control scheme with the 

FDT filter was found to be robust against varying levels of training contraction and it performed significantly better 

than the traditional band-pass technique. Further research with the FDT filtering on simultaneous and proportional 

myoelectric control (SPEC) scheme paired with FDT is warranted to corroborate findings in the PR-based myoelectric 

control scheme. Therefore, the purpose of this study was to compare the performance of the FDT and the traditional 

bandpass processing on a linear regression (LR) based online myoelectric control scheme while intact subjects 

completing virtual tasks. This study also examined the effects of varying training contraction level on the performance 

of the FDT based myoelectric control scheme to determine its robustness against force variation. 
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METHODS 

Frequency Division Technique (FDT) 

The FDT directly calculates the spectral power of various frequency bands of sEMG using discrete Fourier 

transform (DFT) by dividing the full bandwidth of sEMG signals into L segments.  For the ith segment, let fi,1 and fi,ni 

denote the frequency values of the two endpoints. The feature is defined as  

𝐷𝐹𝑇𝑖 =  𝐹 [∑ |𝑋(𝑓𝑖,𝑗)|
𝑛𝑖
𝑗=1 ], i=1,2,…L (1) 

where, X(·) denotes the magnitude of the FFT spectrum, F denotes a non-linear smoothing function. In the current 

study, F is the root operator is used with a value of 2/3. The whole frequency band of EMG (20-450 Hz) is subdivided 

into six (L=6) equi-width frequency bands (20-92, 92-163,163-235,235-307,307-378, and 378-450 Hz) [10].  

Protocol 

Twenty intact-limbed participants (6 females and 14 males) with a mean age of 23.4±3.0 years participated in the 

study. The study was approved by the University Research Ethics Board (REB 2018-079). The participants were asked 

to sit on a chair in an upright position with both of their upper limbs in a resting position. They faced a computer 

screen, at an approximate distance of 75 cm. Eight equally spaced (19 mm inter electrode distance) bipolar electrodes 

(Duotrodes, Myontronics, Inc) were placed at approximately 1/3 distal measured from the olecranon process to the 

styloid process of the ulna to cover the circumference of the forearm. A commercial wireless biosignal amplifier 

(Trentadue, OT Bioelettronica, Italy), sampled at 1000 Hz, was used to transmit the signals. The dominant forearm 

was used for the electrode placement.  

Feature Extraction and Testing 

The surface EMG signals were processed initially using the common averaging method [10]. This was followed 

by two filtering techniques for two separate analyses, the band-pass filtering and FDT. The Bandpass filtering involved 

applying a bandpass filter (second order, Butterworth) from 20 Hz to 450 Hz followed the TD feature set extraction 

[10]. For FDT, the signals from each channel were divided into specific frequency sub-bands. LR was used for the 

simultaneous and proportional scheme. The outcomes of the regression model were mapped to the virtual task.  

The experimental testing session consisted of two phases: 1) calibration phase and 2) control phase. The window 

size for processing was set to150 ms and the regression models provided an output every 50 ms. The calibration phase 

involved training a regression model using EMG signals with position labels of the cursor during wrist 

flexion/extension (DOF1) and hand pronation/supination (DOF2). In the calibration phase, the participants were 

instructed to follow the position of a cursor on a screen. In the training phase, the subjects performed two contraction 

levels: the wrist movements at the normal contraction level, i.e. ‘train-medium’, and wrist movements at a strenuous 

contraction level, i.e. ‘train-high’.  

From the data acquired in the training phase, a LR model were generated for each of the combination of the two 

contraction levels, i.e. train-high and train-medium and two filtering techniques: Bandpass, and FDT, resulting in four 

experimental sets in the control phase: medium-Bandpass, medium-FDT, high-Bandpass and high-FDT. In the 

subsequent control phase, the participants performed goal-directed tasks using the four LR models in a random order 

[10]. In each experimental session, 20 targets from each type of task group, termed type I, type II, and type III at 

 

Fig. 1. Left: Goal oriented tasks: type I (flexion/extension DOF only), type II (pronation/supination DOF only) and type III (combination 

of flexion/extension DOF and pronation/supination DOF). The grey arrow represents the desired position for the completion of the tasks. 

Right: Mean CR for varying contraction levels (train-medium and train-high) and different processing methods (Bandpass and FDT) for 

the three types of targets (type I, type II and type III). The error bars represent the standard error.  
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different locations were provided on the screen (Fig. 2). The targets in type I only require the activation of wrist 

flexion/extension (DOF1), targets in type II require activation of wrist supination/pronation (DOF2), and targets in 

type III requires activation of both DOFs. The participants were instructed to place the tip of the arrow in the targets. 

Instead of sequential articulation of each DOF as in a PR-based control scheme, a simultaneous articulation of both 

DOFs was used. To measure the performance of these tasks, the performance indices used were: 1) completion rate 

(CR), the ratio of number of successfully completed task to the total number of tasks in percentage 2) time to reach 

(T2R), time taken to reach a target in seconds 3) throughput (TP) ratio of task difficulty and task completion time in 

bits/s and 4) near miss (NM), number of times the cursor enters the target but exits before the completion of 300 ms. 

Kruskal Wallis (non-parametric test) was used to determine if the CR of the two filtering techniques were 

significantly different. Also, for the control participants repeated measures analysis of variance (ANOVA) was used 

to test for significant differences in mean performance indices (T2R, TP, NM) between FDT and Bandpass from 

successful trials. With significance resulting from the interaction of main factors the Bonferroni post hoc comparisons 

were performed to test significant differences in performance measures between FDT and Bandpass. For all the tests, 

level of significance was p<0.05. All the statistical tests were performed using RStudio 1.0. 136 (RStudio, Boston, 

MA). 

RESULTS AND DISCUSSIONS 

The mean CR of FDT was 95.33%, which was significantly higher (p<0.001) than Bandpass which had a mean 

CR of 64.08%. This indicates that FDT clearly outperforms the Bandpass. This was supported by the lower variability 

in CR for FDT compared to Bandpass, indicating less inter-subject variation. In addition, all participants performed 

equally well with FDT. The same training data was used to train both the processing/feature extraction methods. It 

was observed for most of the participants that while performing the Bandpass technique, the task arrow was 

unresponsive in at least one of four LR models. There was also frequent unwanted activation of the non-target DOF. 

For example, when an individual attempted a wrist extension there was undesired activation of supination as well. On 

the contrary, the FDT (CR>95%) was robust to unwanted activations and provided a more efficient control scheme. 

These activations have been briefly discussed by previous regression studies [7, 8], but there has been no detailed 

analysis on unwanted activations and it is crucial for further studies to research these non-stationarities and 

mechanisms of addressing them.  

The mean T2R was significantly lower (p<0.001) for two types of targets (I and III) with FDT than Bandpass 

(Fig. 3). The mean TP was significantly higher (p<0.001) for two types (I and III) with FDT than Bandpass (Fig. 3). 

The mean NM of only type I target was significantly lower (p<0.001) for FDT. The Bandpass performed significantly 

better (p<0.001) than FDT for type II targets. A lower NM implies a more accurate position control. For FDT, the 

T2R and TP values suggested that the participants performed type I (horizontal only) and III (horizontal and rotation) 

tasks more easily and at a faster rate. Also, for both techniques, the variability was observed to be consistent for T2R, 

TP and NM (Fig. 3) suggesting that the participants had equal performance for all target types and across contraction 

levels. The overall TP and T2R values found in this research were comparable to previous study [10], however the 

NM was found to be higher. A possible explanation for higher NM is for some participants, the task arrow was unstable 

at higher pronation and supination angles, thus the participant had to hold it for longer increasing the NM. The mean 

NM was still low enough to allow real time control and the participants were able to complete tasks.  

It was found that there were no significant differences in the mean values of any of the performance measures 

(CR, TP, T2R, and NM) between the train-medium and the train-high runs for FDT. For CR, the variability was lower 

 
Fig. 3. (From left to right) Mean TP, T2R and NM values for varying contraction levels (train-medium and train-high) and different 

processing methods (Bandpass and FDT) for the three types of targets (type I, II and III). The error bars represent the standard error. 
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for FDT than for Bandpass (Fig. 2). For T2R, TP and NM, the variability was found to be consistent across contraction 

levels for both FDT and Bandpass (Fig. 3). This demonstrates that the performance of FDT is robust to contraction 

level variations while training. This observation agreed with the findings in [10], which used PR-based methods with 

FDT and found no difference between performance measures of medium and high contraction level variations [10]. 

Previously it has also been found out that the power spectrum of some frequency bands are not affected by varying 

contraction levels [9]. For the testing phase, the participants could perform tasks with any contraction level (medium 

or high). This finding is very important as the participant’s control is independent of the contraction level performed 

during the training. A freedom of performing movements at a desired contraction level without any performance 

degradation would be beneficial for the prosthesis users to complete daily living tasks with limited errors. 

CONCLUSION 

The results from this study suggest that the proposed FDT performs significantly better than the Bandpass method 

in a LR-based control scheme. Also, the FDT technique is less variant to changing contraction levels. The two 

processing methods compared in the study used time domain (TD) features and frequency domain (FD) features. Most 

research studies to date have used the TD feature set. Results found in this study are promising and suggest a need for 

further research using FD features. The findings of this study directly relate to the robustness of FDT as a myoelectric 

control scheme which is critical for clinically viable advanced prosthetic control. In another research work (currently 

under review), the FDT technique demonstrated higher completion rates for individuals with trans-radial amputations 

compared to the Bandpass. Robustness against these non-stationaries allows users the freedom to operate a prosthesis 

at their desired contraction levels and prevents erroneous prosthetic functions. Thus, FDT in SPEC control scheme 

promises greater accuracy, robustness to varying contraction levels, and is more intuitive.  
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ABSTRACT 

Upper-limb amputees commonly cite difficulty of control as one of the main reasons why they abandon their prostheses. 
Combining myoelectric control with autonomous sensor-based control could improve prosthesis control. However, the 
cognitive and physical impact of shared control and semi-autonomous systems on users has yet to be fully explored. In this 
study we introduce a novel shared-control algorithm that blends proportional position control predicted from electromyography 
(EMG) with proportional position control predicted from an autonomous machine using infrared sensors embedded in the 
prosthetic hand’s fingers to detect the distance to objects. The user’s EMG control is damped in proportion to the machine’s 
prediction of an object’s position in relation to a given finger. The shared-control algorithm was validated using three intact 
individuals completing a holding task where they attempted to hold an object for as long as possible without dropping it. Shared 
control resulted in fewer object drops, 32% less cognitive demand, and 49% less physical effort (measured by EMG) relative 
to the participant’s EMG control alone. These results indicate that shared control can reduce the physiological burdens on the 
user as well as increase prosthetic control. 

INTRODUCTION 

Upper-limb amputees abandon prostheses at a high rate [1], [2], in part due to unintuitive and poor control [3]. One solution 
to improving prosthetic control is to automate the prosthesis using embedded sensors to aid in conforming the grasp to an object 
[4]–[7]. However, to date, autonomous prostheses have been designed to accomplish a specific task and are not necessarily 
adaptable to general use. Semiautonomous hands have been demonstrated to outperform human control when handling fragile 
objects [4] and can increase prosthesis contact area to a given object [6]. Although the benefits of shared control have been 
evaluated with respect to task performance, the impact of shared control on a user’s physiological state (i.e., cognitive and 
physical effort) has not yet been evaluated. 

In this study, we introduce a novel autonomous controller that predicts an object’s distance from the fingers using 
embedded proximity and pressure sensors in the fingertips. We also introduce a novel shared-control algorithm that attenuates 
a user’s EMG output based on the prediction of the autonomous controller. We validate the shared-control algorithm using a 
holding task, in which participants attempt to continuously hold an object while completing a secondary detection response 
task (DRT). We show that shared control improves grasp security and decreases the physical and cognitive burden on a user 
compared to that of EMG control alone. Making a hand more dexterous, while increasing its ease of use, may ultimately 
decrease prosthetic hand abandonment and increase patient quality of life. 

DESIGN 

Autonomous Controller 

 A left-handed TASKA hand (TASKA, Christchurch, New Zealand) was retrofitted with fingers containing pressure 
and infrared proximity sensors (Point Designs LLC, Lafayette, CO, USA) [4], [8]. A multilayer perceptron (MLP) was designed 
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with 10 hidden layers to predict 
object distance from the infrared and 
pressure sensors. Training data was 
collected by oscillating the thumb 
towards and away from white 3D-
printed objects in the shape of a 
cylinder, cube, and cone. The 
ground-truth distance from the object 
for the training data was computed by 
measuring the kinematic position of 
the finger upon initial contact with 
the object (i.e., when pressure was 
first recorded), and then retroactively 
using the difference between that 
kinematic position and the current 
position to determine the current 
distance to the object. Example 
training data can be seen in Fig. 1. 
For training the MLP, 70% of the 
total data was randomly selected as the training data, 15% was selected for validation data, and the remaining 15% was used 
for testing. During run-time, the kinematic prediction from the autonomous controller was computed as the sum of the current 
position of the thumb and the predicted distance to the object. 

METHODS 

Human Testing 

Three healthy intact participants (21.67±0.58 years old; 33% female) were recruited for this study. All the participants 
were right-hand dominant. None of the participants had prior experience with myoelectric prostheses. Informed consent and 
experiment protocols were carried out in accordance with the University of Utah Institutional Review Board. 

Signal Acquisition 

Surface EMG from the participants was collected using a custom EMG sleeve [9]. EMG was sampled at 1 kHz and filtered 
using the Summit Neural Interface Processor (Ripple Neuro Med LLC) as described in [10]. EMG features used for estimating 
motor intent consisted of the 300-ms smoothed mean absolute value (MAV) on 528 channels (32 single-ended channels and 
496 calculated differential pairs) calculated at 30 Hz, as described in [10]. The embedded fingertip sensor readings were 
sampled at 30 Hz and passed through a median filter with a time window of 10 samples. Sensor drift was removed from the 
pressure sensors using a high-pass filter that was toggled on and off by the sensor crossing a threshold. 

Shared Control 

The human position goal, 𝑢௛, was computed using a modified Kalman filter (MKF) [11]. The MKF was fit to surface EMG 
(sEMG) data collected during five preprogrammed trials of full-flexion pinch between the thumb and index fingers and five 
trials of full extension of the same digits. Both control techniques only affected one degree of freedom in the form of a pinch 
grip between the thumb and index finger. To form the pinch grip, the index finger was set to a constant position while the 
thumb was flexed from 0 (felly extended) to 1 (fully flexed). Control of the hand was shared between the human position goal 
from the MKF, denoted  𝑢௛, and the machine position goal as computed by the MLP,  𝑢௠. Both human and machine control 
are normalized to a range of zero to one. The shared goal,  𝑢௦, was then computed as the following: 

 𝑢௦ =  𝑢௠ +  𝑢௛(1 − |𝑢௠|)          (1) 

This effectively attenuates the human’s control of the hand in proportion to the remaining range of the digit. A minimum 
threshold was set such that the thumb would only move if the infrared sensor rose above a given value.  Once contact was 
detected, the machine predictions were frozen until the pinch was released by the human controller. An sEMG toggle was used 
to trigger the shared-control algorithm [4]. The sEMG toggle switched the user between shared control and human control 
based on the output of the MKF. For example, if the MKF predicted that the human was attempting to extend to a position 

 
Figure 1: Labelled image of sensorized prosthetic hand (Left) and a subset of the training data used to 
create the autonomous controller (Right). Training data was collected using a cube, cylinder, and cone. 
The thumb was programmed to approach each object 20 times. Each approach consisted of 
incrementally moving the thumb forward, then waiting approximately 3 s before moving the thumb 
forward again. After contact, the thumb retracted from the object in a similar fashion. The autonomous 
controller is more accurate when the object is closer. That is, the predicted distance (red) more closely 
aligns with the ground-truth measured distance (black) as the distance becomes smaller. 
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greater than 50% of the extension range, the output 
would be switched to the human-only control scheme. 
To return to the machine-control state the user had to 
flex 1% of the flexion range. This aided the 
participant in releasing the object without altering the 
evaluation of the shared controller’s performance 
during object grasping. 

Task & Performance Metrics 

The participants donned the prosthesis using a 
custom bypass socket [11]. The participants then 
completed a holding task in which they were 
instructed to use the prosthesis to pick up a white 3D-
printed cube and hold it for two minutes without 
dropping it. If the object was dropped the participant 
was instructed to pick it up as quickly as possible and 
continue the task. The number of times the cube was 
dropped during a trial was recorded as a measure of 
grip security. The participant completed the holding 
task for four trials using human control and shared 
control in a pseudo-randomized counter-balanced 
format. While completing the holding task, the 
participant also simultaneously completed a tactile 

detection-response task (DRT) to measure their cognitive load [12]. The DRT requires the participant to push a button in 
response to a small vibrating motor on their collar bone. Both the response rate (i.e., how often they respond to the vibratory 
stimuli) and response time (i.e., how long it takes to press the button after a vibratory stimuli) are used as direct measures of 
cognitive load. The EMG MAV on the 32 electrodes was also recorded during the hold task as an indicator of the physical 
effort (muscle activity) needed to complete the task. Data was aggregated across all participants and screened for normality. 
Pairwise comparisons between the human control and shared control were then performed using a paired t-test for parametric 
data or Wilcoxon rank-sum test for non-parametric data. All values are reported and shown as mean ± standard deviation. 

RESULTS 

Shared control decreases cognitive and physical demands while increasing grip security 

Combining human and machine control allowed the participants to hold the object more reliably than when only human 
control was used. Only one drop was recorded under shared control, whereas up to eight drops were recorded under human 
control, with a median of three drops per trial for human control (Fig. 2A). Shared control resulted in no significant difference 
in the response rate of the DRT compared to human control (63.19 ± 13.87% vs 63.58 ± 11.43%, respectively). However, 
participants had significantly faster response times to 
the DRT when using shared control, indicating less 
cognitive demand (0.719 ± 0.056 s vs 0.444 ± 0.022 
s, respectively; p < 0.001, Wilcoxon rank-sum test; 
Fig. 2B). Furthermore, participants had significantly 
lower EMG activity with shared control than with 
human control (24.10 ± 10.48 vs 47.13 ± 17.53; p < 
0.001, paired t-test; Fig. 2C).   

Error in human-control is dampened in shared-
control 

Using the shared-control algorithm, the 
participants were able to hold an object more reliably 
while using less physical and cognitive effort. 
Example traces of the human control, machine 
control, shared control, and contact position from a 
single participant are shown in Fig. 3. The thumb 

 
Figure 2: Task performance, cognitive effort, and physical effort required for the 
human control and shared control. A) Shared control improved grasp security as 
indicated by less total drops. B) Shared control also reduced cognitive demand, as 
evidenced by a significantly lower response time for the DRT (p < 0.001, Wilcoxon 
rank-sum test). C) Shared control also reduced physical effort, as shown by a 
significant decrease in the EMG MAV (p < 0.001, paired t-test). Bar plots show mean 
± standard deviation. Box plots show median, inter-quartile range, and most extreme 
non-outlier value. Red pluses denote outliers. 

 
Figure 3: Example traces of the machine control (blue), human control (red), and 
shared control (purple) from the first 20 seconds of a shared-control trial. The shared-
control signal is the result of calculating the goal using Eq. 1 using the human and 
machine control signals. The position at which the hand made contact with the object 
(i.e., pressure was detected) is shown by the green line, so any position goal above 
the green line increases the grip force while positions less than the green line indicate 
the grip releasing the object. Times when the human goal is below the green line 
represent times in which the participant would have dropped the object without the 
shared control. 
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made contact with the cube at a position of 0.3, and, although the machine did not give a perfect prediction, the thumb moves 
to a position near this goal. By starting closer to the object, and adding the two control techniques together, the shared algorithm 
is able to decrease the physical effort of the user. The human control also has a high degree of variability, and variations in the 
human goal below the point of object contact, would have resulted in multiple drops of the object. By scaling the human control 
based on the machine prediction, we effectively decreased the variability in the kinematic position. This in turn results in greater 
performance and less physical effort, which then allow the user to focus on other tasks. 

DISCUSSION 

In this study we demonstrated that sharing control between a human EMG decoder and an autonomous controller can 
benefit the user by decreasing their physical and mental effort while increasing their grip security on a given object. Decreasing 
the complexity and effort of use of upper-limb prostheses may ultimately lead to a reduction in prosthesis abandonment. Being 
able to hold an object securely without considerable mental or physical strain comes naturally to someone with an intact hand, 
but is still a challenge for users of upper-limb prostheses. 

In future iterations of this design, we intend to scale the human control logarithmically rather than linearly. Scaling the 
EMG decoder output in a logarithmic fashion follows a biomimetic paradigm and would grant users finer levels of control with 
smaller objects. We will also train the MLP predictions of object distance using continuous data as opposed to the discrete 
steps used for this work. The MLP estimates were found to overestimate the object distance when the digit was in motion. 
Providing a more accurate machine estimate would lead to a shared-control algorithm capable of handling fragile objects. We 
also intend to expand the shared-control approach presented here to multiple DOFs. We anticipate that shared control 
implemented across all the digits will further increase the benefits seen here when working with complex objects by reducing 
the variation in grasping force between digits.  
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ABSTRACT 

One of the most exciting developments in the field relates to the mechatronic advances which have enabled the 

creation of dexterous terminal devices, wrist rotators and powered elbows. However, their clinical impact has been 

limited by a lack of effective myoelectric control strategies. To address this challenge, we have developed a novel 

control strategy based on the Postural Control algorithm, which we call the Glide Controller. In this paper, we describe 

the first clinical fitting of the Glide system and present qualitative results on the fitting outcomes.  We also discuss the 

implications of this control strategy from a patient and clinician perspective. 

INTRODUCTION 

The disparate progression of myoelectric control algorithms and their associated multi-functional prosthetic 

hands has caused mismatched technologies to become available to people with upper limb amputation.  Several multi-

functional myoelectric prosthetic hands are available today; however users are only able to access a small subset of 

the total number of grip patterns which are possible [1].  The prosthetic hands typically come with several methods 

for accessing different grip patterns including 1) myoelectric triggers, 2) buttons on the hand, or 3) gesture control [2], 

[3], [4].  These switching mechanism can require up to three different steps to switch between the current grip and the 

desired grip. Not surprisingly, many amputees find this process cumbersome and non-intuitive [5], [6], [7].    

Moreover, using muscle triggers such as a co-contraction to control multiple grip patterns or movements is considered 

slow, cognitively demanding and unintuitive [5], [6], [7].   

An intuitive control method, called pattern recognition, is emerging, however, several hurdles remain. Many 

researchers (including ourselves) have turned to pattern recognition of multichannel myoelectric signals in order to 

develop more intuitive control of advanced prostheses including the control of grasp patterns of multi-functional hands 

[8]. Pattern recognition algorithms seek to correlate patterns of surface EMG activity with a given intended movement 

command [9], [10]. Correlation is determined by calibrating a machine learning algorithm with labelled training 

examples in the form muscle activity recorded while the user holds a static posture. Because these patterns are 

representative of 

natural behaviors 

prior to amputation, 

control of the 

prosthesis via 

pattern recognition 

is intuitive and 

potentially 

increases the 

number of 

controllable DOFs. 

The most 

significant 

challenge for 

pattern recognition 

algorithms is that 

they require highly 

consistent and 

noise-free EMG 

signals [6]. This is 

A. B.  

Figure 1: A. Exemplary Glide domain where the EMG electrodes (1-3) are mapped in a 

radially fashion.  Various hand grips are placed into wedges around the domain with a 

null state surrounding the origin (white).  B. The real-time EMG activity is present with 

the yellow vectors and the resultant vector (red) determines the hand or wrist function 

that is selected. 
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particularly true as the number of degrees of freedom (DOF) in prosthetic hands increase. Thus, it would be highly 

preferable to develop a solution that can work without any calibration or extensive subject training. 

Here we present an alternative control strategy, the Glide myoelectric control algorithm, which maps the 

electromyographic (EMG) signals to a radial mapping of prosthetic hand grips or wrist functions (Figure 1).  The 

Glide algorithm is based upon our previous work on the Postural Control algorithm in the Biomechatronics 

Development Laboratory [11]–[13].  The basis of Glide algorithm is the vector summation of EMG signals from 2-8 

EMG electrodes which is manifested as a “Glide vector” which is projected onto the Glide domain.  The domain can 

be partitioned into “wedges,” which are correlated to single hand grips or wrist functions.  A given wedge’s inner 

radius determines the onset threshold for a movement.  Once the Glide vector exceeds the onset threshold, the 

amplitude of the Glide vector is proportionally mapped to the velocity of the wedge’s associated movement until the 

vector reaches the outer radius of the wedge, which corresponds to the maximum velocity of the movement.    The 

mapping of the Glide domain is adjustable so that wedges can be placed anywhere in the domain, the inner and outer 

radius of the wedge can be independently changed, and the arc-length of each wedge can be made larger or smaller.  

These customizations allow for strong independent EMG signals to command certain functions and co-activity of 

other EMG signals to control other functions.  The customizability ensures that the system can be fit to myoelectric 

prosthetic users with a broad range of abilities.  Here we present a case study of a subject with trans-radial amputation 

who utilized the Glide algorithm with both hand and wrist function in a take-home trial. 

METHODS 

A single subject was recruited by clinicians at Handspring Clinical Service office in Salt Lake City, UT.  The 

subject presented as a recent trans-radial amputee with a long residual limb length (8.5”).  This subject was a novice 

myoelectric prosthetic user and had no prior experience with a myoelectric device outside of clinical sessions.  The 

subject was originally amputated at a wrist disarticulation level but underwent a surgical revision for shortening to 

remove a neuroma and to improve the shape of the residual limb for prosthetic fitting.  In addition, the surgeon 

salvaged and relocated the flexor pollicis longus muscle closer to the surface in order to provide an additional myosite 

for surface EMG control.  The subject was fitted with a three-site Glide system where the electrodes were placed over 

the following muscles: 1) flexors digitorum, 2) extensors digitorum, and 3) flexor pollicis longus.  The Element 

electrodes (Infinite Biomedical Technologies LLC, Baltimore MA) were integrated into the custom self-suspending 

HTV silicone prosthetic socket, the FlexCell battery and the Glide control system was integrated into the outer 

prosthetic socket.  The TASKA prosthetic hand (TASKA Prosthetics, Christchurch, New Zealand) and wrist rotator 

(Motion Control, Salt Lake City, Utah) were utilized to provide the user with multiple hand grasps as well as wrist 

pronation and supination.   

The Glide algorithm was configured to include the following hand grips and wrist motions: 1) hand open, 2) hand 

close, 3) wrist pronation, and 4) wrist supination.  The gains for each of the electrodes were adjusted independently.  

EMG smoothing was enabled.  A feature called walls was also enabled which prevents activation of a different 

hand/wrist function until the signal drops below the on threshold of the active Glide domain wedge. 

After the subject enrolled in the study, the prosthetic system was fitted to the subject and tuned for best 

performance by the prosthetist.  Training on use of the system was conducted by the prosthetist.  The subject completed 

a battery of outcomes measures including 1) The McGann Feedback Form, 2) The OPUS: Satisfaction With Device 

and Services, 3) OPUS Upper Extremity Functional Status, and 4) OPUS: Health Quality of Life Index.  The subject 

went home with the Glide system for a total of 4 weeks.  Outcome measures were collected at initial fitting, two weeks 

post-delivery, and four weeks post-delivery.  The outcome measure results and qualitative comments from the subject 

and prosthetist are provided here. 

RESULTS 

Experimental Results: The outcome measures were collected during the initial fitting, two-week session, and four-

week session.  Table 1 depicts the outcome measures over those sessions.  The McGann Client Feedback Form results 

indicate an increase in prosthetic satisfaction across the four-week trial from 53% during the initial fitting to 97% 

satisfaction during the four-week session.  The OPUS results provided a mixed description of the patient’s satisfaction, 

functional status, and health quality in that not all outcome measures improved across the four-week session.  

Nonetheless, the single-subject quantitative results for the first-time use of a new technology is an encouraging step 

MEC 2022

87



forward and suggests that the Glide algorithm can be an affective tool for the control of multi-functional prosthetic 

hands. 

Table 1. – Outcome measure results across the initial fitting, 2-week session, and 4-week session 

Experimental 

Session 

McGann Client 

Feedback Form 

OPUS–Satisfaction 

with Device 

OPUS-Functional 

Status 

OPUS–Health 

Quality of Life 

Initial fitting 53% 39 46 74 

2-week session 88% 36 30 78 

4-week session 97% 38 43 73 

 

Qualitative Results: The subject owns an excavation company and has a history of operating heavy machinery.  

This type of equipment utilizes joysticks with multiple switching mechanisms to manipulate the implements of the 

equipment.  This experience was very useful for translating into prosthetic control.  He was quoted as saying, “In the 

beginning I thought it was pretty easy. And the more and more as I go with this I recognize it is capable combining 

functions to do something different.  So I’m getting better at it.”  His responses to the McGann Feedback forms 

indicated that as he became more familiar with the system his satisfaction increased.  During the take home trial period 

the subject was fit with a Glide system with three electrodes.  During one of the follow-up appointments he commented 

that he wanted to try adding a fourth electrode into the system as he stated, “I have the signals” referring to his ulnar 

deviators.  This fourth electrode will be added in the future and further data will be collected. 

DISCUSSION 

Technological Progress: The Glide system is the next logical iteration of a traditional two site myoelectric control 

system.  It has clinical implications for individuals who have had a conventional amputation surgery, but also has 

significant added benefits when combined with more contemporary amputation surgical methods such as TMR.  From 

a clinical perspective it bridges the gap between a two-site myoelectric system and a full pattern recognition system.  

Selecting among multiple movements can be simpler than using EMG triggers such as co-contraction, double and 

triple impulses.  While “joystick” control of the wrist is the most straightforward method to access different wedges 

within the Glide domain, it is also possible to use intuitive motions for control.  It also bridges this gap from a cost 

standpoint as well.  Fabrication is no more difficult or complex than a traditional two site system.  The space 

requirements for the system are also minimal within the socket.  Processing power consumption is low with no 

appreciable reductions in battery life as compared to a two-site system. 

Clinical Perspective: There were some initial challenges in the clinical fitting as this was the first clinical 

application of the Glide algorithm.  Part of the challenge was in learning how to refine and fine tune the arc lengths 

of the wedges, adjusting the gains and thresholds, enabling and disabling the walling features, and then proper 

queueing and instruction for the user.  However, the technology proved to be quite adaptable and flexible.  Initially 

the subject was sent home with only hand functions on the primary axis and the wrist functions as secondary fast rise 

actions like what a four-channel control system would be.  This was challenging for him.  Given his lack of myoelectric 

control experience he would inadvertently activate the wrist functions quite often, which proved to be frustrating to 

the participant.  In particular when the wrist would start rotating unexpectedly and get into a unnatural anatomical 

posture, his whole ability to control the prosthesis would degrade.  He expressed that this was because once the 

prosthesis was in an unnatural posture his sense of embodiment of the prosthesis completely disconnected.  

Fortunately, with an update to the control algorithm, wrist functionality was added as a primary function instead of as 

only a fast rise secondary function.  Doing so allowed for defining additional Glide domain wedges for wrist control 

which the subject was able to activate with a high level of accuracy. 

Initially when training the subject, he was queued to try and visualize moving his phantom limb as would be done 

in pattern recognition training and calibration.  This worked to some degree, however it was never really consistent.  

The resultant vector would end up moving around quite a lot and not stay in one clearly defined area.  It took some 

time to recognize that this queueing would not work and that another strategy needed to be developed.  It was 

determined that we need to help the users conceptualize that the electrodes function somewhat like a joystick.  It is 

best to put the primary functions right on the axis of the electrodes on the Glide domain.  Once the subject has good 

control of each independent axis, then they can be queued to start trying to make combinations of contractions between 

adjacent electrodes on the Glide domain.  The goal being to help the subject generate a resultant signal that is exactly 
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in the middle of the pair of electrodes on the Glide domain.  In doing so, with three electrodes six separate functions 

can be controlled.  With four electrodes, eight separate functions could be controlled.  By also allowing for fast and 

slow rise the potential exists to control double the amount of functions.  The Glide system is not limited to the number 

of regions that could be created.  Therefore, as an individual gains improved control in combining the signals, 

additional wedges can be added to the Glide domain to add additional functions.  This will allow the individual to be 

able to access specific grip patterns of multi-articulated terminal devices as well as additional wrist functions such as 

flexion and extension. 

Unlike in pattern recognition systems where the process of classification is somewhat obscured from the user and 

the prosthetists, the Glide system allows the prosthetists and the user of the technology to visually see on the Glide 

domain what the function will be without any ambiguity or uncertainty.  It also allows the prosthetist to easily adjust 

the Glide domain mapping and ensure easier selection of each function.  By increasing the arc of the wedge on the 

Glide domain and adjusting the on and maximum thresholds, the prosthetist can effectively accommodate for accuracy 

and fatigue of signals.  Clinically, it was found to be very helpful to be able to adjust this tolerance.  Past clinical 

experience with pattern recognition systems has shown that sometimes throughout the day as a user’s muscles fatigue 

their classification accuracy may diminish resulting in unwanted behavior.  The Glide domain interface allowed for 

the clinicians to adjust the wedge size and shape in order to avoid this pitfall.   

Clinical Implications: A system built on the Glide algorithm provides a novel advance to traditional myoelectric 

control.  When set up with only two electrodes it functions in the same way that a conventional two site system would.  

However, it provides a significant clinical advantage for controlling an increased number of functions and motions of 

a prosthesis when additional electrodes are added into the system.  This is accomplished without time consuming 

additional fabrication and minimal additional hardware and processing power.  Increasingly, the possible controllable 

motions of a prosthesis outnumber the inputs that a user has available thereby requiring complex switching strategies 

or signal processing algorithms in order to activate them.  The limitation on a user’s ability to benefit from these 

additional motions is correlated to the number of inputs available to them.  Future applications could see connecting 

non-EMG inputs into the Glide system in combination with EMG signals.  This could help individuals with limited 

surface EMG sites, such as higher level amputees, also benefit from this technology.   

Because the Glide system allows for more granular control, the amount of time programming was longer than for 

a conventional two site system or for a pattern recognition system.  There is a learning curve to the system, but over 

time with further fittings and documentation of outcomes a guideline of best practices will be able to be developed.  

This will be critical for widespread adoption by clinicians. 
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ABSTRACT 

Historically, experiments involving motor learning-based control schemes use real-time feedback. It is unclear, 

to what extent previous results are attributable to transient performance effects caused by closed loop adaptive 

processes, rather than motor learning. To investigate, we performed two long-term experiments. Experiment 1: a lab-

based study compared use of continuous and delayed visual feedback to assess long-term stability of skill retention; 

we trained ten participants using either continuous or delayed visual feedback over four consecutive days with a 

follow-up probe on week three. Experiment 2: a home-based study validated that the training protocols introduced in 

experiment one can train forward models outside of the laboratory in an appropriate period. Three participants trained 

over five days with a goal of maximising proficiency via bespoke training structures. 

INTRODUCTION 

Motor learning theory claims that the feedback provided to the outcome of an action can have a large influence 

on learning [1]. While providing real-time feedback can yield rapid performance gains, this effect is often short-lived, 

and ultimately disappears with time or when feedback is withdrawn [2,3].  

Previous learning-based control schemes have typically provided concurrent visual feedback of the participant's 

control signals real time [4-6]. However, users do not generally have access to real-time closed loop feedback of the 

state of their control signals [7]. Typically, users only receive terminal feedback as their prosthetic device moves [8], 

which is relatively slow [9]. Therefore, it is crucial that users can consistently reproduce the correct muscle activity 

for control in the absence of concurrent feedback. This necessitates that control tasks be learned, internalised, and 

retained. In this context, online concurrent feedback may contribute to closed loop control [10] allowing participants 

to develop dependencies on continuous visual cues to generate muscle activations [3]. Feedback dependencies may 

inhibit retention of the forward models necessary for motor-learning based methods of prosthesis control [2]. 

Abstract decoding is a learning-based control scheme that exploits the human nervous system's plasticity to 

resolve the mapping of muscle activity to prosthesis output [4]. Abstract decoding places learning requirements on the 

user, in return offering reduced overall algorithmic complexity in sensor requirements; the overall promise being the 

restoration of multiple hand grasps using two electrodes without cumbersome sequential switching [5]. 

 

Figure 1: The MCI task. (a) The 2D myoelectric interface space. Cursor position shown in green. (b) A 

representative cursor trajectory from basket to target. Thick cursor mark denotes the hold period. (c-d) Task timing 

structure for the Concurrent and Delayed conditions, respectively, denoting cues and the move, hold and playback 

periods. Dashed traces correspond to the ‘blind’ control input window. Solid traces indicate when the cursor’s 

motion was visible during a trial. 
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METHODS 

Ethics 

All participants gave informed written consent. Ethical approval was granted by the local committee at Newcastle 

University (Ref: 20-DYS-050). 

Myoelectric Task 

The myoelectric task involved moving a cursor within a 2-dimensional MCI outlined in Figure 1. Normalized 

muscle activity recorded from two control sensors determined cursor position on the interface [5]. The amplitude of 

activity in each muscle determines the cursor position along a single axis. Trials were ∼1.5 s long and comprised two 

periods of equal length, referred to as move and hold. On target presentation, the aim was to keep the cursor within 

the target bounds. Figure 1b shows a representative trial from a proficient user. At the end of a typical trial, a score 

was presented.  

Feedback Conditions 

The availability and timing of feedback during a trial was manipulated depending on the trial condition. Each 

group either experienced concurrent or delayed feedback of their control input. In the concurrent condition, the cursor 

position always reflected the normalized muscle activation levels of the EMG channels used for control at that time 

frame. In the delayed condition, all feedback was withheld until active control input had ceased. At the end of the trial, 

the cursor activity was played back to the participant at the same rate as it occurred.  

The trial block structure contained two distinct trial structures, acquisition blocks and retention blocks. 

Acquisition blocks refer to the learning conditions, either Concurrent or Delayed. Retention of ability was assessed 

using zero feedback trial blocks, where no cursor or score feedback was presented over 40 consecutive trials. Retention 

was assessed at the start and end of each day.  

Experiment 1 

Ten participants did four days of training in the laboratory plus a follow-up after an 18-day hiatus. Retention tests 

were carried out at the start and end of each training session. Each acquisition block consisted of 80 trials.  

Experiment 2 

Three participants did five days of delayed feedback training with a bespoke structure. Each training session 

lasted approximately an hour, including setup and breaks. Each training block consisted of 60 trials. 

Measures 

A ‘decoder score’ metric was used post-hoc to compare MCI task score to classification accuracy of machine 

learning based systems. The predicted target was calculated offline as the first target the cursor dwelled within 

consecutively for 240 ms [12]. If the predicted and presented targets agreed a decoder score of one was obtained, 

otherwise a score of zero was received.  

RESULTS 

Experiment 1 

A comparison of average retention scores in the Concurrent and Delayed groups is shown in Figure 3a. Average 

acquisition scores in the Concurrent and Delayed groups are shown in Figure 3b. In the Concurrent group, acquisition 

scores increase but no equivalent trend is observed during retention tests over the four days of training. In contrast, 

the Delayed group retention scores follow a similar trend of improvement with acquisition.   

Significant differences in performance were found in the retention tests performed on day four, first test 

(Concurrent: 0.32 ±0.12; Delayed: 0.55 ±0.15; p < 0.05), final test (Concurrent: 0.28 ±0.13; Delayed: 0.62 ±0.15; p < 

0.05). There was no significant difference in initial retention performance during the follow-up session (Concurrent: 

0.27 ±0.12; Delayed: 0.48 ±0.15; p = 0.1). However, after two refresher acquisition blocks the Delayed group retention 
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was significantly higher than the Concurrent group on the final block (Concurrent: 0.34 ±0.13; Delayed: 0.63 ±0.12; 

p < 0.05). 

Experiment 2 

Data tracking the participants’ average score over the five days of training are shown in Figure 3. Confusion 

matrices of  each participant’s first and best block decoder score are shown in Figure 3b and c, respectively. 

 

 

 

 

Figure 3: Overview of home-based training performance. (a-c) Refer to a column of plots, each row relates to 

the performance of a single participant. (a) Participant mean scores and cumulative blocks experienced over 

the five days of training. Error bars correspond to the standard error of the mean. (b-c) Decoder score heatmaps 

of the first and best delayed feedback blocks, respectively. 

Figure 2: The effect of the feedback conditions on retention and acquisition. Days are separated by alternating 

gray and white backgrounds. Points show the block mean average. Horizontal axes are temporally aligned such 

that points are plotted chronologically. (a) Group retention scores over the initial four days of training and the 

follow-up session. (b) Group acquisition scores over the initial four days of training and the follow-up session. 
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CONCLUSION 

Myoelectric control schemes based on motor learning have historically provided concurrent feedback during 

training and assessment of participant control acuity. While impressive performance can be achieved with the 

assistance of such feedback mechanisms, this has little meaning unless the user has access to a similar feedback loop 

during real control. This is problematic when considering that, in the real-world users typically do not have access to 

concurrent feedback of their control input. Our results show that with appropriate training it is possible to learn and 

consistently reproduce distinct abstract muscle contractions in the absence of concurrent feedback. This suggests no 

algorithmic assistance or additional hardware is necessary to restore four grasp classes to existing dual-site control 

devices. 

Retention of skill can only be measured in the absence of the augmented feedback that was provided during 

training. To show that retention can be achieved with appropriate training, we collected on the largest closed-loop 

myoelectric control datasets that we are aware of i.e. 32,000 trials. Figure 1a-b shows that although lower scores are 

initially obtained with delayed feedback, the skills learned are retained over days. Conversely, the higher performance 

gains observed with concurrent feedback dissipates during retention tests. Figure 3c shows the equivalent of 4-class 

confusion matrices which reflect the upper bounds of what is possible with this abstract decoding interface. 

Preliminary experiments are showing similar control rates in prosthesis control. 
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ABSTRACT 

Computer interface tasks have shown that motor learning based control schemes enable multi-grip myoelectric 

control with only two electrodes. However, it is unclear if this control transfers to prosthesis use. Here, we test if 

training abstract control with delayed feedback transfers to prosthetic control in a 7-session experiment. Two 

participants completed five 1-hour training sessions in between a pre- and post-test. The abstract decoding scheme 

ensured participants had access to five grips (power, tripod, point, lateral, and hand open), and the prosthetic tests 

included a grip matching task, the modified box and blocks task, and a pick and place test. Both participants increased 

their grip matching score, reaching a classification accuracy of 93.33% and 98.33%. They also increased the amount 

of blocks they relocated in the modified box and blocks test, completed the pick and place test faster, lowered the 

amount of objects they dropped, and increased the accuracy of the grips they selected during the pick and place test. 

These results show that a motor-based training strategy of abstract control transfers to prosthetic use, enabling five 

grips with only two electrodes. 

INTRODUCTION 

Myoelectric prosthesis are commonly controlled with a standard agonist/antagonist direct control, while some 

devices with additional electrodes use pattern recognition (PR) [1]. Studying the use of these devices in a home 

environment shows that most prosthesis users only use 3 or 4 grips, with the most common grip accounting for around 

50% to 80% of use [2], [3].  Simon and colleagues found that users had slightly more configured grips for direct 

control (4.8) than PR (3.8) when using their prosthesis at home [3], providing more functionality with less hardware 

requirements. However, accessing all grips in direct control requires users to cycle through the grips with mode 

switching, making the control cumbersome. 

Abstract control, a motor learning based control scheme, allows myoelectric users to access multiple grips without 

mode switching, using only two electrodes [4]. We have previously shown that people with a limb difference can learn 

abstract control [4], and that training with delayed feedback allows people to retain this skill [5], [6]. Here, we test if 

the skill gained during a home-based computer interface task transfers to prosthetic control. Participants took part in 

lab-based pre- and post-tests, and completed five 1-hour training sessions in their home environment. 

METHODS 

Participants 

Two participants (2 female) who are able bodied and free from neurological or motor disorders were recruited. 

The study was approved by the local ethics committee at Newcastle University (ref: 20-DYS-050), and participants 

provided written informed consent prior to the start of the experiment. 

Experimental setup 

Participants performed a range of myoelectric control tasks, all based on two-channel abstract control. Two EMG 

electrodes were placed on the extensor carpi radialis and flexor carpi radialis. Signals were acquired using a custom 

network-enabled myoelectric platform [7]. The platform enables streaming of EMG data over Bluetooth Low Energy 

to a PC running the AxoPy Python library, allowing real time myoelectric control. Muscle signals were smoothed 
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using the mean absolute value (MAV), with a window length of 750ms. Muscle estimations were updated at a rate of 

50Hz.  

Abstract control allows participants 5-class myoelectric control (4 movement classes + hand open) with the use 

of only 2 electrodes. Shortly, EMG channels are calibrated for each participant, where normalized activity for each 

channel is: 

ŷ = (y – yr) / (yc – yr) 

where ŷ is the normalized muscle activity, y the MAV,  yr the activity when the participant is at rest, and yc represents 

a comfortable contraction. The normalized activity of both muscles determines the position of a cursor within a 2D 

V-shaped interface [4]. For this experiment, the V-shaped interface was divided in 4 targets, each representing a 

specific grasp. From left to right, the targets represented the following grips: ‘power’, ‘tripod’, ‘pointer’, and ‘lateral’. 

Once the prosthesis was closed, hitting any of the targets resulted in the prosthesis returning to the ‘hand open’ state. 

Experimental design 

The experiment consisted of 3 main stages: a pre-test, training phase, and post-test. The pre- and post-test 

consisted of the same tasks. 

Pre- and post-test: Participants wore a transradial bypass socket [8], fitted with the Touch Bionics robo-limb 

prosthetic hand, throughout the experiment. At the start of the test, both EMG channels were normalized as described 

above. Subsequently, participants completed 2 blocks of 60 trials to familiarize themselves with the abstract 

myoelectric control interface. In these blocks, a target was presented at the start of each trial, and the participants could 

see the cursor moving based on their muscle activity. Once the cursor was in contact with or inside a target for 750ms, 

the trial was completed. If the participant reached the intended target, this was considered a ‘hit’.  

The main prosthesis control experiment consisted of three parts: 

- Grip matching task: participants were presented with a target on the screen, similar to the familiarisation 

phase. However, during the target matching task, no feedback was presented to the participant, thereby testing 

the retention of skill [6]. Each participant completed 2 blocks of 60 trials. 

- Modified box and blocks test (MBB): participants completed 5 trials of the MBB test [9]. When participants 

grabbed more than 1 block in a single movement, the additional blocks were removed from the results.  

- Pick and place test: four objects, each associated with a specific prosthesis grip, were placed on a 2x4 grid 

on a table in front of the participant, with a 15cm distance between grid point. Participants were instructed to 

move all objects forward from right to left, after which they placed them back on the grid points closest to 

them from left to right. Participants repeated the trial 4 times. When participants selected the wrong grip, 

participants were told to open the hand and try again. If they selected the wrong grasp 3 times, participants 

were told to move on to the next object. Next to the time it took to complete the trials, the amount of 

repetitions to a grasp, and the amount of objects that were dropped were recorded. 

Training: In between the pre- and post-test, participant completed five 1-hour training sessions, spread over 1 

week. During these sessions, participants completed an abstract control task in their own home, without wearing a 

prosthesis. At the start of the first training session, the EMG channels were normalized as described above. This 

calibration was used throughout the rest of the training. During the training, participants performed a delayed abstract 

control task, as described in [5]. Participants performed blocks of 60 trials, and were told to complete as many blocks 

as felt comfortable during their training time. 

Due to the limited amount of participants, no statistical tests were performed at this time. 

RESULTS 

Training 

Participant 1 (P1) completed 36 training blocks, while participant 2 (P2) completed 35 blocks. P1 reached a 

maximum hold score of 97.07%, while P2 reached 95.05%.  
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Pre- and post-test 

The results of the grip matching task are presented in Figure 1. Training allowed P1 to increase her performance 

from 44.16 ± 49.66% to 93.33 ± 24.94%, while the score of P2 increased from 74.17 ± 43.77% to 98.33 ± 12.80%. 

These scores represent the performance without any visual feedback. Subsequently, each trial lasted until the 

participants selected a grip, and the chosen grip was recorded. Figure 1b shows the confusion matrices for this task. 

In the pre-test, participants were able to select the lateral and power grip, the grips associated with the corner targets 

of the abstract interface, but they had difficulties selecting the grips associated with the two middle targets. Training 

allowed them to select these targets as well. 

Both participants increased the amount of blocks they picked up during the MBB post-test, from 5.2 ± 1.47 to 8.2 

± 0.75 and from 8.2 ± 1.67 to 8.8 ± 0.98 for P1 and P2 respectively. They also increased all measures during the pick 

and place post-test: they completed the trials faster (P1: 109.69 ± 2.92s to 68.71 ± 8.58s; P2: 69.99 ± 8.64 to 55.50 ± 

7.05s), had to repeat less grips per trial (P1: 4.5 ± 3.20 to 2.00 ± 1.00; P2: 2.25 ± 0.83 to 1.00 ± 0.71), and managed 

to not drop any objects during the post test (pre-test: 0.5 ± 0.5 for P1, and 0.25 ± 0.43 for P2). 

Figure 1: Results of the grip matching task. (a) Hit rate and completion time for pre- and post test, split up by participant. (b) 

Confusion matrices of pre- and post-test for both participants. 

Figure 2: (a) Results of modified box and blocks test. Completion time of trials (b), the amount of objects participants dropped per 

trial (c), and the amount of times participants had to repeat a grip per trial due to initially selecting the wrong grip (d). 
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CONCLUSION 

This paper shows that abstract myoelectric control, trained by performing a computer interface task, translates to 

prosthetic control. We designed a training protocol based on delayed feedback, allowing participants to retain their 

skills when no feedback is available, or when using a prosthesis. As a result, participants were able to reliable control 

five grips (hand open + four closed grips) with 2 electrodes, suggesting prosthesis users could have access to the same 

amount of grips without the need for additional hardware or mode switching. Currently, we only have data for two 

participants. However, due to the improvement in all functional tasks for both participants, we expect our full dataset 

to show the same pattern. 
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ABSTRACT 

State-of-the-art transradial prostheses can provide intuitive and proportional myoelectric control by training an 
algorithm to correlate surface electromyographic signals from the residual forearm muscles to intended movements 
of the amputated hand. One training paradigm, “mimicked training,” relies on amputees mimicking a prosthetic hand 
with their missing hand such that the corresponding muscle activations are correlated to the preprogrammed 
kinematics of the prosthetic hand. A second training paradigm, “mirrored training,” relies on unilateral amputees 
mirroring their contralateral hand with their missing hand such that the muscle activations are correlated to the 
kinematics of the contralateral hand (determined via a motion capture). Prior work with intact participants 
demonstrated that the kinematics of a given hand are more closely related to that of an individual’s contralateral hand 
as opposed to the preprogrammed kinematics of a prosthesis. This abstract continues our investigation into the training 
data for myoelectric prostheses by exploring the impact of these training paradigms on real-time prosthetic control 
with amputees completing a functional task. For one out of three participants, mirrored training significantly improved 
task performance. These preliminary results demonstrate that mirrored training may provide more dexterous control 
through task-specific, user-chosen training data. These results can guide myoelectric training for proportional and 
dexterous control. 

INTRODUCTION  

The current standard of care for upper-limb amputees is unsatisfactory and, as a result, up to 50% of upper-limb 
amputees abandon their prostheses, citing poor and unreliable control as a primary reason. One approach to providing 
more intuitive and reliable control is to leverage supervised machine-learning algorithms that correlate residual muscle 
activity to motor intent. These supervised machine-learning algorithms require a training session in which a patient-
specific training dataset is collected. The training dataset consists of synchronized muscle activity and the intended 
kinematic positions of the prosthesis.  

To date, most research has focused on improving the machine-learning algorithm [1]–[8]. However, the quality 
of the training data is also a critical component of the run-time performance of machine-learning algorithms [1], [2], 
[9]. There are two widely used approaches (i.e., training paradigms) to collecting training data for prostheses. One 
training paradigm, herein referred to as “mimicked training”, relies on amputees mimicking preprogrammed 
movements of a prosthesis with their missing hand such that the corresponding muscle activations are correlated to 
preprogrammed kinematics of the prosthesis. A second training paradigm, herein referred to as “mirrored training”, 
relies on unilateral amputees mirroring their contralateral hand with their missing hand such that the muscle activations 
of the missing hand are correlated to the kinematics of their intact contralateral hand (determined via motion capture). 
Our prior work with intact participants demonstrated that the kinematics of a given hand are more closely related to 
that of an individual’s contralateral hand as opposed to the preprogrammed kinematics of a prosthesis [9]. This 
suggests that mirrored training provides more accurate training data and therefore should provide better prosthesis 
control than mimicked training.  

Here, for the first time, we specifically tested whether or not mimicked or mirrored training would lead to 
improvements in real-time prosthetic control. Using two widely used algorithms, a linear Kalman filter and a non-
linear convolutional neural network, we compared the performance of mimicked and mirrored training with amputees 
performing the Clothespin Relocation Task (CRT) [10]. We show that there is minimal difference in the subjective 
workload of each training approach and that user preference varies. However, we also show that the training paradigm 
may have significant impact on task performance for some participants. These results imply amputees should be given 
a choice between both paradigms or that a combination of the two may yield best control. 
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METHODS 

Human Subjects 

A total of three transradial amputees with prior myoelectric experience were recruited for this study. Two of three 
participants were male and all participants were between the ages of 55 and 65 years old. Informed consent and 
experimental protocols were carried out in accordance with the University of Utah Institutional Review Board. 

Training Data Recording 

Training data for the 
machine-learning algorithms, 
was collected across a total of 
four training sessions. 
Participants performed two 
sessions (1.5 minutes each) of 
mirrored and mimicked 
training respectively Fig 1. 
Prior to the training sessions, 
participants were instructed to 
perform the CRT with their 
intact hand to understand what 
movements would be necessary 
to complete the task. 
Participants were instructed to 
only perform two movements: 
open/close of the hand (simultaneous flexion/extension of D1-D5) and pronation/supination of the wrist. Participants 
then donned the prosthesis (LUKE Arm, DEKA), and performed a session of mirrored training at their own pace using 
self-selected movement patterns. Training data from this first mirror-training session was used to train an algorithm 
and participants were allowed to temporarily control the prostheses. The participant then performed a second self-
directed mirror-training session. The same two stage training process was then repeated for mimicked training. 

Signal Acquisition 

Infrared hand images of the contralateral limb were converted to 3D hand coordinates using custom MATLAB 
software. Joint angles were calculated based on an orthogonal palm vector.  A total of two joint angles were calculated 
for the contralateral hand: D2 flexion/extension and wrist pronation/supination. The joint angle of D2 was used to 
measure grasping (i.e., simultaneous flexion/extension of D1-D5). Joint angles in the training data were normalized 
from -1 (maximum extension) to 0 (rest), and from 0 to 1 (maximum flexion) for each mirror-training session. The 
rest position of each joint was determined by the average angle while the participant relaxed for 15 seconds prior to 
each training session. 

Surface electromyography (sEMG) was recorded from the surface of the residual limb using a custom EMG 
sleeve [11]. Thirty-two monopolar sEMG electrodes were sampled at 1 kHz using Micro2+Stim Front-Ends and a 
Summit Interface Processor (Ripple Neuro LLC). The 300-ms smoothed Mean Absolute Value (MAV) was calculated 
at 30 Hz for the 32 monopolar electrodes, as well as for all possible differential pairs (i.e., 496 differential pairs) [5]. 

Machine-Learning Algorithms 

A total of two machine-learning algorithms were used in this study. The first was an eight-layer convolutional 
neural network (CNN). The CNN predicts kinematic position based on a spatiotemporal “image” of sEMG activity 
over the last 10 samples in time, described in more detail in [1]. The CNN utilizes convolution to learn complex 
spatiotemporal relations within EMG activity that correlate to kinematic position. The second algorithm used in this 
study was a modified Kalman filter (MKF), as described in [5]. The MKF provides an efficient recursive algorithm to 
optimally estimate the position of the bionic hand when the likelihood model (i.e., the probability of EMG activity 
given the current kinematic position) and prior models (i.e., the state model of how kinematics change over time) are 
linear and Gaussian. The inclusion of prior information about the system state enables an efficient recursive 

 
Figure 1: Overview of the mimicked training (left) and mirrored training (right) for collecting training 
data for myoelectric prostheses. During mimicked training, the user is watching a prosthesis move 
while simultaneously mimicking the movement of the prosthesis with their phantom limb. During 
mirrored training, the user performs bilaterally mirrored movements, such that the motion of their 
intact contralateral hand mirrors that of their phantom limb. 
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formulation of the machine-learning algorithm and effectively smooths noisy estimates in a mathematically principled 
way.  

Modified Clothespin Relocation Task 

      The CRT provides a simple way to assess the ability of individuals to simultaneously grasp and rotate their wrist. 
The CRT involves moving a clothespin from a horizontal bar to a vertical bar. Clothespins are placed eight inches 
down the length of the horizontal bar and 8 inches up the vertical bar. If the participant drops the clothespin or takes 
longer than one minute the attempt is considered a failure. 

Participants were instructed to complete the CRT with the prostheses under four different conditions: 1) using the 
CNN trained with data collected via mirrored training, 2) using the CNN trained with data collected via mimicked 
training, 3) using the MKF trained with data collected via mirrored training, 4) using the MKF trained with data 
collected via mimicked training. Participants performed the task six times for each of the four aforementioned 
conditions. The four conditions were tested in pseudo-randomized counter-balanced blocks to minimize order effects. 
During each block, participants were given eight attempts to move the clothespins. A block was finished after three 
successfully transfers or if all eight attempts were used. After the final block for a given condition, the participants 
completed the NASA Task Load Index (TLX) survey of subjective workload as well as a survey of embodiment 
adapted from [12]. At the end of the experiment, participants were asked to rate the four decodes from best to worse. 

Data Analysis 

Data were screened for normality. A two-way analysis of variance (factors: algorithm and training paradigm) was 
performed for each participant individually. No significance differences were observed for the algorithms, so a 
subsequent pooled analysis was performed to look at the effect of training paradigm. Because the number of completed 
clothespin transfers varied based on success rate, an unpaired t-test was used to compare between the mimicked-
training and mirrored-training data. 

RESULTS 

Mirrored Training Can Improve Speed on the CRT 

We saw no significant difference between 
mimicked training and mirrored training on the overall 
success rate of transfers for the CRT. However, in 
general, mirrored training decreased the transfer time 
on the CRT for two of the three participants, although 
this was only significant for one of the three 
participants. Participant one saw a 12% improvement 
in speed with mirrored training (p = 0.19, unpaired t-
test), participant two saw a 57% improvement in speed 
with mirrored training (p < 0.05, unpaired t-test), and 
participant three saw a 5% decrease in speed with 
mirrored training (p = 0.68, unpaired t-test; Fig 2). 

No Detectable Difference in Subjective Workload or 
Embodiment between Mimicked Training and Mirrored Training  

Subjective workload during the training sessions was comparable between mimicked training and mirrored 
training (Fig 2). Mimicked training has a slightly lower subject workload score for participants one and three, but none 
of the differences in subjective workload were greater than the minimum detectable change of 15 points [13]. 
Similarly, there were no significant differences or meaningful trends in the embodiment scores between the training 
paradigms. User preference between the training paradigms also varied. Participant one favored mimicked training, 
participant two favored mirrored training, and participant three had no preference. 

DISCUSSION 

Task-specific and accurately labeled training data is critically important for algorithm performance. Here, we 
compare the impact of two different training paradigms on the run-time performance of two commonly used machine-
learning algorithms for use on a real-world functional task. Overall, we that subjective workload was similar between 

 
Figure 2: Differences between mimicked training and mirrored training 
during the CRT. Subjective workload varied among participants, but no 
differences were greater than the minimum detectable change. Transfer 
time decreased with mirrored training for participants one and two, but 
this trend was only significant for participant two. 
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the training paradigms and that user preference varied. Mirrored training is capable of providing significantly better 
prosthetic control algorithm, but this improvement is unique to individuals.  

Prior work showed that mirrored training provides more accurately labeled kinematics than the mimic approach 
[9]. The results presented here suggest that the more accurately labeled kinematics can also translate to improved run-
time prosthetic control. We hypothesize that the benefits of more accurately labeled kinematics from mirrored training 
will become more pronounced with more complex machine-learning algorithms and more complex task. 

The results presented here suggest that users should be given a preference in the training paradigm. However, 
there are several other important factors to consider when selecting a training paradigm. For example, mirrored 
training is only available to unilateral amputees and requires additional motion capture equipment and calibration to 
ensure accurate kinematics. That said, the work presented utilized a Leap Motion (Ultrahaptics) that cost less than 
$100 USD, requires low computational power and no extensive technical knowledge to use. The ability to allow users 
to collect their own self-selected training data could prove useful when training on complex activities of daily living. 
Task-specific training has been shown to improve performance on activities of daily living [2]. Furthermore, this 
approach empowers amputees to be control of their personal data and the type of movements they can perform with 
their bionic limb. 

The ability of mirrored training to significantly improve run-time performance for some participants warrants 
further investigation. Future work should replicate these findings with additional participants, multiple training 
sessions and more complex tasks to more precisely quantify the impact of training paradigm on run-time prosthetic 
control. 
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ABSTRACT 

Electromyography is the gold-standard among sensors for prosthetic control. However, stable and reliable 
myocontrol remains an unsolved problem in the community. Amid improvements currently under investigation, one 
focuses on alternative or complementary sensors. In this study, we compare different techniques, recording surface 
and deep muscle activity. Ten subjects were involved in an experiment in which three different modalities were 
attached on their forearm: force myography, electro-impedance tomography and ultrasound. They were asked to 
perform wrist and grasp movements. For the first time, we evaluate and compare in an offline analysis these three 
different modalities while recording several hand gestures.  

INTRODUCTION 

Although surface electromyography (sEMG) has been used for decades in myoelectric control, it is subject to 
several drawbacks, such as sweat, electrode shift, muscular fatigue, or cross-talk among others [1]. Possible 
alternatives are being investigated in order to potentially replace or complement sEMG. For instance, in [2], it was 
shown that force myography (FMG), which is based on the deformation of the forearm due to muscular contractions, 
provides a more stable signal compared to electromyography. Although there are of course still some steps to go 
before integration, FMG showed a higher separateness of clusters and a higher accuracy when compared to sEMG. 
However, both sEMG and FMG are surface techniques, meaning that they record information mostly from surface 
muscles. Indeed, even though FMG indirectly contains some information about deeper muscle activity, these two 
techniques are still considered surface modalities. Deeper acquisition sources could therefore potentially provide 
important missing information. For example, ultrasound (US) imaging has already been evaluated for myocontrol with 
positive results for single finger movements [3]. Another deep sensing modality has also gained interest in recent years 
due to the search for alternatives to sEMG: Electrical Impedance Tomography (EIT). In medical EIT, particularly for 
myocontrol of the hand, a certain number of electrodes are placed around the forearm and a micro non-invasive 
alternating current is applied to one of them while the others measure bioimpedance. This process is repeated by 
applying the current in each electrode, in turn, until completion of the circle. The collected measurements can be 
reconstructed into a tomographic image using a back-projection algorithm [4]. The technique has already shown that 
it can be used to discriminate different hand movements offline with good classification accuracy using a support 
vector machine algorithm [5] EIT has also been integrated in an armband together with sEMG [6]. 

In this paper, we describe an experiment comparing FMG, US and EIT and discuss their potential for myocontrol 
applications. Ten subjects were fitted with the three modalities simultaneously and asked to perform wrist and grasp 
movements. To the best of our knowledge, this is the first time these three modalities have been compared in an 
experiment. The results show that US is always within the first two best performing algorithms for each hand/wrist 
gesture.   
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MATERIALS AND METHODS 

Experimental setup 

The EIT system used in this experiment was developed by the University of Siegen [7]. It consists of 16 electrodes 
placed around the forearm and provides 256 raw values. Its output frequency was approximately 2.7Hz. Post-filtering 
and processing to reconstruct the tomographic image were performed using the EIDORS library [4]. 

FMG data were collected using a custom-made armband with a Velcro strap and 10 force sensitive resistors 
developed at DLR [2]. The data were filtered with a second-order Butterworth low-pass filter with a cut-off frequency 
of 1Hz and saved at 94.2Hz. FMG was preferred over EMG due to the potential interference with the EIT system, 
which would have injected microcurrents into the same area where the EMG sensors would have recorded electrical 
muscle activity. 

The newly developed portable US system was developed by the Fraunhofer IBMT [8] and is one of the smallest 
systems available for ultrasound imaging, as the probe is flat and circular, unlike the normally bulky probes of medical 
systems. The 1161px by 162px B-mode displayed image was streamed into our software and stored at a frequency of 
approximately 5.1Hz. A bird’s eye view of the experiment can be seen in Figure 1(A). 

 

      
Figure 1: (A) Bird’s eye view of the experiment. (B) Zoom on the modalities. 

The three devices were placed in the following order from proximal to distal: EIT, FMG and US, as shown in 
Figure 1(B). Both the EIT and FMG systems were sending the data to our Interactive Myocontrol software via 
Bluetooth while the US device sent its data via USB. 

Subjects and experimental protocol 

Ten people (8 men, 2 women, 32.5 +/- 6.3 years old) took part in this experiment. Half of the subjects wore the 
sensors on their left arm, and the other half on their right arm. A sequence consisted of eight actions: rest, power, 
point, precision (tridigital), wrist flexion, wrist extension, wrist supination and wrist pronation. After a familiarisation 
phase, three repetitions of the sequence followed. All subjects signed an inform consent form and the experiment was 
previously approved by the DLR Work Ethical Committee. 

The subjects sat in front of a table and placed their elbow on the table so that the arm was in line with the shoulder 
and the forearm formed an angle of about 90° to the upper arm, with the palm facing the side of the body. A 3D hand 
model on a screen indicated which hand movement had to be performed. For each action 2 seconds of data were 
recorded, with up and down phases lasting 1 second each and a further 2 seconds of non-captured rest between each 
action. For each subject and each repetition, the order of the actions was randomized. 

Data analysis 

The machine learning used for the analysis was Ridge Regression (RR), as it has the advantage with high-
dimensional (HD) data that combined movements are possible without having to be trained, as was the case with HD-
FMG [9]. The hyperparameters were evaluated for each subject using cross-validation. 

For each modality, different feature selection methods were chosen for comparison. Each modality was rescaled 
between 0 and 1. The 255-feature vector of EIT data was compared with restored images from different reconstruction 
algorithms of the EIDORS library. The first two methods use a basic solver using unfiltered back-projection. This is 
one of the simplest algorithms for reconstructing an EIT image. The second method uses additional artificially 
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generated data compared to the first one. The third method is the Gauss-Newton approach with one-step iteration: it 
is the most commonly used for back projection in clinical and experimental publications. US data cannot be processed 
directly in the RR algorithm due to its size and must be reduced by feature selection algorithms. The first feature 
selection algorithm for US is Region of Interest Gradient (ROI-G) [10]. It has already been used successfully in 
experiments on US [11] and HD-FMG [9]. After some preliminary tests, a square of 40px with a step size of 30px 
was chosen as ROI. The other feature selection algorithms consisted of rescaling the matrices to a smaller size by 
selecting one row in n with n in {14, 20, 25, 30} as the different step sizes. For all methods, the features were amplified 
by a factor of 10 and filtered through a second-order Butterworth low-pass filter with a cut-off frequency of 1Hz. 

In order to compare the accuracy of the individual feature selection method, the normalized root mean square 
error (nRMSE) was calculated. This was averaged across all subjects, using the first two repetitions as the training 
samples and the last repetition as the test set. We also performed a comparative analysis of cluster separability for 
each modality. For each subject and each cluster pair ൫𝐶௜ , 𝐶௝൯, we evaluated a numerical index called the Safety Index 
[11], which indicates how separated two clusters are in a given input space. The Safety Separateness Index of the 
clusters was calculated as follows: it is the ratio between the maximum standard deviation of cluster 𝐶௜  (evaluated 

over all dimensions) and the Euclidean distance between cluster C୧ and 𝐶௝ , 𝑠௜௝ =
௠௔௫(ఙ೔)

ቚห஼೔ି஼ೕหቚ
 where σ୧ is the standard 

deviation of cluster 𝐶௜  and 𝐶 is the mean of cluster 𝐶. In addition, the average number of principal components to 
reach 99% of the variance of the input space was calculated across all subjects. 
 

RESULTS 

The nRMSE of RR for each modality was calculated action-wise as shown in Figure 2. The results were evaluated 
statistically across all actions using Friedman test for non-parametric data, showing that the nRMSE was statistically 
significantly different across the different modalities X2(9) = 40.8, p < 0.0001, with a moderate effect size W=0.453. 
The post-hoc Wilcoxon paired test could not conclude between which methods after the Holm correction for multiple 
comparisons. 

 
Figure 2: nRMSE on the three modalities and their respective feature selections: FMG in green, EIT in red, US in purple. The modalities are 

sorted in an increasing order of the median of nRMSE (best performing first) for each action. 

The number of principal components (PCs) for reaching 99% of the variance of the input space was calculated 
for each subject and averaged for each modality in Table 1. This needs to be compared with the actual input space, 
i.e. the number of features, of each modality, which is also reported in the table. 

Table 1: Number of features for each method. Average and standard deviation (SD) of the number of principal components in order to reach 
99% of the variance. Separateness index (mean and SD) indicating the separateness of the clusters (the lower the better).  

Modality EIT EIT_GN EIT_lin EIT_lin_art FMG US_red14 US_red20 US_red25 US_red30 US_ROIG 

Number of features 256 740 740 740 10 348 996 531 329 234 

Number of PCs (mean) 14.3 3.6 4.1 3.6 6.3 25.7 27.2 24.6 23 51.7 

Number of PCs (SD) 2.9 0.7 1 0.7 0.8 6.4 6.5 5.8 5.5 7.4 

Separateness index (mean) 0.495 0.098 0.089 0.093 0.181 0.067 0.1 0.111 0.126 0.143 

Separateness index (SD) 0.341 0.034 0.025 0.03 0.05 0.015 0.039 0.025 0.029 0.023 
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The safety index to estimate the separateness of the clusters was evaluated and averaged across all subjects for 
each modality. Non-reconstructed EIT shows the lowest separability, while US rescaled every 14 rows shows the 
highest one. 

DISCUSSION  

Figure 2 shows that, despite no clear method standing out from the others, at least one feature selection algorithm 
from US is always in the top two according to nRMSE. FMG, with its 10 features, surprisingly performs better than 
the other algorithms for wrist extension and wrist pronation. The basic solver EIT_lin_art is the best performing for 
wrist supination. Comparing the number of principal components necessary to reach 99% of the input space, the US-
related number of components are the highest ones, but generally exhibits a good cluster separateness index, especially 
the US_red14, which has the best separateness. Non-reconstructed EIT has the worst overall Safety Index. However, 
this could be explained by electrodes with high impedance that would negatively affect other measurements and that 
are filtered in the reconstruction algorithms. The EIT reconstruction algorithms have surprisingly a low number of 
PCs and better cluster separability than most of US methods. However, the fact that the number of PCs is lower than 
the number of gestures to be controlled could explain the generally lower nRMSE results compared to US and possibly 
indicate that important data is lost during reconstruction. This could also be due to the lower sampling rate of EIT. 

Several feature selection algorithms were tested here on the different modalities. Unfortunately, none of them has 
yet been able to clearly outperform the others, with some modalities performing better than others for some 
movements. This might indicate that sensor fusion could be the ultimate solution. However, US was among the best 
performing methods according to nRMSE and to some extent cluster separateness index. Further feature selection 
algorithms should be evaluated to confirm this indication. In addition, the three modalities should be evaluated online 
and on amputees. However, due to the limited length of the stumps, it might be necessary to reduce the number of 
modalities to the two best performing ones. 
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ABSTRACT 

Targeted muscle reinnervation for the prevention of neuromas and phantom pain (N-TMR) is rapidly emerging 

as standard surgical intervention. The efficacy of N-TMR for pain treatment and the low complexity of the nerve 

redirection procedure at the time of amputation have been a key aspect of its widespread adoption. However, N-TMR 

was not developed for prosthetic control. Unlike the original prosthetic-focused targeted muscle reinnervation 

surgeries, N-TMR often redirected nerves to less accessible muscles. Therefore, using surface electromyography to 

measure the activity of the deeper reinnervated muscles for prosthetic control is very difficult especially since muscle 

orientation, signal separation, and electrical crosstalk are also not considered during N-TMR surgery. To address these 

limitations, we investigated the feasibility of applying sonomyography, a prosthesis control technique that is capable 

of measuring reinnervated muscle activity across the depths of the residuum. We applied ultrasound imaging 

techniques paired with image processing and machine learning algorithms to classify patterns of muscle activity 

according to the motor intentions of participants’ missing limbs. In two participants with transhumeral amputation and 

N-TMR surgery we demonstrated that 4-6 functionally relevant missing hand and wrist movements could be classified 

with 82% to nearly 100% accuracy. We suggest that like the original prosthetic-focused targeted muscle reinnervation 

surgeries, N-TMR provides opportunities to establish bionic interfaces with advanced prostheses. We see a significant 

opportunity to improve prosthetic motor outcomes for the growing number of individuals with high-level amputations 

that are receiving this procedure for pain prevention. 

INTRODUCTION 

Mechatronic upper limb prostheses have become exceptionally sophisticated. Control of these advanced systems 

has evolved to leverage surgical, engineering, and neuroscientific approaches that detect users’ intentions directly 

from their motor nervous systems [1], [2]. Here, Targeted Muscle Reinnervation (TMR) has demonstrated significant 

potential as a long-term, real-world nerve machine interface for individuals with high level upper limb amputations 

[3], [4]. By redirecting severed nerves, the patient’s intentions to move their missing limb are amplified by the residual 

muscles and can be used to establish a bionic link to control their prosthesis. However, like almost all bionic control 

interfaces, to ensure the best functional outcomes, TMR requires a large interdisciplinary team to plan and execute the 

surgical procedure prior to therapy and prosthesis fitting. TMR is most often performed as a secondary surgery and 

relevant factors related to prosthetic control inform surgical decisions. For example, the muscles to be reinnervated 

are carefully chosen and may be first denervated from native nerves, surgically modified, and/or moved to ensure that 

electromyographic (EMG) signals will be robust and that crosstalk is minimized when operating prostheses [5], [6]. 

As the degree of surgical planning and technical complexity is high, most individuals with high-level amputations do 

not have access to this procedure and the functional benefits it may provide. 

A variant of TMR surgery is rapidly gaining widespread clinical acceptance. Unlike prosthesis-focused TMR, 

targeted muscle reinnervation for the prevention of nerve-related amputation pain (N-TMR) is a less complex 

intervention to manage the disorganized nerve growth after amputation. N-TMR helps prevent phantom and nerve-

related pain by redirecting severed nerves to the closest appropriate muscle nerve branches [7]–[9]. N-TMR does not 

typically require large interdisciplinary teams and at some institutes it is being offered as standard-of-care at the time 

of primary amputation surgery. Although only recently emerging, the effectiveness in pain prevention and low surgical 

complexity have resulted in the number of individuals with N-TMR vastly expanding. However, N-TMR was not 

designed for bionic control of prostheses and current EMG control interfaces can be challenged to effectively measure 

the activity of reinnervated muscles. This is because surgical consideration is not given to muscle orientation, 

separation, or the prevention of EMG signal crosstalk; and importantly, EMG sensors remain on the skin’s surface 

while the reinnervated muscles are often located deeper in the residuum.  
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Sonomyography is an emerging prosthetic control technique that derives control signals from muscle activity 

across the depths of the residuum [10]–[12]. Although this robust control technique was established in non-TMR 

amputee populations, it has tremendous potential in unlocking bionic control for the growing population of individuals 

receiving N-TMR surgeries. Sonomyography uses a small ultrasound transducer positioned on the residual limb to 

image the muscle deformations that occur below the surface of the skin.  Image processing and machine learning 

algorithms are applied in real-time to capture patterns of muscle deformation, classify them according to the user’s 

motor intentions, and actuate the corresponding prosthetic movements. Sonomyography holds multiple potential 

benefits including the accurate detection of minuet muscle deformations throughout the residuum, capturing 

continuously variable activity to proportionally command prosthetic movements, and improved signal to noise ratios 

when compared to traditional EMG approaches [12], [13]. 

 

The objective of this case series was to investigate the degree and accuracy to which sonomyography techniques 

could be applied to detect missing hand and wrist motor-intentions from the reinnervated muscles of two individuals 

with transhumeral amputation and N-TMR surgery. We hypothesized that attempting missing limb movements would 

generate distinct patterns of muscle deformations in the reinnervated musculature, and the combination of ultrasound 

imaging and machine learning could accurately predict the user’s motor intentions from this muscle activity.   

METHODS 

Two participants with transhumeral amputations and N-TMR surgery were recruited. Protocols were approved 

by UC Davis’ Intuitional Review Board and subjects provided written informed consent prior to participation.  

Par-1 was a 52-year-old female with left transhumeral amputation and N-TMR surgery. She did not regularly 

wear a prosthesis, and it had been 6 months since her N-TMR surgery at the time of testing. Her median, ulnar, and 

radial nerves were all transferred to her left pectoralis major muscle branch. She reported experiencing a phantom 

hand that was telescoped at the end of her residual limb and described very minor phantom pains. She also reported 

being able to visualize moving her missing fingers.  

Par-2 was a 40-year-old male with left transhumeral amputation and N-TMR surgery. He did not regularly wear 

a prosthesis and it had been almost 18 months since his N-TMR surgery at the time of testing. His median and ulnar 

nerves were transferred to his pectoralis minor muscle branch, and his radial and musculocutaneous nerves to the 

serratus anterior muscle branch. He reported feeling a phantom limb with minor to moderate phantom pain experienced 

as tingling, shocks, tightness, or itching.  

Data Collection 

Participants were seated with their residual limb at their side. A Terason 3200T uSmart Ultrasound system with 

a 16HL7 linear array transducer (Teratech Corp) was used to capture muscle deformations with an imaging depth set 

to 4 cm [12]. The transducer was affixed to the reinnervated pectoral areas of each participant using a custom bracket 

and medical bandages at the location of maximum tissue displacement; determined by motoring the ultrasound screen 

and asking participants to freely attempt moving their missing hands. Once affixed, participants were asked to attempt 

a series of functionally relevant missing-hand and -wrist movements which included power grasp, pinch grasp, key 

grip, digit 2 extension (pointing), wrist rotation, 

and wrist flexion or extension [14]. Each 

movement was repeated 10 times. Patients were 

encouraged to mirror their intended motion with 

their unaffected limb and were able to view a live 

feed of the ultrasound images to assist with motor 

visualizations. Ultrasound video data was sampled 

at 30Hz, labelled, and stored for post hoc 

classification analysis. 

Data Analysis 

Raw ultrasound video data were captured at a 

1920x1080 pixel resolution. Video frames were 

post-processed which included cropping and down 

sampling to a 128x128 image by averaging 
Figure 1: Ultrasound image processing procedure 
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neighbouring pixels. Thresholding was performed such that pixels became black or white creating a binary image 

resembling a QR code (Figure 1) [10]. To classify missing hand movements, we first identified the frames depicting 

the final movement position for each repetition of each missing hand and wrist movement. As ultrasound recordings 

ended with the patient at their final movement state, the Pearson correlation distance from the first frame to all 

following frames was used to estimate when the final state was first achieved. These identified frames were then used 

as feature vectors for a K nearest neighbour (KNN) machine learning algorithm to determine which grasps produced 

distinct and separable tissue deformation states. To quantify the accuracy to which hand and wrist movements could 

be predicted using the KNN classifier, a leave-one-out cross validation of the dataset was performed [15].  

RESULTS 

Par-1 completed all 6 hand and wrist movements. They did not report any difficulties in visualizing these missing 

limb movement and there was no apparent muscle spasms or fatigue effects observed during data collection. 

Classification accuracies for each movement ranged from 89.5% through 96.8% (Figure 2).  

Although Par-2 was able to visualize and attempt moving their missing hand into a variety of positions, they 

reported this task physically and mentally challenging. As a result, each time they attempted to move their missing 

limb, they required time to concentrate and often intensely contracted their residual muscles. They were able to 

complete data collection for 4 hand and wrist movements (pinch, power, wrist flexion, and wrist extension) prior to 

muscle fatigue, spasms, and testing duration forcing the termination of the experiment. Three movements were 

classified with greater than 99.9% accuracy and pinch grip was able to be classified with 82.0% accuracy (Figure 2). 

 

DISCUSSION 

This work supports that individuals who have received N-TMR have untapped potential to establish bionic links 

with their prostheses. We found that detectable patterns of reinnervated muscle activity existed with attempts to move 

the missing limb and this activity could be used to reliably infer missing-limb motor intentions. This was true even 

for Par-2 who has not used his reinnervated muscles to control a prosthesis, nor his once-intact limb for nearly 18 

months. Although he was challenged by the experimental tasks, and muscle fatigue impacted his ability to complete 

testing, he still produced data that was consistent and accurately classifiable across 4 missing limb movements. We 

suggest that the effects of fatigue and the ability to visualize and perform missing had movements may improve with 

training. Further investigation is warranted to better understand how learning and therapeutic approaches may be 

applied to maximize the accuracy and dexterity that sonomyography may offer individuals with N-TMR. 

 

Figure 2: Classification accuracy. Diagonal elements show the accuracy of our algorithms in 

predicting a missing limb movement from muscle deformation patterns, and the off-diagonal 

elements represent the likelihood of misclassification. Wext- wrist extension, Wflx- wrist flexion, 

Wrot- wrist rotation. 
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These data are also compelling given the nature of the nerve reassignments. Par-2 had his median and ulnar nerves 

transferred to the pectoralis minor muscle branch. The pectorals minor is a deeper muscle covered by the more 

superficial pectoralis major. It was this region of his chest where the ultrasound transducer was located. The fact that 

our approaches captured and classified reinnervated muscle activity in this area demonstrates the utility of 

sonomyography and its ability to measure contraction patterns throughout the depths of the residuum. Further, Par-1 

had 3 individual nerves (median, ulnar, radial) all transferred to a single muscle branch (pectorals major). Attempts to 

move the missing hand/wrist into functionally relevant configurations still generated unique patterns of muscle activity 

despite the reinnervation of only a single motor branch. An advantage of Sonomyography is the ability of a single 

sensor and machine learning algorithms to detect even minuet differences across contraction patterns which is 

emphasized by these findings.  

As N-TMR continues to grow as an adopted standard for the prevention of neuromas and phantom pain, so too 

will the opportunity for patients to reap the benefits of advanced prosthesis control strategies. This work provides 

evidence that like those who received prosthetic-focused TMR, patients with N-TMR can establish bionic control over 

their prostheses, they just need to provide the appropriate muscle measurement interfaces. Ultrasound technology 

continues to be miniaturized, and now battery-powered handheld systems are commercially available making them 

feasible to incorporate in prostheses. Further, wearable prosthesis-focused sonomyography systems are currently 

undergoing commercial development. Taken together, this may allow the expansion of N-TMR beyond an effective 

intervention for pain prevention to include the benefits associated with neural-control of advanced prostheses. 
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ABSTRACT  

A strongly perceived sense of ownership (SoO) of an amputees’ device paired with agency leads to aspects of 
embodiment for that device. The purpose of this research was to explore the potentiation of SoO through 
proprioception while using a tactile feedback modality. In a sensory interference task, participants responded to 
vibrotactile stimulation presented to their index finger and thumb while experiencing incongruent and congruent visual 
feedback, with and without proprioceptive feedback. We found that participants’ crossmodal congruency effect (CCE) 
scores for the vibrotactile feedback were higher when experiencing proprioceptive feedback that aligned with the 
movement of the virtual hand on the screen. Providing prosthesis users with more intuitive and useful sensory feedback 
may increase their perceived SoO of their device. When paired with agency, this can lead to improving their control 
performance and device acceptance.  

INTRODUCTION 

Improving prosthesis control performance can contribute to better user experience while using a device. Effective 
embodiment, defined as a prosthesis being ‘part of’ the user and having a psychological investment into the self, has 
been found to promote better control performance and help restore the perceived integrity of a body that has been 
altered by amputation [1]–[3]. Research suggests that embodiment arises from the interplay of sense of agency (SoA) 
and sense of ownership (SoO) [4]. SoA is elicited by the experience of initiating and controlling your actions, and it 
distinguishes our own self-generated actions from actions generated by others [5].  SoO is defined as the user’s 
perception of their device identifying with and belonging to their body, occurring as the result of the integration and 
interpretation of visual, tactile and proprioceptive signals [3]–[7]. It is well known that linking augmented feedback to 
improvements in performance is challenging and researchers need to be strategic and intentional on the purpose and 
delivery of the sensory feedback [8]–[12]. Exploring sensory feedback for upper-limb prosthesis users that enables 
SoO and SoA and thus embodiment is accordingly a meaningful area of study.  

In recent work, we explored the fusion of tactile and kinesthetic feedback on performance and ownership for two 
participants with sensory-motor targeted reinnervation [10]. In a similar sensory interference task to what is described 
in this paper, we found that both participants showed levels of limb ownership that were aligned with able-bodied 
responses to skin deformation; however one participant had reduced CCE scores when kinesthesia was added to their 
tactile feedback modality. This result was unexpected and was possibly influenced by technical inconsistencies in the 
participant’s kinesthetic feedback system. The sample size of this work was limited due to international travel 
requirements and the intensive experimental time required. In order to explore this further with a larger sample size, 
we re-designed the experiment to accommodate able-bodied participants, as described in this paper. 

The goal of this study was to determine the influence of proprioceptive feedback on perceived SoO for a sensory 
interference tactile feedback task. Existing literature has demonstrated that the crossmodal congruency effect (CCE) 
score can be used as an objective measure for perceived SoO [13]. To explore the potentiation of SoO through 
proprioceptive feedback, we calculated CCE scores during a sensory interference task. Participants were subjected to 
vibrotactile feedback to either their finger or thumb and were instructed to respond where they felt the stimulation via 
foot pedals. Simultaneous to the vibrotactile feedback, visual feedback was provided on a virtual hand on a screen 
either congruent or incongruently. Participants completed two sessions of the experiment: with and without 
proprioceptive feedback. 
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EXPERIMENTAL DESIGN 

Recruitment 

Written informed consent was obtained under the guidelines and approval of University of New Brunswick’s 
Research Ethics Board prior to conducting the experiment. Fourteen able-bodied participants completed the study 
[mean age = 27.7yrs, range = 19–51yrs, 5 female, 1 left-handed]. Participants were randomly assigned feedback 
modality order to account for learning effects. Participants completed their second session one week after their first at 
the same time of day in an attempt to ensure similar levels of alertness between the two sessions. 

Experimental Setup 

Participants placed their dominant hand behind a monitor displaying an image of a hand in the same anatomical 
position as the participant (Fig. 1 a). Vibro-tactile motors (Precision Microdrives 10mm Linear Resonant Actuators – 
4mm type) affixed to the participants index finger and thumb with medical tape (3M, Micropore) provided vibrotactile 
feedback (2.5G, 175Hz) corresponding to when the virtual hand had grasped the object on-screen (Fig. 1 b). The 
participants index finger and thumb were also secured to a slide potentiometer (Bourns Inc. 10KW 45mm travel range) 
in order to ensure that the position of their hand matched the position of the image on the screen. When participants 
pressed a key on a keyboard with their non-dominant hand, the virtual hand on the screen began to close at a fixed 
speed of 52deg/s. A PC running Processing (Release 3.5.4) displayed the GUI while also controlling the inputs and 
outputs through an Arduino Uno R3 microcontroller. A motor controller (Adafruit Industries LLC, model 2305) was 
controlled by the Arduino to actuate the vibrotactile motors. 

Simultaneous to the vibrotactile feedback provided to either the participants’ index finger or thumb, visual feedback 
on screen representing an LED was provided to either the index finger or thumb of the virtual hand upon object contact. 
This visual feedback was either incongruent or congruent to the tactile stimulation (Fig. 2 a). A green circle representing 
a fixation LED remained in the middle of the virtual object being grasped on-screen, half-way between the index and 
thumb (Fig. 2 b).  Participants were instructed to respond where they felt the tactile feedback via foot pedals (Ammoon 
Sustain Damper Pedal), indicating with the toe pedal if they felt the vibrotactile stimulation on their index and with the 
heel pedal if they felt the stimulation on their thumb. 

    

   
Figure 1: Experimental Setup. a) An able-bodied participant looking at an image of a hand on a monitor with their dominant hand behind the screen in 
the same anatomical position. Note that the lights were off for all testing conditions. b) The dominant hand of the participant affixed with vibrotactile 
motors and a linear potentiometer. c) Virtual hand-close indicating the end of a trial with the distractor LED illuminating on the index finger, either 

congruent or incongruent to the tactile feedback provided to the participants’ dominant hand. d) The point of focus for participants, a fixation LED in 
the middle of the object on-screen. 
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Participants wore noise-cancelling headphones playing Brownian noise to mask background noise. Participants 
completed two sessions of this experiment; each session was assigned a different feedback modality. In one session, 
participants were instructed to keep their hand in a static open position during all trials. In the other, the participant 
mimicked the hand closing on the screen. Hand position was verified by the linear potentiometer and the trial was 
rejected if the participant’s hand position did not match the position of the hand on the screen at the start and end of the 
trial, with a tolerance of ±1cm.  Participants completed 10 practice trials with the lights in the room on and the Brownian 
noise off, followed by 10 practice trials with the lights off and Brownian noise on. They then completed four testing 
blocks of 64 trials each, with the lights off and Brownian noise on. Participants rested for 2 minutes between blocks.  

Outcome Measures 

The crossmodal congruency effect score (𝐶𝐶𝐸!"#$%) objectively quantifies incorporation without being susceptible 
to experimenter biases and is calculated as the difference in the mean response time between congruent and incongruent 
trials [14]. 

 𝐶𝐶𝐸!"#$% = 𝑡&̅'"#'($)%'* − 𝑡"̅#'($)%'* . (1) 

Statistical Analysis 

Statistical analysis was performed using RStudio IDE software. A Shapiro-Wilk test was used to investigate 
homogeneity in the variances of the data. As the CCE score data variances were found to be nonhomogeneous, a 
Wilcoxon signed-rank test was conducted with CCE score as the dependent variable and feedback modality as the 
independent variable. The confidence interval was calculated using the standard deviation (95% 
CI = mean ± 1.96 × SD). All numbers in the text refer to mean ± SD. 

IV. RESULTS 

To explore the potentiation of SoO through proprioceptive feedback for a vibrotactile feedback modality, we assessed 
participants incorporation for each condition by calculating their CCE scores when completing the sensory interference 
task. We found that adding proprioception did indeed allow the potentiation of SoO, achieving significantly higher CCE 
scores (122.17 ± 61.45) than when only tactile feedback was used (88.61 ± 60.61) (p-value = 0.009), see details in Fig 
2. 

 
Figure 2: Box-plots showing the CCE scores for the tactile only and tactile + proprioception conditions. CCE Scores increase with the addition 

of proprioceptive feedback to the feedback modality. The mean of the data is represented as the x within the boxes while the median is 
represented as the line. The bottom and top of the box represent the lower and upper quartile, containing 50% of the data. The lines outside of 

the box represent the minimum and maximum values. The circle represents the outlier. 
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DISCUSSION 

The goal of this study was to determine the influence of proprioceptive feedback on perceived SoO for a sensory 
interference tactile feedback task. To explore the potentiation of SoO through proprioceptive feedback, we calculated 
CCE scores for a sensory interference task which included two sessions, one with their hand in a static position (tactile 
only condition) and one with their hand mimicking the hand close on-screen (tactile + proprioceptive condition). We 
found that participants achieved higher CCE scores in the tactile + proprioceptive feedback condition than in the tactile-
only feedback condition, indicating they had a higher level of ownership for the tactile + proprioception feedback 
modality. This study suggests that SoO can be potentiated through the addition of proprioceptive feedback to a tactile 
feedback modality. Providing prosthesis users with more intuitive and useful sensory feedback may increase their 
perceived SoO of their device. When paired with agency, this can lead to improving their control performance and 
device acceptance. 

Although the results found in this study suggest that SoO can be potentiated through the addition of proprioceptive 
feedback to a tactile feedback modality, this work did not decouple proprioception and kinesthesia. A follow-up study 
worth considering is to replace the key-press hand close actuation with an isotonic and isometric actuation in order to 
allow for this decoupling. From there, these results must still be confirmed in the target population. Future studies may 
access more sensory-motor targeted reinnervation participants as it becomes the standard of care for prosthesis control, 
neuroma and pain management [10]. 

During data collection, two participants reported feeling simultaneous vibrations in their index and thumb 
throughout the experiment. After further investigation, this was determined to be phantom vibration. This is likely due 
to participants gaining an illusory SoO over the virtual hand on screen due to proprioceptive drift [4]. Two different 
participants reported that the vibrotactile stimulation was always congruent with the visual feedback. After completing 
trials with their eyes closed to eliminate visual feedback, it was determined that the stimulation was both incongruent 
and congruent, however the participants were perceiving the visual stimulation to always be correct. In one case, the 
subject was not able to correctly respond to incongruent trials rendering their data unusable due to high error percentage 
(53.1%). One subject was excluded for failure to reliably coordinate their hand close with the hand close on-screen. 
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ABSTRACT 

 

Targeted Muscle Reinnervation (TMR) surgery has been performed for over a decade in individuals with high levels of 

limb loss (transhumeral and above) to improve their ability to operate a myoelectric prosthesis [1]. However, it is unknown if 

TMR can improve the ability to operate a multi-articulating hand in individuals with limb loss at the transradial level. The 

objective of this study was to evaluate whether TMR improves control of a multi-articulating hand using pattern recognition 

control. A secondary objective was to look at control of a multiarticulating hand with direct control and pattern recognition 

before TMR surgery (Pre-TMR). Eight individuals with transradial limb loss who had previously used myoelectric control 

were recruited. Participants were fit with a passive wrist and multiarticulating hand with eight available grips. Home trials were 

completed Pre-TMR using pattern recognition and direct control, and after TMR (Post-TMR) using pattern recognition control. 

Occupational therapy was given prior to each home trial for each control type: direct control Pre-TMR, pattern recognition Pre- 

TMR, and pattern recognition Post-TMR. Outcome measurements were performed at the end of each home trial. A statistically 

significant improvement was found for both the Jebsen-Taylor Hand Function Test and the Activities Measure for Upper Limb 

Amputees (AM-ULA), between direct control Pre-TMR and pattern recognition control Post-TMR. 

 
INTRODUCTION 

 

Transradial amputation is the most common type of major upper limb loss and greatly impacts the functional tasks 

performed in daily life [2]. As more multi-articulating hands come onto the market, the ability to operate all the available 

functions of these devices more intuitively is required. However, this has remained a challenging task. One myoelectric option 

for control is direct control, in which the user isolates agonist and antagonist muscles of the forearm to open and close the hand. Users 

must then toggle between grips either by performing different actions such as hold open, double impulse, etc. Many devices 

are also able to utilize other non-EMG methods as well, such as positon triggers, button on hand, grip chips or apps on a 

smartphone in order to select the appropriate grip for their chosen task. Although this allows users to utilize multiple grips, 

these strategies may be more inconvenient, especially if frequently changing grips is required to complete one task. 

Another myoelectric control option is pattern recognition (PR) which can allow myoelectric prosthesis users to operate 

more complex systems [4] without the need for EMG or non-EMG triggers. With PR, the user performs the intended prosthesis 

movement with their residual limb musculature. These muscle patterns are recorded by the prosthesis controller and are then 

associated with the grip. For an example with a multiarticulating hand, if power grip is wanted, the user performs power grip 

with their residual limb and the prosthesis goes into power grip. In addition to PR technology, Targeted Muscle Reinnervation 

(TMR) surgery has been effective at improving neural control of a myoelectric prosthesis in individuals with higher levels of limb 

loss [3].This surgery involves taking residual nerves from the amputated limb and transferring them to other muscles to allow for 

increased EMG locations and more intuitive control. PR technology can be used by individuals with various levels of limb loss 

and has been shown to improve prosthesis control, compared to direct control, when combined with TMR [5]. However, it is 

unknown if TMR improves control of a multi-articulating hand in individuals with limb loss at the transradial level. 

 
METHODS 

 

Eight participants with transradial level limb loss from the Shirley Ryan AbilityLab in Chicago, IL and Walter Reed 

National Military Medical Center in Bethesda, MD participated in the study (Table 1). Participants were fit by a certified 

prosthetist with a custom socket with eight bipolar electromyography (EMG) channels, a passive wrist, a modified Ossur i- 

limb Ultra hand [6]. A clinically available pattern recognition myoelectric controller, Coapt COMPLETE CONTROL Gen1 

system  [7], that was used and modified for this study to allow for direct control and data logging. A registered and licensed 

occupational therapist provided training for direct control (DC) and PR control, determined grips chosen, and how to use the 

various grips during functional tasks (Figure 1). All participants received a minimum of 4 sessions of training (each session 

was approximately 3 hours over 
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two visits to the center) for each style of control. The number of grips was chosen based on the therapist and user feedback to 

ensure reliability and functional use of each grip. For this study, eight grips were available that targeted variations of the 

commonly used and most functional grips (Fine pinch, 3 jaw chuck, power, key, and index point). Two eight-week home trials 

were completed using DC and PR control, in random order, Pre-TMR surgery: DC Pre-TMR and PR Pre-TMR. 

For DC, only two of the eight EMG channels were used for control including the channels positioned over the wrist 

extensors and flexors for opening and closing the hand. To switch grips, participants performed one of four triggers (hold open, 

double impulse, triple impulse, and co-contraction). This allowed participants to toggle from a default grip to up to 4 additional 

grips for a total of up to 5 configured grips. The prosthetist and occupational therapist worked with the participants to determine 

which triggers were easiest for them to perform and assigned the most functional chosen grips to those triggers. For example, if 

power grip was identified as the most functional grip for that participant’s daily activities and co-contraction was the easiest 

trigger to achieve, that grip was assigned to co-contraction. Once the participant was at home, changes to these triggers could 

not be done without the participant coming back to the center. During all three home trials, participants were instructed to wear 

the prosthesis a minimum average of two hours a day. The therapist remained in regular contact with the participants to ensure 

use, further assist in how to incorporate the prosthesis in their daily tasks, and problem solve any control issues. 

With PR, all eight EMG channels were used and the remaining channels were selected with TMR in mind to capture 

remaining forearm musculature. Participants calibrated the prosthesis by pushing a button on the prosthesis and following the 

prosthesis while it moved through the assigned grips performing the natural movements in their residual limb that corresponded with 

each grasp pattern. This allowed participants the ability to re-calibrate their prosthesis at any time and at any location. In both 

DC and PR control, grips could only be switched once the hand was fully open which moved the hand to a neutral or natural 

hand position, then they could perform the desired trigger (if in DC) or muscle movement (if PR) to achieve the desired grip. 

Following the two Pre-TMR 8-week home trials, all subjects underwent TMR surgery. During TMR surgery, the ulnar 

nerve was transferred to the flexor carpi ulnaris muscle and the median nerve was transferred to either the flexor digitorum 

superficialis or brachioradialis muscle. At least six months post-TMR users returned to ensure a well-fitting socket and 

prosthesis functionality. Additional OT training was provided including reassessing the chosen grips and number of grips prior 

to users completing an additional 8-week home trial with pattern recognition control: PR post-TMR. 

The outcome measures completed at the end of each home trial included the Box and Blocks Test, Jebsen-Taylor Hand 

Function Test, AM-ULA, and the Southampton Hand Assessment Procedure (Figure 2) (Note: participant number 8’s post-

TMR outcome measures were excluded from analysis. His 8-week home trial began just prior to the start of the Covid-19 

pandemic and he was unable to return to the laboratory for outcome measures testing until an additional 5 weeks following his 

home trial. During this time gap he was only wearing his prescribed prosthesis as confirmed by no usage logged on the study 

arm.). Means and standard deviations were used to compare outcome measurement scores and number of grips selected between 

DC Pre-TMR, PR Pre-TMR, and PR Post- TMR. 

Table 1: Participant Demographics 

 
Subject 

 

Gender 

 

Age 
Years Post 

Amputation 

 

Etiology 

 

Home Prosthesis 

Pre-TMR 

Testing 

Order 

    Myoelectric Control Terminal Device  

1 Male 29 1.5 Trauma 
Coapt Pattern 

Recognition 
Bebionic Hand DC, PR 

2 Male 39 3 Trauma Direct Control 
Bebionic Hand, 

Motion Control ETD 
DC, PR 

3 Female 48 12 Trauma 
Coapt Pattern 
Recognition 

Bebionic Hand, 
Motion Control ETD 

PR, DC 

4 Male 31 1 Trauma Direct Control 
Ottobock 

Michelangelo Hand 
PR, DC 

 

5 

 

Male 

 

42 

 

1 

 

Trauma 

 

Direct Control 
Ottobock Sensorspeed 

Hand, 
Motion Control ETD 

 

DC, PR 

 

6 

 

Male 

 

53 

 

12 

 

Trauma 

 

Direct Control 
i-limb, 

Ottobock Sensorspeed 
Hand 

 

DC, PR 

7 Male 58 1 Trauma Direct Control Motion Control ETD PR, DC 

*8 Male 29 1.5 Trauma Direct Control Bebionic Hand,  

Motion Control ETD2 

DC, PR 

PR: pattern recognition; DC: direct control, * PR Post-TMR home trial and outcome measures not included as indicated above. 
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a b c d 

Figure 1:a: examples of functional training task. b: Performing a task from the AM-ULA c: Performing 

a task from the Jebsen Taylor Hand Function Test. d: Performing a task from SHAP. 
 
 
 

 
 

 

 

 

Figure 3: Top Row: Jebsen Hand Function Test and AM-ULA: statistically significant improvement 

in performance was found between DC Pre-TMR & PR Post-TMR conditions. Bottom Row: Box 

and Blocks Test and SHAP Test: no statistical difference in performance was found between 

conditions.*Data from participant 8 was not included in Post-TMR PR analysis.  

 
RESULTS 

 

For the number of grips selected, participants were able to access an average of 4.75 (SD = .46) grips in DC Pre-TMR, and 

3.63 (SD = .52) grips for PR Pre-TMR. For PR Post-TMR participants had an average of 4.14 grips (SD = .69). There was a 

statistically significant improvement in Jebsen-Taylor Hand Function test scores (Figure 3) (P = .026) and the AM-ULA scores 

(Figure 3) (P = .034) between DC and PR post-TMR but not the between PR pre-TMR and PR Post-TMR scores. There was no 

statistical difference in the Box and Blocks Test scores (p > .05) (Figure 3) or the SHAP scores (p > .05) (Figure 3) between 

DC, PR pre-TMR or PR Post-TMR. Although this study found no statistical differences between all pairwise comparisons, 

there was a trend showing DC with lower performance, followed by PR pre-TMR, with the highest performance with PR post-

TMR. 

p = 0.026 
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DISCUSSION 

Both the Jebsen Taylor Hand Function Test and the AM-ULA showed a statistically significant improvement between DC 

Pre-TMR and PR Post-TMR. The AM-ULA is not a timed test so participants likely took their time to select better grips for 

each task. This reduced issues of difficulty to achieve certain grips. However, this assessment does score on speed of completing 

each task, skillfulness with the prosthesis, and quality of movement (including compensatory movements). This may indicate 

that individuals had improved overall skill with grip selection and using their prosthesis during functional tasks post- TMR. 

The SHAP test has a variety of tasks to encourage a variety of grips to be used. However, if a participant had a challenging 

time achieving some of the desired grasps, likely they ended up utilizing a non-optimal grip for some of the tasks. This may 

have forced compensatory movements to complete the task, take longer to complete the task, or possibly not be able to do the 

task [8]. For example, if they were using fine pinch for a task that required power grip such as holding a jar. Because the Box 

and Blocks test requires only open and close of the hand and no changing of grips is needed we did not expect to see a statistical 

difference between control conditions or before or after TMR surgery. 

Although participants had access to the number of grips they were able to control while in the clinic with the occupational 

therapist, during outcomes testing some participants stayed in the same grasp no matter what task they were performing due to 

difficulty switching or not wanting to bother switching to another grip. For example, in DC, if the user had difficulty doing a 

trigger reliably (such as triple impulse), they might not use the grip assigned to that trigger often, though they might use an 

easier trigger (such as hold open). While subjects were provided training prior to and (as necessary) during the home trial during 

outcomes testing, additional training or reassessment of control of grips  may have improved outcome scores. 

A limitation of the current results is that it is difficult to distinguish whether participants improved with PR post-TMR due 

to having more experience with the hand or whether TMR did improve their control. It is clear that control was not impacted  

negatively with TMR and anecdotally most participants reported decreased pain similar to a recent study [9]. This study also 

had a low number of participants. Given the year-long commitment, requirement to undergo TMR surgery, and participate in 

three 8-week home trials, recruitment for this study was difficult. Another limitation is that all the participants received the 

same amount of training on the device and the control strategy, however some could have benefited from additional therapy.  
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ABSTRACT 

Supplementary feedback interfaces for myoelectric prostheses enable users to learn, plan and execute the 
movements for controlling their prostheses. The ability to execute these movements reliably and accurately 
– ‘skill,’ can be studied by assessing speed-accuracy trade-offs (SAF). Here we used the SAF framework to 
empirically investigate skill acquisition with a closed-loop interface that uses EMG feedback, during a 
functional prosthesis force-control task. Preliminary results suggest that over 3 days the SAF shifts vertically 
upwards, while its shape remains consistent.  Faster grasping remained less accurate compared to when 
participants used the supplementary feedback to carefully guide their behavior. We believe that studying the 
SAF not only enables us to quantify skill acquisition or learning effects, but also to more broadly understand 
the performance characteristics of closed-loop user-prosthesis interfaces. 

 

INTRODUCTION 

Force control is a fundamental problem in the field of myoelectric prostheses. Various control and feedback 
interfaces have been developed to improve the robustness of grasping with prostheses. Many of the control interfaces 
require users to learn novel ways of contracting their muscles to control the devices, and several (supplementary) 
feedback interfaces have been developed to promote learning and execution of these contractions [1 – 3]. However, 
how users acquire this skill, operationally defined as reliable and accurate movement execution [4], has not been 
thoroughly investigated in the literature.  

Speed-accuracy trade-off (SAF) is a well-known behavioural phenomenon and provides a framework to study 
motor skill acquisition [4 – 6]. Assessing SAF across days enables better understanding of the changes in speed and 
accuracy that occur through learning, as opposed to just comparing performance improvements (such as success rates), 
since such performance could be improved simply by decreasing speed, but skill can be inferred only when both speed 
and accuracy change in the expected direction (faster speed, greater accuracy) [4, 5]. Here, we use this framework to 
understand how the learning of skilled prosthesis force control is promoted by using an established feedback interface 
– EMG feedback [3].  

Specifically, in this study we investigated learning induced changes in the SAF in prosthesis force control using 
a functional box-and-blocks task. Participants used a closed-loop interface comprising of simple proportional control 
and EMG feedback [2] to perform a force matching task (apply a specified force on the blocks) at four different speeds, 
over 3 days. The four different speeds targets were imposed through time constraints, named Very Fast (0-2s), Fast 
(1-3s), Medium (2-4s) and Slow (4-8s). They were chosen to (1) sample the SAF appropriately and (2) emulate 
scenarios where users either rapidly or carefully and slowly modulate their muscle contractions to apply a desired 
force with their prostheses. Thereby, we assessed the SAF across days, to understand if/how participants’ skill changed 
with practice and discussed the potential implications regarding (closed-loop) prosthesis interface design.  
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METHODS 

Participants  

Five healthy able-bodied participants (age: 24.8 ± 1.6) naïve to the task were recruited. All participants signed an 
informed consent form in accordance with the Research Ethics Committee of the Nordjylland Region (N-20190036).  

Experimental Setup 

The experimental setup is shown in Figure 1(A). Two dry-EMG electrodes (OttoBock 13E200) were positioned, 
one each on the wrist flexors and extensors, located by palpating. A small ink mark was made on both locations to 
ensure the placement remained similar on all days of the experiment. Five vibrotactors (C3, EAI Inc.) were placed 
equidistantly around a cross-section of the upper arm. Participants donned a wrist immobilization splint and a bypass 
socket holding the prosthesis (Michelangelo Hand Prosthesis, OttoBock GmBH). The electrodes output the linear 
envelope of EMG, sampled by the prosthesis controller at 100 Hz and transmitted to a laptop PC. Based on the received 
signal, the PC activated the vibration motors to implement EMG feedback to the user, and to transmit commands for 
the closing and opening of the prosthesis. 

Participants used isometric wrist flexion to proportionally control (through a piecewise linear mapping) the 
closing speed of the hand. The maximum closing velocity corresponded to 50% of maximum voluntary contraction 
of the flexor activation. Hand opening was triggered by reaching 20% MVC of the wrist extensor activation. The 
boundaries of the piecewise linear mapping containing 6 levels (Figure 1(B)) between EMG commands and prosthesis 
velocity were chosen such that (1) the width of discrete levels increased at higher contractions to compensate for the 
inherent variations in the EMG signal at higher contractions, and (2) there was a one-to-one mapping between the 
participants’ EMG commands and the prosthesis force levels. Participants received discretized vibrotactile feedback 
of their EMG commands through a spatial coding scheme (Figure 1(B), [7]). In this setup, the EMG feedback enables 
predictive control of prosthesis grasping force. To achieve the desired force level (from 1 to 6), the participants needed 
to modulate their muscle contraction to reach the desired EMG level as indicated by the feedback. Due to the one-to-

 

 

 
Figure 1: Experimental setup. (A) Experimental setup 
shows a participant using (1) 2-dry EMG electrodes and (2) 
5 vibrotactors to perform a modified box-and-blocks task 
over 3 days. (B) Spatial coding scheme to convey EMG 
biofeedback through vibrotactors. (C) Force and speed 
targets (restrictions) for the task, used to derive a speed-
accuracy trade-off. 

Figure 2: Learning induced changes in the Speed-
Accuracy Trade-off. Success rates achieved across 
speed targets (very fast, fast, medium, and slow) are 
plotted against the measured reach time in the 
corresponding condition.  
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one mapping, the force level attainted after the closing would correspond to the EMG level maintained by the 
participant. 

Experimental Protocol 

The experiment was conducted over three consecutive days. On each day, we first measured the participants’ 
MVC to calibrate the proportional control interface, followed by a familiarization phase for both control and feedback 
interfaces (see [7]). Then, a brief visually guided coaching phase was performed in which the participants were 
instructed how to modulate their muscle contractions at different speeds relevant to the task. 

The participants performed a force-matching task, where they picked up blocks by applying a target force (level 
3 or 5) and transported it into an adjacently placed box (Figure 1(A, C)). Additionally, they had to perform the task at 
specified speeds: Very Fast (0-2s), Fast (1-3s), Medium (2-4s) and Slow (4-8s), with the help of a timer (shown as a 
bar to them, Figure 1(A)). Participants performed 6 blocks of 32 trials each ([4 repetitions x 2 target levels] x 4 speed 
conditions), with a self-chosen period of rest between the blocks. The targets were presented in a block-randomized 
fashion, where the speed target remained constant for 8 trials, within which the force targets were randomized. Each 
trial started with a beep notification, followed by displaying the target force and target speed for the trial. The 
participants then used the closed-loop interface to generate appropriate EMG commands to reach the required target 
force. However, they needed to do this by respecting the timing constraint - if the target force was achieved before or 
after the indicated time window, the trial was considered failed. Upon reaching the target force, they were instructed 
to relax and trigger hand opening. After the end of each trial, they received visual feedback about their success/failure 
in both target force and speed. The same protocol was repeated on all three days.  

Outcome Measures and Data Analysis 

The EMG commands and the force generated by the prosthesis were recorded for each trial. We defined ‘reach 
time’ as the time elapsed between start of the trial and the time at which the maximum force was reached during the 
trial. Thereby, a successful trial was one in which the maximum force was within the target level and the reach time 
satisfied the target speed. Thereby, success rates – calculated as % successful trials – were computed to evaluate 
differences in learning across days. Mean and standard deviation of the success rates are reported.  

 

RESULTS 

Preliminary results indicate a clear speed-accuracy trade-off in prosthesis force control with a closed-loop 
interface, and a significant improvement across days for all speed conditions. Participants started with a performance 
ranging from 65 ± 13% (Very Fast) to 77 ± 4% (Slow) on Day 1 and improved by Day 3 to 76 ± 11% (Very Fast) and 
89 ± 8% (Slow). Surprisingly, participants improved almost identically across all speeds, except in the Medium 
condition (Very Fast to Slow: 11 ± 20%, 11 ± 10%, 6 ± 6% and 11 ± 9%). Improvements from Day 1 to Day 2 (0.4 ± 
7%, 8 ± 13%, 3 ± 7% and 7 ± 5%) were also larger than the improvements from Day 2 to Day 3, except in the Very 
Fast condition (10 ± 14%, 3 ± 13%, 3 ± 8% and 5 ± 7%).   

 

DISCUSSION 

Here we quantified skill acquisition in prosthesis force control using supplementary EMG feedback through 
changes in the SAF. Building on our previous work [7], we established in the present study that the same (closed-
loop) interface, used at different speeds (relating to feedforward vs feedback control policies) yielded very different 
performance outcomes (here, success rate). The improvement of success rate, observed consistently at all specified 
speeds (a shift in the SAF itself) is a strong indicator for the improvement in the skill. Such an inference would not 
have been possible if the performance were sampled only at a single point on the SAF at two separate times (before 
and after practise, for example). In this case, if the accuracy and speed did not change in expected direction, it would 
be hard to say if the skill improved, or if the difference in performance was due to sampling the same SAF curve in 
two different points. Therefore, deriving the SAF enables a more holistic understanding of the range of performance 
afforded by a particular interface. Moreover, we observed that despite training, the trade-off exists between speed and 
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accuracy, and that the shape of the SAF did not appreciably change, further indicating that SAF is a practically useful 
framework to quantify how closed-loop interfaces enable users to develop flexible control policies.  

While speed-accuracy framework has been used by the prosthesis community, in terms of the Fitts’ Law task, 
here we use a more general formulation applicable to tasks other than pointing or its derivates. The next step in the 
present research is to increase the subject pool in order to conduct more systematic analysis. Future work can utilize 
the framework of SAF to evaluate the effect of different (feedback) interfaces on learning, and to understand how 
different interfaces might enable users not just to have different performance, but different trade-offs.  
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ABSTRACT 

We present an application of embedded, real-time neural network predictions to produce reliable sensing and 

enable semi-autonomous control of a prosthetic hand with embedded tactile sensors at the fingertips. We 

simultaneously predict the force magnitude and the position of contact, requiring on average 32.8ms, thereby enabling 

real-time measurements. We demonstrate 97.2% offline classification accuracy on the contact position, and a root 

mean squared error of 1.38 N (mean absolute error of 0.68 N) in predicting the force magnitude. Neural networking 

training is performed off-line on a Desktop computer using Keras and compiled into efficient C-code for a nrf52840 

microcontroller using the open-source tool “nn4mc.” The training model, as well as the nn4mc compiler, are available 

online, allowing prosthetic engineers to incorporate real-time, sensor-based inference into their prosthetic design.  

INTRODUCTION 

Approximately 60,000 people live with major upper-limb amputations in the United States [1]. Many individuals 

opt to use a prosthetic device to restore some level of functionality. A variety of myoelectric prosthetic hands are now 

available, including multi-functional devices that can achieve different grasp patterns [2]. However, without sensory 

feedback, these advanced devices are lacking compared to intact limbs. This is why older technologies like body-

powered devices, which do provide some sensory feedback, continue to be commonly used [3]. 

Adding sensory feedback to myoelectric devices can allow for semi-autonomous control, where the control is 

shared between the human and the device [4]–[6]. Prior methods relied on data that occurred after contact with an 

object [7]–[9] or extrinsic camera systems [6]. The Point Touch fingertip sensors enable three-phased control which 

depends on where the prosthetic device is relative to a nearby object. Myoelectric control systems are used for direct 

volitional control of the hand.  Then, autonomous functions pre-contact and post-contact are enabled using proximity 

and force detection within the fingertip sensors.  This future effort will be built upon the developments presented here.   

Amputees can benefit from receiving haptic feedback on the localization of contact in order to obtain finer 

contextual information on the grasping task being performed [10]. Here, we present current developments on onboard 

neural network predictions with the help of the nn4mc compiler1[11]. We simultaneously predict force magnitude and 

region of contact at the fingertip based on barometric and infrared sensor signals. The model used for prediction is 

embedded into the microcontroller that collects sensor data. This eliminates overhead in communication, increases 

the safety and security of the user’s raw sensor data, and enables prosthetic engineers and designers to embed advanced 

predictions that can be computed at lower latencies. 

BACKGROUND 

The Point Touch is a novel multimodal tactile sensor that consists of an infrared proximity sensor and a barometric 

pressure sensor embedded in an elastomer layer [12]. Signals from both sensors measure proximity (0-10 mm), contact 

(0 N), and force (0-50N) which can be utilized in a variety of ways. The barometer provides a reliable force 

measurement for neural interfaces when restoring the sense of touch [12]. The proximity sensor presents a new 

possibility of using prosthetic fingers to “see” the world around them. 

 
1 https://nn4mc.com 
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Figure 1: (a) The Point Touch integrated into the Bebionic hand. (b) High-level sensor architecture (c) Sensor 

response when a small piece of cotton is dropped onto the sensor and pressed. 

MATERIALS AND METHODS 

Experimental Procedure 

Our approach consists of three steps: data collection, neural network training, and deployment of the neural 

network model on a microcontroller that collects sensor signals from the fingertip.  

 

(a)  (b)  

 

Figure 2: (a) Data collection setup using a universal test machine and a custom-made pillow for the fingertip 

sensor. (b) Experimental setup to collect real-time prediction results from the fingertip.  

We collect force data and sensor signal data from a universal testing machine (UTM) (Universal Testing Machine, 

MTS Systems). A custom compression test up to 50N is conducted via positional control of the UTM (see Figure 2a). 

We zero the position of the tip of the UTM when mild contact occurs with the surface of the fingertip elastomeric 

material. The material is met with a 5mm externally threaded surgical steel ball (Steel Balls, Prjndjw Jewelry). Then, 

the force is recorded at the PC (Instron TW Elite on Windows) that controls the UTM machine and the barometric and 

infrared sensor data is collected directly from the fingertip board. Figure 2b displays the experimental setup to collect 

real-time results. A set of three dead weights where each mass is placed in a direction normal to the fingertip sensor 

area. Figures 4a–4e are extracted using the experimental setup in Figure 2b. 

Algorithm Design and Implementation 

We keep a window of 30 data samples at a time. This window behaves like a double-ended queue (deque): when 

each of the fingertip samples is collected for both barometric and infrared sensor data, the front of the deque is pushed 

with the most recent sensor data samples, whereas the last sample in the window is deleted.  

 
Figure 3: Neural network model; the architecture is interpreted from left to right. 

The neural network model begins with a 1-dimensional convolutional layer with 16 filters and a kernel of size 2. 

We add a 1-dimensional max-pooling layer with a pool size of 3 and 3 strides. The output is then reshaped into a row 

vector. A gated recurrent unit (GRU) of 20 units of output takes the row vector and feeds its output to a fully-connected 

(c) (a) (b) 
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(FC) layer with a rectified linear unit (ReLU) that outputs 10 units. The output of this layer is copied into two other 

FC layers: a one-neuron-wide FC hyperbolic tangent layer that outputs the normalized values for force and a 6-unit-

wide FC layer with a softmax activation function that outputs the probability density function of the region of touch. 

The neural architecture is shown in Figure 3. The GRU is needed to trace temporal information through the recurrent 

layer’s internal memory [13]. The output of this neural network is a 7-element vector 𝒗 = {𝑣0, 𝑣1, . . . , 𝑣6}, where each 

value is between -1 and 1. This is then mapped back into force in Newtons and elements {𝑣1, . . . , 𝑣6} indicate values 

between 0 and 1. Here, 𝑣𝑖 = 0  indicates a value of l of the region 𝑖 having any external contact and 𝑣𝑖 = 1 means a 

high likelihood of the region 𝑖 having any force applied to it. 

For training, a 5-fold time series is split and each split trains using a batch size of 50 samples and for 20 epochs. 

The offline testing set results for location of contact are displayed in Figure 4a. We use a mean-squared-error loss for 

the part of the neural network that is learning normalized force magnitude and a categorical cross-entropy loss for the 

part of the neural network that is predicting the localization of contact. 

The deployment of the neural network into the microcontroller is done through nn4mc [11], an open-source 

compiler that generates C code to be flashed to the low-power microcontroller that controls the fingertip sensors. This 

compiler allows for a lightweight and easy-to-integrate set of code. When profiled, the nn4mc-generated code achieves 

an average of 32.8 ms to perform each forward pass, which fits properly with the overall 16 Hz sampling frequency 

of the rest of the firmware at the embedded platform.  

RESULTS 

Figures 4a shows the raw barometric response of the sensor to an applied load. Figure 4b shows real-time results 

for force prediction in Newtons. From this data, we compute a root mean squared error of 1.38 N and mean absolute 

error of 0.68 N. Figure 4c shows the offline testing set region detection error. Regions 4 and 6 yield the maximum 

error with a failure rate of 6% and Region 3 yields the minimum error with a failure rate of 0%. For the probability of 

the location of contact, we truncate values above 50% as a positive contact prediction and values below 50% as a 

negative contact prediction.  

(a)  

 

(b)  
(c)  

Figure 4: (a) Raw barometric signal after applied load. (b) Real-time onboard force prediction results using three 

dead weights. (c) Confusion matrix representing offline classification performance. 

DISCUSSION 

Figure 4a shows the raw barometric sensor responding to changes in the applied pressure prior to the predictions 

made by the neural network. Figure 4b shows the predictions for force to have an average absolute error of 0.68 

Newtons, which comes mostly from the transient response to the finger being exposed to a 500-gram weight and 

human error when placing this weight. If we scale this error to the maximum force tested in the experiment illustrated 
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in this figure, we obtain an approximate of 13.6%, which exceeds the allowable tolerance of less than 5% of error in 

the force prediction. These results can be improved by refining the data collection experiment.  

For the contact localization, we observe that the regions located at the distal half of the fingertip yield the highest 

performing predictions. This corresponds to the actual location of the sensors on the PCB, as shown in Figure 1b. In 

the future, we wish to test whether this data is sufficient for a semi-autonomous control paradigm for prosthetic hands, 

which will inform how to further improve the proposed design and machine learning architecture.  

CONCLUSION 

We demonstrated measuring force and proximity measurements within a commercially available prosthetic 

finger.  We used an embedded, real-time neural network to predict force values and classify where the forces are 

imparted on the fingertip sensor. The combination of force, proximity, and spatial location data in an onboard 

embedded processor provide an opportunity for real-time control of prosthetic devices in a new fashion, in particular 

sharing control of a myoelectric prosthetic hand between the prosthetic user and the robotic device. Future work will 

implement a three-phased myoelectric control system followed by testing with able-bodied subjects and amputees.  
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ABSTRACT 

About half of upper-limb (UL) amputees do not wear a prosthesis.  This is, in part, related to an inability to take 
full functional advantage of the prosthesis.  To help address this issue, we have developed the Voice Activated 
Prosthesis Interface (VAPI) to allow individuals to supplement their conventional control with voice commands.  
Specifically, this study targeted accessing multiple grip patterns in multi-articulating hands.  Data from amputee test 
subjects is reported showing an improvement in the time to complete tasks, more accurate grip selection, and reduced 
frustration with the prosthesis when using the voice recognition technology compared to standard myoelectric control.  

INTRODUCTION 

It is generally agreed that only about half of upper-limb (UL) amputees wear a prosthesis [1,2].  This is often 
because the prosthesis does not return enough function for the burdens of weight, discomfort, non-cosmetic 
appearance, lack of durability, etc. [3].    One primary reason for the lack of prosthesis acceptance is the inability to 
control the device effectively.  Difficulties with control result because multiple prosthetic joints are being controlled 
with a limited number of inputs from the user.  The issue becomes even greater with more proximal amputation as 
there are even more joints to control with even fewer inputs available.   

Current input options for UL amputees are limited and include switches, electromyographic (EMG) inputs from 
residual musculature, force sensitive resistors, linear transducers, etc. In addition, many amputees don’t have the 
ability to use these inputs effectively (e.g., muscle atrophy can lead to unusable EMG signals).  Also, conditions such 
as traumatic brain injury or other cognitive deficits can make it difficult to understand and produce reliable input 
signals. Even for proficient users, most current control strategies often require sequential control of the various system 
joints. 

 The lack of independent and intuitive control inputs also leads to existing complex prosthetic mechanisms being 
underutilized. For example, in recent years there have been substantial advancements in prosthetic mechanisms such 
as multi-articulating hands (Figure 1). These hands have the ability to produce dozens of different grip patterns that 
can be selected based upon the task being performed. However, grasp pattern selection can be complex and difficult 
to understand. Therefore, most users only utilize a maximum of four hand grasps due to the difficulty in reliably 
switching between grip patterns.   

VOICE ACTIVATED PROSTHESIS INTERFACE 

Upper limb amputees are looking for solutions that allow them 
to regain the function they lost after their amputation. To address 
this need, Liberating Technologies, Inc. (LTI) has developed the 
Voice Activated Prosthesis Interface (VAPI) controller which 
incorporates the ability for the amputee to use their voice to 
generate control signals for their prosthesis.  

Speech is the most natural and highest bandwidth mode of 
communication for humans [4].  Therefore, we aim to augment 
users current control schemes with the addition of their voice as a new input modality. Using this approach, VAPI has 
the ability to access larger numbers of grip patterns within multi-articulating hands as well as fluidly perform tasks 
that require coordinated sequential movements of multiple prosthetic joints, such as opening a door.   

LTI has prototyped a fully embedded and stand-alone VAPI controller (Figure 1) to demonstrate feasibility of the 
concept.  The current phase of  research has been focused on developing three major components of the VAPI system: 
(1) the ‘command interpreter’ which interprets the commands through  the  voice  recognition  engine;  (2)  the  
‘command sequencer’ which determines what control signals to generate based on the voice command; and (3) at the 
output controller to drive the terminal device (Figure 2). 

 
Figure 1: Prototype VAPI with iLimb Hand 
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Figure 2: Voice Activated Prosthesis Interface (VAPI) quick disconnect controller architecture. 

 
As demonstrated in Figure 2 the VAPI is used in addition to the user’s standard EMG signals, with the control 

sequencer determining if the EMG or voice inputs will control the terminal device.  The VAPI system uses a trigger 
word to ‘wake up’ the voice recognition module (e.g., ‘Alexa…’) which then listens for the command word.  This 
helps to reduce accidental activation of the prosthesis.  After receiving the voice command, the VAPI produces the 
necessary command signal to elicit a grip change in the hand. Control is then relinquished back to the EMG sensors 
for the user to open or close the hand after the correct grasp pattern has been achieved. 

VOICE COMMANDS AND RECOGNITION ACCURACY 

With our partners at eSoftThings and Sensory, Inc., 
we developed a series of phonetically distinct 
command sets to test to determine which would 
produce the highest classification accuracy.  
Preliminary tests had six subjects perform five trials 
of each word in eleven different command sets.  
Figure 3 demonstrates that we were able to elicit up 
to 98% recognition accuracy for two of the 
command sets (#2&#8).  The command set that was 
selected for future testing included the command 
words: “finger pinch,” “power grip,” “tripod,” “key 
grip,” “hand,” and “wrist,” with the latter two being 
used to toggle between hand and wrist control.          

FUNCTIONAL OUTCOMES TESTING  

Methods:  We performed a set of standardized functional outcomes measures including the University of New 
Brunswick (UNB) Test of Prosthesis Function. While this test was originally intended for children, there has been 
shown to have acceptable reliability and preliminary evidence of validity for adults [5]. In addition to the UNB, we 
worked with our study Occupation Therapist  (OT), Dr. Debra Latour, to develop a set of  custom tasks that represent 
activities of daily living (ADL) where multiple grasp patterns may be useful.  These included pouring and drinking, 
dressing tasks (put on sock, tie shoelaces, zip vest), turn doorknob, wrap a package and add written address label, etc.   

Ultimately the user needs to generate the appropriate control signals to make the desired grip change.  However, 
users will not always be able to switch into the desired grip pattern at the desired time.  This could be due to imprecise 
muscle coordination (e.g., producing a double impulse when a triple impulse is required, not holding ‘hold open’ long 
enough, etc.), fatigue, misinterpreted voice commands, etc. Therefore, in addition to scoring the tests described above, 
we also tracked how often the subjects were not able to switch into the desired grip (i.e., ‘Missed Grips’).   

Each subject completes the battery of tests either using EMG-only control or EMG with Voice Recognition (VR) 
control.  Each subject was provided with an iLimb Ultra hand and VAPI for testing.  In EMG-only mode, the hand 
was programmed to have four different mode switching commands used to access four different grip patterns within 
the iLimb (i.e., lateral, 3 jaw chuck closed, cylindrical, and precision pinch closed) via standard EMG switching 
commands including hold open, double pulse, triple pulse, and co-contraction.  To ensure the length and weight of the 
prostheses were the same in both test conditions, the VAPI was installed, but disabled, during EMG-only control.   

 
Figure 3:  Recognition accuracy results over 30 trials for 
each command set.  Our goal was 95% (red dotted line). 
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The subjects were trained on the VAPI and EMG switching and allowed to practice with each until they indicated 
they were comfortable with the control.  Each subject then completed three trials of each task including both the UNB 
and custom tasks to simulate activities of daily living (ADLs).  

Results:  We have tested two subjects with limb loss thus far and testing is currently ongoing.  We will have more 
subjects (both amputee and able-bodied) completed by the conclusion of the research funding in June of 2020. One 
subject with limb loss was an experienced two-site 
EMG user with a Touch Bionics iLimb multi-
articulating hand. The other was a novice two-site 
EMG user with a Steeper beBionic multi-
articulating hand. The experienced user was able to 
complete the full set of tasks three times. Due to 
fatigue, the novice user was unable to complete the 
full set of tasks. The novice user fatigued, in part, 
because the hand used for testing was significantly 
larger than their usual hand and the subject was 
unaccustomed to the additional weight. 

UNB:  Traditionally the UNB focuses on scoring 
spontaneity and skill. The measure of spontaneity 
defines a person’s tendency and impulse to use their 
prosthesis effectively when attempting a two-
handed task. In determining a person’s level of 
skill, it may be evident that the person is able to 
perform the requested task but demonstrates the 
need for additional training or motivation to refine their abilities when using their prosthesis [6]. Scoring results from 
the UNB did not show a substantial improvement in spontaneity or skill for VR.   

Timing:  One of our original hypotheses was that voice recognition control would allow the user to complete their 
tasks faster.  Our experienced user demonstrated that they were able to complete the tasks 35% faster (13.3 seconds 
to 8.6 seconds) when using voice recognition (Figure 4).  

 Missed Grips:  The experienced two-site myoelectric user that completed the full three rounds of testing was observed 
to have made 2.8 times more grip switching mistakes 
when using EMG-only control than when they used 
voice control (Table 1).  These results were consistent 
across both the UNB and custom tasks.  In addition, 
with EMG-only control, each missed grip would 
require an additional muscle exertion to achieve the 
desired grip. 

Anecdotal Feedback:  Missed grip changes were a substantial source of frustration for both control methods. Survey 
results demonstrated that both subjects preferred the voice control and had lower frustration levels with VR due to 
fewer grip transition mistakes.  One user reported reduced exertion when using the voice control.  Both subjects also 
reported frustration with the length and weight of the prototype system.     

DISCUSSION / CONCLUSION 

Preliminary data indicates that voice recognition control of an upper limb prosthesis demonstrated more accurate 
multi-articulating hand grip selection than standard EMG-control methods. These data also indicated that it is possible 
to complete tasks more rapidly with voice control.    

We believe that as individuals are able to easily and reliably access a greater number of grip patterns, they will 
be more likely to select the grip pattern that is ideal for the task at hand.  With proper grip selection, it is likely that 
individuals will be able to reduce compensatory movements, which have been shown to lead to long term overuse 
injuries and joint damage [7].  

It should be noted that there are other methods that can be used for selecting grip patterns that were not 
investigated in this study.  These include the use of pattern recognition systems as well as the gesture control built into 
the iLimb Quantum.  While these alternative methods are promising, there is a ceiling to the number of grasps that 

 
Figure 4: Average task completion time with 95% 

confidence intervals with EMG Only grasp selection or 
EMG with voice control grasp switching. 

Table 1: Number of Missed Grips per control condition 

 
Control Method Ratio  

(EMG only/ 
EMG+Voice) 

EMG-
only 

Control 

EMG + 
Voice 

Control 
Missed Grips 51 18 2.8 
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can be accessed through these methods.  It has been reported anecdotally that pattern recognition can reliably access 
three to four grip patterns and the gesture control adds four patterns.  We plan to compare voice recognition control 
to these methods in future trials. 

FUTURE WORK 

Testing of the VAPI system is currently ongoing 
with three additional amputee subjects and several able-
bodied subjects to be completed by June 2020.   

In addition to testing the current system, we are 
continuing to make further technical enhancements to the 
VAPI system with our current funding.  One 
enhancement is to implement remote microphones, such 
as lapel or in-ear microphones, to detect and wirelessly 
transmit the voice commands to the VAPI for processing.  
This will move the microphone from its current location 
in the wrist, which has the potential to be interfered with 
if the individual were to choose to wear clothing such as 
a heavy, long-sleeved jacket.   We will also investigate 
communicating directly with a multi-articulating hand 
itself over Bluetooth to be able to access an even larger 
number of grip patterns.   

Finally, we are in the process of developing a new 
outcome measure specifically designed to assess the 
ability of individuals to access different grip patterns.  
We refer to this test at the Grip Switch Assessment 
(GSA). The GSA was inspired by the Box and Block 
Test, a commonly used measure to assess unilateral gross 
manual dexterity. The GSA was designed to measure a 
user’s ability to efficiently switch between multi-
articulating hand grips while manipulating simple 
objects. The assessment involves measuring the time it 
takes for a user to switch into the proper grip and carry a 
set of objects over a short obstacle (Figure 5). If the patient takes longer than 30 seconds to achieve the proper grip 
the test administrator will have the patient move onto the next item. This cut-off reduces the continued frustration of 
the patient and keeps the GSA trial time to under two minutes.  The order of the objects is randomized with each trial.   
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Figure 5: A - An able-bodied participant manipulating 
the first object during a GSA trial. B - A diagram of 
the table arrangement to administer the GSA for a 

patient affected in the right arm.  
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ABSTRACT 

Wrist function is essential for correct positioning of the hand; however, few available prosthetic wrists provide 
powered flexion/extension. Users must compensate for this lack of function by performing compensatory body 
movements that may cause injuries and lead to device abandonment. Using the Gaze and Movement Assessment 
(GaMA) metric, we evaluated task timing, endpoint trajectories and 3D angular joint kinematics when using a 1-DOF 
wrist compared to a 2-DOF wrist in combination with a 1-DOF hand. We hypothesized that with the 2-DOF wrist, 
kinematics would be more similar to normative data and that users would perform fewer compensatory movements 
than when using the 1-DOF wrist.  

INTRODUCTION  

During the past decade, terminal devices available to upper limb prosthesis users have improved significantly, to 
the point where several powered multi-degree-of-freedom (DOF) hands that provide individually articulating fingers 
are commercially available. Such devices have the potential to significantly improve functionality; however, 
movement of the wrist to correctly position the hand in space is necessary for optimal functional use of the arm and 
hand [1]. Work by Montagnani et al. highlighted the importance of wrist dexterity [2]. In this work, individuals with 
intact limbs performed several functional tasks while wearing braces to block use of certain wrist and hand DOFs. 
Subjects performed poorest using a 1-DOF wrist + 1-DOF hand and best using an intact, unconstrained hand and 
wrist. Interestingly, performance with a 2-DOF wrist + 1-DOF hand and a 1-DOF wrist + multi-DOF hand were 
equivalent, indicating the importance of wrist movement in compensating for limited hand function.  

Evaluating the benefit of new components and control mechanisms can be challenging, as most validated outcome 
measures assess the time required to complete various tasks without assessing the quality of the movement or the 
specific DOF(s) activated to accomplish the task. The Gaze and Movement Assessment (GaMA) metric, developed 

     
Figure 1: a) Device used for the study. b) Participant wearing the device, in “home” position, ready to 

begin the Cup Transfer Task. 
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and validated at the University of Alberta under the DARPA’s Hand Proprioception and Touch Interfaces (HAPTIX) 
program, quantifies motion (three-dimensional angular kinematics and hand movements) and gaze behaviour during 
simulated real-world tasks [3-6]. The two tasks utilized for the GaMA, the Cup Transfer Task and the Pasta Box Task, 
require movements representing day-to-day functional requirements, while challenging typical prosthetic limitations 
such as reaching and transporting objects at varying heights and across the body, with elements of risk and collision 
avoidance (Fig. 1b). Each task can be subdivided into specific phases of reaching, grasping, transporting and releasing 
objects. A performance aspect encourages the participant to work efficiently, and tasks are short to allow multiple 
repetitions within a reasonable testing time frame to assess performance consistency.  

A powerful aspect of GaMA data analysis is the ability to assess differences across various phases of each 
movement and each task. These results provide valuable information not only on proximal joint and body 
compensatory movements, but on control of the terminal device and motor variability. We hypothesized that the time 
to complete the task would be slower when the additional wrist flexion/extension degree of freedom was utilized but 
the compensatory movements, specifically the trunk and shoulder, would be decreased. 

METHODS 

One individual, a 73-year-old male individual with a transradial level amputation, was fit with a 2DOF wrist and 
OttoBock Transcarpal hand (Figure 1a). The wrist allows for 351 degrees of rotation and 100.5 total degrees of flexion 
(58 degrees) and extension (42.5 degrees). The prosthetic components were connected to a test socket, which was fit 
with an Ossur upper limb silicone liner and a lanyard suspension (Figure 1b).  

Marker plates were placed on the upper arm, forearm, dorsal hand, trunk, and pelvis and individual markers were 
placed on the index finger and thumb. The participant wore Pupil Labs Core eye-tracking system, with 4 additional 
markers connected to the frame for tracking of head movements. Markers were placed on the wrist, epicondyles and 
torso for calibration. After calibration, the participant was instructed how to perform the task and was able to practice, 
with guidance from an Occupational Therapist, prior to data collection. The task, performed standing, was the Cup 
Transfer Task of the Gaze and Movement Assessment (GaMA) [3]. During the Cup Transfer Task, a cup close to the 
participant was first picked up from the top and moved across a divider (M1). Then a second cup, further from the 
participant, was picked up from the side and moved across the divider (M2). The two cups were then returned to the 
original position, in the reverse order (M3 and M4). In between moving the cups from one side of the divider to the 
other, the hand returned to a “home” position on the side of the table. During the practice and data collection session, 
the device was controlled by an engineer connected to the system via a bluetooth connection. As the user practiced 
and performed the task, he verbally indicated to the engineer his desired movements. This strategy reduced the impact 
of inadvertent movements and fatigue, while allowing the evaluation of the impact of the wrist movement on the 
timing and joint kinematics. Each cup movement was divided into 4 phases: Reach, Grasp, Transport and Release. 

Two sets of data were recorded. For the first set, the participant was able to request hand open and close and wrist 
rotation movements; the wrist flexion was kept in a neutral position. For the second set, the participant was also able 
to request wrist flexion and extension movements. Data were collected until six trials were completed without errors 
for each configuration set. The data compared between the two configurations included the timing for the reach, grasp, 
transport and release phases of each movement, the endpoint trajectory, and the joint kinematics. The study was 
approved by the Northwestern University IRB. 

RESULTS 

As expected, trials in which the participant utilized the wrist flexion and extension (FE On) took longer than those 
when only the wrist rotator was used (41.69s+4.75 vs 28.43s+4.57). The additional time was primarily in the “Reach” 
phase of the movements, as the individual was prepositioning the device. (Figure 2).  

Though the mean distance travelled of the hand endpoint for the various movements was not notably different 
between conditions, except for M2, the path travelled was visually different, especially for M2 and M3, with wider 
trajectories for the movement of the cup further away from the participant back to the original position with FE off. 

Joint kinematics were calculated for the 2 conditions and compared to normative data (n=14). Though the 
prosthetic user did include wrist flexion and extension movements during the task with FE on, the average range of 
motion used was less than that of the normative population (34 degrees vs 92 degrees).  
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Table 1: Total range of motion (in degrees) at each DOF. Prosthesis user data indicates mean across trials 
[between-trial SD]. Normative data indicates mean of participant means [between-participant SD]. 

 
Wrist FE 
OFF 

Wrist FE 
ON 

Normative 

Trunk Flexion/Extension 21.1 [1.6] 17.3 [0.8] 18.7 [5.9] 

Trunk Lateral Bend 24.5 [3.0] 18.1 [2.2] 11.6 [2.8] 

Trunk Axial Rotation 25.3 [1.0] 21.9 [2.3] 17.5 [4.3] 

Shoulder Flexion/Extension 59.3 [5.4] 60.5 [3.4] 73.3 [8.6] 

Shoulder Abduction/Adduction 42.3 [5.1] 44.1 [7.2] 35.9 [5.4] 

Shoulder Internal/External Rotation 60.0 [6.4] 55.2 [8.8] 59.9 [8.4] 

Elbow Flexion/Extension 64.3 [5.4] 68.5 [7.5] 96.4 [7.9] 

Pronation/Supination 20.3 [1.6] * 20.9 [2.9] * 78.5 [9.0] 

Wrist Rotation 6.6 [2.4]  65.1 [30.2]  

Wrist Flexion/Extension 10.1 [2.1] * 33.8 [6.7] 91.8 [10.4] 

Wrist Ulnar/Radial Deviation 8.8 [1.4] * 10.0[1.6] * 32.1[7.1] 
* Participant did not have access to these DOFs. Non-zero values are the result of error in the system, or 

inadvertent marker movement/socket movement 

Lateral trunk bend and axial rotation showed an increased total range of motion when comparing normative values 
to Flexion On and Flexion Off conditions (Table 1). The prosthetic user also used less shoulder flexion/extension and 
elbow flexion/extension compared to normative. The prosthetic user held his arm in a more adducted position early in 
the task in both conditions compared to normative data with a slight increase in total ROM for shoulder 
abduction/adduction for both conditions.  

 

Figure 2: Breakdown of the timing of the 4 different cup movements, M1-M4. 

 

Figure 3: Trajectory of the prosthetic hand during the 4 movements: average with + 1 standard deviation 
(SD) shaded. The mean overall distance of each curve (in mm) is shown for both conditions.  

MEC 2022

134



 
Figure 4: Time Normalized Joint Kinematics. Top row (L-R) Trunk: Flexion/Extension, Lateral Bend, Axial 

Rotation. 2nd Row (L-R) Shoulder: Flexion/Extension, Ab/Adduction, Internal/External Rotation; Bottom Row: 
Wrist Flexion/Extension. Vertical shading behind the plots represents the phases of the task.  

DISCUSSION 

As hypothesized, utilization of the additional degree-of-freedom (wrist flexion and extension) did increase the 
time required to do the task. The range of motion utilized at the wrist was much less than normative data. However, 
there were changes in the hand trajectory as well as the joint kinematics. In both conditions, the prosthesis user 
employed more trunk lateral bending and axial rotation compared to the normative population. However, the addition 
of wrist flexion and extension did appear to reduce the overall peak-to-peak to values closer to the normative values. 
The shoulder motion was different from normative, with less flexion and more abduction/adduction range utilized in 
both conditions. 

There are limitations to this pilot study. In order to ensure that the device was moving as desired without any 
inadvertent movements from poor control or fatigue, the user orally indicated his desired movements. An engineer 
then drove the device as instructed. Though the participant had used a multifunction wrist system in the past as part 
of other research studies, the individual evaluated did not have the opportunity to control the prosthesis in a home 
environment. It is expected that additional training and usage will allow future users to more naturally include the 
additional degrees of freedom into various tasks. This may continue to improve how the users coordinate trunk and 
shoulder movements to perform the task. Based on this initial study, with the addition of wrist flexion and extension, 
we continue to expect improvements in trunk and shoulder compensatory movements.  
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ABSTRACT 

Novel multi-modal and closed-loop myoelectric control 

strategies may yield more robust, capable prostheses which 

improve quality of life for those affected by upper-limb loss. 

However, the translation of such systems from an 

experimental setting towards daily use by persons with limb 

loss is limited by the cost and complexity of assessing all the 

possible sensor and feedback configurations. The comparison 

of different control strategies is further complicated by the 

use of disparate prosthetic socket and simulated prosthesis 

designs across experiments. This study aims to address these 

issues through the development and preliminary assessment 

of a Modular-Adaptable Prosthetic Platform (MAPP) system 

for use in experimental control strategy evaluation. The 

MAPP system is compatible with a variety of commercially 

available control and feedback devices and can be used in 

experiments involving participants with either intact or 

amputated limbs. The modular design enables compatibility 

with novel devices and quick reconfiguration of components. 

We compared EMG and FMG data acquired with the MAPP 

system to a previously characterized transradial simulated 

prosthesis, using able-bodied subjects. The MAPP was 

shown to match or exceed the control accuracy achieved 

using a rigid simulated prosthesis, while providing the added 

benefits of modularity. This device shows promise as a 

research tool which can catalyze the deployment of advanced 

control strategies by enabling comprehensive and 

standardized assessment of control and feedback strategies. 

INTRODUCTION 

Recent developments in robotic prostheses have yielded 

many advancements including multi-articulated hands [1], 

[2], machine learning based controllers [3]–[5] and sensory 

feedback systems [6]–[8]. However, translating these 

improvements to wearable prosthetic devices remains 

challenging. Before translating these advancements to 

clinical use, thorough assessment and validation of the 

potential benefits are required. A significant bottleneck for 

assessment arises due to the tradeoff between experiment 

scale, representativeness of real-world conditions, and 

time/resource costs [9]. Numerous factors besides the control 

strategy itself, including end-effector loading, sweat, limb-

position, and acceleration can affect the performance of a 

prosthetic system, and these conditions must be recreated 

during the experimental assessment to provide accurate 

insights into real-world performance [8], [10]. Simulating a 

realistic physical limb-socket interface within a participant- 

and control strategy-specific prosthesis requires a custom-

designed and manufactured socket [10], [11], which is not 

easily adapted for various control and feedback systems. 

An alternate strategy to custom-designing prosthetic 

sockets for testing persons with amputation is often pursued 

by having able-bodied persons wear a simulated prosthesis 

with or without an end-effector attached. Researchers have 

used various versions of simulated prostheses to investigate 

performance of commercial prosthetic hands [12], 

performance of novel control strategies [13], [14], kinematic 

movement trajectories when using prosthetic hands [15], and 

the effect of providing sensory feedback to users on 

performance in functional tasks [7]. There is, however, an 

incomplete understanding of how well results collected from 

these studies translate to daily use in a prosthesis by a person 

with limb loss. Furthermore, comparisons across studies are 

limited due to the disparate versions of the prostheses 

utilized. There is thus a need for a modular platform that 

accommodates multiple sensors and feedback systems and 

can be worn by both able-bodied persons and persons with 

amputations to facilitate these crucial comparisons. This 

study aims to address this gap through the design and 

assessment of an inexpensive and easy-to-use 3D-printed 

transradial Modular-Adaptable Prosthetic Platform (MAPP). 

 

Figure 1: Overview of the 3D-printable MAPP with a 

HANDI-hand attached to it [2]. 
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MATERIALS AND METHODS 

Socket Design Requirements 

 Critical features were identified through consultation 

with prosthetists from the Glenrose Rehabilitation Hospital. 

Table 1 summarizes the design requirements and 

specifications for the developed socket. Unless otherwise 

stated, all components were 3D-printed using Ultimaker 2+ 

(Ultimaker BV) and Makerbot Replicator 2 (MakerBot 

Industries, LLC). Rigid components were printed using PLA 

and flexible components using Ninjaflex Cheetah filament 

(Ninjatek, Inc.). Figure 1 shows the design of the MAPP 

platform as a prosthetic socket for a person with transradial 

amputation. The developed socket consists of rigid panels 

supported by stainless steel M4 threaded rods with flexible 

cushions attached via Velcro® (Velcro BVBA). All panels are 

connected to a ring at the distal end of the socket. 

Suspension 

Suspension is achieved through radial compression 

generated by tightening the circumferential straps threaded 

through each rigid panel. Alternating regions of soft tissue 

compression and release are created by the cushions and 

spaces between them, distributed both radially and axially 

along the limb. This design choice improves translation of 

motion between bone and socket as described in [16]. 

Adaptability 

To accommodate different limb lengths, the spacing 

between each 3D-printed panel can be adjusted and fixed by 

adjusting the position of the nuts embedded in each panel 

along the rods attached to the adjacent panel. A panel can also 

be removed entirely by unscrewing the rods which anchor it 

to the adjacent panel. This combination of modularity and 

adjustability enables the socket to accommodate residual 

limbs extending beyond 5 cm (the length of one panel) from 

the cubital fossa and up to 5 cm proximal to the wrist. 

Different limb thicknesses are accommodated by 

interchangeable inner rings with different diameters. As 

forearms are not cylindrical in nature, the channels in each 

panel through which the rod substructure passes are 

purposely made loose-fitting such that the slope between each 

panel can be adjusted. Furthermore, the interfacing cushions 

are made slightly compliant and convex such that they can 

match the profile of the limb surface without causing pinch 

points. When the circumferential straps are tightened, the 

socket profile is maintained due to opposing pressure exerted 

between each of the straps, cushion infill material, and limb 

surface (Figure 1). Able-bodied participants can be 

accommodated by replacing the connecting ring and distal 

support cushion with a hollow connecting ring. An optional 

hand mount can be screwed to that ring, thereby restraining 

the hand and fingers if isometric contractions are necessary. 

The hand mount, offset in the radial direction, directly fits 

with the Quick-Connect Wrist (Otto Bock, Inc.) to connect 

commercial end effectors. Custom 3D-printed adapters 

enable compatibility with other end-effectors. 

Modularity and Socket Structure 

The MAPP enables user input and sensory feedback 

devices to interface directly with a user’s limb across a range 

of positions. Such devices can be embedded in each interior 

panel (Figure 2), providing a direct interface with the user’s 

limb through which suspension loads are transferred. Rigid 

inserts provide a stable base for various actuators, which can 

be interchanged to accommodate other devices. Sensors can 

also be mounted in the spaces between regions with panels 

via the Velcro-backed circumferential straps. Velcro-backed 

modules prevent slip relative to the circumferential straps, 

and radial compression from the straps provides a stable 

interface with the user’s limb. The interchangeable outer-

panels add to the stability of this mounting method by 

securing the position of the circumferential straps relative to 

the rest of the socket structure with a Velcro-backed surface. 

Further, these outer panels provide an interchangeable 

platform for mounting devices (see Figure 1) on the socket’s 

surface. A final method of modular device mounting is 

provided by the rails connecting the main panels. 3D-printed 

Table 1: Design specifications for MAPP system 

Item Design Specification Achieved Specification 

Length 

adjustability 

10 – 40 cm Achievable with multiple 

exterior panels 

Fit intact 

limbs 

Achieve Target Target met 

Prosthesis 

interface 

Compatibility with 

iLimb, BeBionic, and 

HANDi Hand 

Target met; expand 

modularity with new 

components 

User input 

sensor 

integration 

6 sites; compatible 

with commercially- 

available electrodes 

10 sites; compatible with 

FSRs, MyoBock (Ottobock 
Inc.), and Bagnoli (Delsys, 

Inc.) electrodes 

Context 

detection & 

sensory 

feedback  

Accommodate 2 

sensory-feedback 

modalities & IMU 

Compatible with 

mechanotactile & 

vibrotactile feedback and 

IMU 

Cost $500 < $200 

Fitting time < 15 minutes 10 min initial fitting; 2-4 

min re-donning 

Socket 

weight 

500 g 450 g 

Shear/ axial 

load 

2 kg 5 kg 

Comfort Comfortable over the 
course of an 

experiment (3 hrs) 

Comfortable for 3 hrs (user-

reported) 

Sanitation Non-porous, 
cleanable interface 

surface with limb 

All contact surfaces lined 

with closed-cell neoprene 
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mounts can be threaded onto these rods providing a rigid 

platform which provides direct access to the user’s limb via 

the spaces between exterior panels. 

The interchangeable in-cushion sensor modules were 

designed to fit FSRs as described in [17]. Myobock 13E200 

Electrodes (Ottobock Inc.) and Bagnoli Electrodes (Delsys, 

Inc.) were also made compatible with the initial prototype, 

enabling a mixed method of user-input detection. C2 and C3 

vibrotactors (Engineering Acoustics Inc.) were similarly 

embedded into the interior cushion via interchangeable 

inserts, providing vibrotactile feedback in any cushion. 3D-

printed mechanotactile tactor modules, the design of which is 

described in [8], were integrated into both the removable 

panels and substructure. The modularity of this socket system 

enables the integration of Inertial Measurement Units (IMU) 

(BNO055, Adafruit Industries) that could be used to detect 

forearm orientation and acceleration with respect to an 

inertial reference frame. 

The structural rod segments were selected to support a 

2 kg end effector load in both the transverse (ie. weight of 2 

kg end load with residual limb parallel to ground) and axial 

(ie. 2 kg end load with residual limb perpendicular to ground). 

Using ASME Elliptic Failure Criteria and a life of at least 

10,000 cycles of fully reversed loading, M4 rods were 

selected, leading to a minimum factor of safety of 2.5. The 

3D-printed exterior panels were tested using both 

SolidWorks FEA (Dassault Systems, Inc.) and mechanical 

loading in the aforementioned configurations. These tests 

demonstrated that the overall minimum factor of safety was 

still limited by fatigue or bending of the rods; therefore, the 

socket system was capable of safely supporting up to a 2 kg 

end-effector or payload. 

Socket Interface Validation Study 

Participants: Eight able-bodied, right-handed, male 

participants (mean and standard deviation of age: 28.8 ± 8.2 

years) volunteered to participate in this study. Written 

informed consent according to the University of Alberta 

Research Ethics Board (Pro00077893) and the German 

Aerospace Center’s internal committee for personal data 

protection (DLR authorization 3.7.2017) was obtained.  

Experimental setup: Participants conducted the 

experiment while wearing the developed MAPP (Figure 3a) 

and while using a version of an orthotic splint commonly used 

to simulate a prosthesis (Figure 3b). Participants were 

randomly assigned to start with one condition or the other. 

For each simulated prosthesis, a band of five evenly-spaced 

Myobock electrodes and a concentric band of five FSRs as 

described in [17] were placed on the participant’s right 

forearm [18]. Signals from both bands were processed using 

the same hardware as [17], with a 3rd-order low-pass 

Butterworth filter and cut-off frequency of 1 Hz to remove 

high-frequency disturbances. Mean absolute value for each 

channel was extracted and used to train a linear-discriminant 

analysis (LDA) classifier, representative of commercially 

available classifier-based controllers [3]. An i-LIMB Ultra 

prosthetic hand was attached to simulate the effects of normal 

prosthesis loading on each socket (Figure 3). Participants 

were asked to match seven gestures (rest, index point, power 

grip, wrist flexion, wrist extension, forearm pronation, 

forearm supination) shown on a computer screen for two-

second intervals, three times each. 

 

 

Figure 2: Exploded view of a) FSR and b) surface EMG 

electrode into panel system via removable inserts.  

 

Figure 3: A participant wearing a) the Modular-

Adaptable Prosthetic Platform as a simulated prosthesis 

and b) the orthotic splint. 

a) b) c) 

   

Figure 4.  Offline performance was assessed for each participant using a three-fold cross validation using a) EMG only, b) 

FMG only, and c) mixed-modality based on a sequential forward search (SFS) 

MEC 2022

138



Data Acquisition: Offline performance was assessed for 

each participant using a three-fold cross validation (one for 

each repetition of a gesture). Assessment was performed 

using data from a) EMG only, b) FMG only, and c) mixed-

modality based on a sequential forward search (SFS) to select 

the best-performance from 5 channels for each participant.  

Results: Figure 4 shows that collecting data when using 

the MAPP enabled similar accuracy results as when using the 

orthotic splint across all sensor modalities. 

DISCUSSION AND FUTURE WORK  

Here, we developed a low-cost modular transradial socket 

system, which can accommodate multiple geometries of the 

forearm, along with multiple configurations of user-input, 

context detection, and sensory feedback devices. We tested 

the developed system with sEMG and FMG and a pattern 

recognition control strategy for seven gestures. Offline 

performance of participants using MAPP was similar to their 

performance when using the orthotic splint. 

Future work will include comparison of online 

performance between the MAPP, orthotic splint, and socket 

systems. Using machine learning strategies to map input to 

action may reveal whether functional performance using a 

splint, or the MAPP provides a better prediction of clinical 

performance when deployed within a prosthetic socket. The 

effects of variables like end-effector loading, limb position, 

and acceleration are not well-characterized in control 

strategies. Therefore, paired assessment of the MAPP with a 

suction socket incorporating identical control strategies in 

different contexts may demonstrate the extent to which each 

platform captures these contextual changes. In conclusion, 

the cost time- and resource-savings, and flexibility to test a 

variety of novel prosthetic control strategies in a common 

platform, such as the one developed here, may accelerate the 

throughput of prosthetic control strategy validation. 
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ABSTRACT 

Many presently available prostheses lack a functional wrist. Here, we highlight the development of an inexpensive 
prosthetic wrist that can be adapted to work with various sockets and prostheses. Using this prosthetic wrist, we 
explore the functional and cognitive impact of using a prosthetic wrist to perform activities of daily living. We 
measured task performance, compensatory movements, and cognitive load while transradial amputees performed a 
Clothespin Relocation Task (CRT) using a prosthesis attached to the wrist controlled by surface electromyography 
(EMG). Three transradial amputees performed the task with and without EMG control of the wrist. In aggregate data, 
the success rate was significantly higher in the wrist condition (61% ± 9% mean, ± standard error) than in the no-wrist 
condition. Compensatory movements were also better; e.g., the maximum leftward bend at the hip was less in the 
wrist condition (18.9° ± 1.2°) than in the no-wrist condition (15.0° ± 1.4°). The addition of controlling a prosthetic 
wrist had no significant impact on cognitive load, as assessed by the NASA Task Load Index survey and the detection 
response time to a secondary task. This work suggests that using a prosthetic wrist may increase dexterity and reduce 
joint strain for amputees without requiring a significant increase in cognitive effort compared to that of EMG control 
of a hand alone. These results can guide future development and prescription of upper-limb prostheses. 

INTRODUCTION  

Transradial amputees have expressed a strong desire for powered wrist prostheses. Indeed, the top five priorities 
for transradial amputees, in order of importance, were reported as: wrist rotation, simultaneous movements of multiple 
degrees of freedom, wrist deviation, wrist flexion/extension, and reduced cognitive demand [1]. Other priorities 
included reduced weight, improved durability, and increased strength [1]. Without a wrist, amputees are forced to 
compensate with unnatural movements to complete routine activities of daily living (ADLs) [2], [3]. The continual 
use of these motions causes damage to the musculoskeletal system over time [4], [5].  

Despite the end-user desire for functional wrist movements, very few prostheses incorporate a powered wrist 
module [6], [7], and those that do are often expensive or not widely available. Here we describe the development of a 
powered, 3D-printed, inexpensive and adaptable prosthetic wrist. We also validate the function of this wrist with three 
transradial amputees and show more natural upper-limb kinematics without a significant increase in cognitive load. 
This work constitutes an important step towards addressing amputees’ self-reported needs and reducing compensatory 
movements that would otherwise cause musculoskeletal damage. 

METHODS 

Wrist Design 

The Utah wrist was designed with two degrees of freedom (DOFs) to provide pronation/supination and 
flexion/extension of the wrist (Fig. 1). The second DOF can also be used for deviation depending on how the prosthesis 
is mounted to the wrist. To mimic the strength of a natural wrist, two high-power hobby servo motors (Hitec D980TW, 
Hitec RCD USA, Poway, CA) were used with a 7.5-V, 20-A power supply (967-CUS200LD7R5, TDK-Lambda 
Americas Inc., National City, CA) to provide 4.3 N-m of torque. The wrist was designed to adapt to different prosthetic 
hands (Fig. 1C) and sockets (Fig 1E). The wrist was 3D printed using polylactic acid (PLA) to minimize the weight 
and cost of materials. See Table 1 for the full design specifications. 

Functional Assessment and Participants 

The clothespin relocation task (CRT) is a commonly used upper-limb dexterity assessment that involves moving a 
clothespin from a horizontal bar to a vertical bar. The clothespin is placed 8 inches down the length of the horizontal 
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bar and 8 inches up the vertical bar 
(Fig. 2A) [8]. Participants were 
instructed to move as many 
clothespins in a 30 second window as 
possible. Dropped clothespins were 
recorded against successful attempts 
to measure success. The CRT was 
completed by three transradial 
amputee participants with and 
without the wrist enabled. The wrist 
was connected to a functional check 
socket (Citterman et al., MEC 2022) 
and a left-handed TASKA hand (Fig. 
2B). All participants gave written 
informed consent before taking part 
in experiments, in accordance with 
the University of Utah Institutional 
Review Board and the Department of 
Navy Human Research Protection 
Program.  

During the CRT, the participants had 
inertial measurement units (IMUs) 
attached to their chest and left bicep 
to measure any compensatory movements (Fig. 2C). While completing the holding task, the participant simultaneously 
completed a detection-response task (DRT) to 
measure their cognitive load [9]. The DRT 
requires the participant to push a button in 
response to a small vibrating motor on their 
collar bone. Both the response rate (i.e., how 
often they respond to the vibratory stimuli) 
and response time (i.e., how long it takes to 
press the button after vibratory stimuli) are 
used as direct measures of cognitive load. 
Participants completed the CRT as many times 
as possible within 30 seconds. Data were collected with and without the wrist in a pseudo-randomized counter-
balanced blocks. The success rate was defined as the total number of successful transfers out of the total number of 
attempts within the 30-second time period. Participants completed the NASA Task Load after each block (i.e., with 
the wrist and without the wrist). 

Signal Acquisition 

Surface EMG from the participants was collected using a custom EMG sleeve [10]. EMG was sampled at 1 kHz and 
filtered using the Summit Neural Interface processor (Ripple Neuro Med LLC) as described in [11]. EMG features 
used for estimating motor intent consisted of the 300-ms smoothed mean absolute value (MAV) on 528 channels (32 
single-ended channels and 496 calculated differential pairs) calculated at 30 Hz, as described in [11]. Joint angles 
were measured using two shimmer3 IMUs (Shimmer Sensing, Dublin, Ireland) attached to the participant’s chest and 
bicep. A third IMU was placed on the table in a fixed orientation to provide a reference. The IMUs measured 
acceleration, rate gyration, and magnetic heading at 64 Hz, which were then used to calculate quaternions and generate 
rotation matrices for leftward bend at the hip. 

EMG Control 

A modified Kalman filter (MKF) was trained using individual and combination movements to control 
grasping/opening of the hand, pronation/supination of the wrist, and flexion/extension of the wrist. Training data 
consisted of participants mimicking pre-programmed movement of the individual DOFs in isolation, as well as 
combination movements involved simultaneous movement of two DOFs (e.g., grasping and rotating). Additional 

 
Figure 1: A) Exploded view of the Utah Wrist. B) A photo of the assembled wrist with the 
attachments to connect to a bypass socket. C) The wrist can adapt to a variety of different 
terminal devices by printing a new interface part such as the two shown here. D) Expanded 
view of the rotary joint mechanism, as highlighted in part B. E) The wrist can connect to 
different kinds of sockets by printing out a new interface such as the part shown here. 

Table 1: Design Specifications 
Degrees of 
Freedom 

Pronation/Supination in series with Flexion/Extension or 
Radial/Ulnar Deviation 

Length 11.8 cm 
Weight 360 g 

Range of 
Motion 

Pronation/Supination – 180 Degrees 
Radial/Ulnar Deviation or Flexion/Extension – Up to 175 Degrees 

Torque 4.3 N*m (both motors) 
Cost < $600 
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details regarding the modified Kalman filter and training data can be found in [12]. A latching filter was applied to 
the kinematic output of the prosthetic hand to increase grasping stability. [13] 

Data Analysis 

Participants were given two blocks of 30 seconds to complete the CRT as many times as possible for a given condition. 
Thus, the number of attempted clothespin transfers was variable per condition and per participant, but the overall 
success rate was fixed to two per participant (i.e., one success rate for each of the two 30-second blocks). Data were 
aggregated across all participants and blocks and determined to be parametric by the Anderson-Darling test. The 
success rates with and without the wrist were compared using a paired t-test. Similarly, the detection response rate 
and NASA TLX scores were compared using a paired t-test. Because the total number of attempted transfers was not 
consistent between conditions, the maximum joint angles with the wrist and without the wrist were compared using 
an unpaired t-test. Similarly, the detection response time was compared using an unpaired t-test. Because the data 
were parametric, all data is reported as mean ± standard error. 

RESULTS 

Task Performance Improved with Use of Wrist 

In the data aggregated across trials and blocks, the 
task success rate (Fig. 3A) was higher with use of the 
wrist (61% ± 10%) than without the wrist (33% ± 15%); 
(p < 0.05; paired t-test). Thus, task performance was 85% 
higher with use of the wrist. 

Amputees Required Less Compensatory Movements 
with Use of Wrist 

Moving the clothespin from the horizontal bar to the 
vertical bar without the wrist required the participant to 
compensate by bending leftward at the hip. When the 
wrist was enabled, participants naturally used the wrist to 
perform the task with movements more akin to an intact 
hand. Collectively, 
the three participants 
showed a significant 
difference in the 
maximum joint angle 
at the hip (Fig. 3B). 
Maximum hip joint 
angle was 18.9° ± 1.2 
without the wrist 
compared with 15.0° 
± 1.4 with the wrist 
(p < 0.05, unpaired t-
test). Thus 
compensatory 
movements at the hip 
were 21% smaller 
when wrist control 
was enabled. 

Use of the Wrist Did Not Significantly Increase Cognitive Load 

Somewhat surprisingly, adding two additional controllable DOFs with the wrist did not significantly increase 
cognitive load. Collectively across participants, the subjective workload was reported as 72.4 ± 4.1 without the wrist 
and 69.6 ± 2.9 with the wrist (p = 0.624, paired t-test; Fig 3C). There were also no significant differences in the DRT 
response rate, 31% ± 3.6% without the wrist and 24% ± 3.5% with the wrist (p = 0.33, paired t-test; Fig 3D), or the 
DRT response time, 1.19s ± .14s without the wrist and .93s ± .1s with the wrist (p = 0.1432, unpaired t-test; Fig 3E). 

 
Figure 3: A) Success rate for the CLT was significantly greater with the wrist compared to without the wrist. B) 
Compensatory movement at the hip (i.e., the maximum angle deviation) was significantly reduced with the wrist 
compared to without the wrist. C) No significant differences were seen in the subjective workload with the wrist vs 
without. D) No significant differences were seen in the DRT miss rate with the wrist vs without. E) No significant 
differences were seen in the DRT response time with the wrist vs without. Data show mean ± standard error. * p < 
0.05. Paired t-tests were used for task success rate, subjective workload, and DRT response rate (N = 6). Unpaired 
t-test were used for the maximum angle deviation (N = 23 attempts vs N = 25 attempts) and the DRT response 
time (N = 39 responses vs N = 42 responses). 

 
Figure 2: A) The Utah wrist was attached to the amputee participants 
using the transradial check socket. B) IMUs were attached to the 
amputee participant's chest and bicep to show the deflection angles as 
the amputee attempts to complete the task. C) The amputee was 
instructed to pick up a clothespin and move it from a horizontal 
beginning position to a vertical end position. 
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CONCLUSION 

We developed a low-cost 2-DOF prosthetic wrist that can adapt to various prosthetic terminal devices and sockets. 
We found that task performance was significantly better and compensatory movements significantly smaller when 
wrist control was enabled. We also found that the cognitive demand on the participants was not significantly different 
with the addition of two new EMG-controlled DOFs at the wrist. These results constitute an important step towards 
the widespread availability of functional prosthetic wrists for amputees and researchers alike. 
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ABSTRACT 

The loss of the thumb from the hand is a debilitating injury representing a 40% impairment to the hand. The replacement 

of the function of the thumb is a challenging engineering problem for prosthetic device designers due to the numerous degrees 

of freedom of the thumb. Most commercially available prosthetic devices for thumb amputations do not provide for adduction 

or rotation of the thumb. Here, we describe the design of a modular locking adduction rail for people with thumb loss proximal 

to the metacarpophalangeal joint. This device is compatible with the commercially available Point Thumb prosthetic thumb 

from Point Designs and allows users to move the prosthetic thumb from a flat hand position to an oppositional position. The 

design of the bi-directional adduction rail is briefly detailed. Then, two case studies are presented which detail the clinical 

implementation of the adduction rail into a partial hand prosthetic socket for two different patients. These are some of first trial 

fittings of the adduction rail system and demonstrate significant functional gains achieved with this novel device. 

INTRODUCTION 

Partial hand amputation is 10 times more common than all other categories of upper limb amputation combined [1]. These 

amputations can be a severe disability, especially if the amputation involves the thumb and/or multiple digits. Upper limb 

amputation can cause physical, psychosocial, and economic damage to an individual and can lead to depression, anxiety, loss 

of self-esteem, and social isolation [2], [3]. Fewer than half of partial hand amputees are able to return to the same job after 

amputation and most find that the prosthetic devices are insufficient to meet the demands of their work [4].  

The loss of the thumb presents a particularly challenging type of partial hand amputation. The thumb is an essential digit 

in the formation of grasps and production of appropriate grip strengths for activities of daily living [5]. The loss of the thumb 

represents a 40% reduction in hand function [5]. The complexity of the thumb kinematics creates a challenge in the reproduction 

of the five degrees of freedom in a prosthetic device including three flexion, an adduction, and a rotation degree of freedom 

[6]. Flexion only makes up approximately 25% of the thumb’s function [7]. Today, there are passive prosthetic thumbs (e.g. – 

TITAN Thumb, Partial Hand Solutions), body-powered thumbs (e.g. - ThumbDriver, Naked Prosthetic), and powered 

prosthetic thumbs (e.g. – iDigits, Ossur).  In these cases, the prosthetic devices predominately recreate the flexion degrees of 

freedom of the thumb.  In this work, we sought to design a bi-directional adduction rail which adds two additional degrees of 

freedom to the commercially available Point Thumb. 

Table 1 compares the different prosthetic options available. Impairment values are calculated using the American Medical 

Association (AMA) guide for evaluating upper extremity impairment [7]. This comparison does not factor in issues like loss 

of sensation, device durability, and device ease of use, all of which have a significant role in device adoption and retention. 

Application of the Point Thumb and adduction rail system provides the largest range of motion and most functional benefit. 

Table 1: Digit and hand impairment remaining after fitting of a thumb prosthesis. 

Prosthesis Examples 
Impairment* 

Digit Hand 

No Device --- 100% 40% 

Static Opposition Post livingskinTM 55% 22% 

MP Flexion TITAN Thumb 37% 15% 

MP and IP Flexion Point Thumb 31% 12% 
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MP Flexion and Radial Abduction VINCENTpartial passive 27% 11% 

MP Flexion and Adduction 
i-Digits Access1 

VINCENTpartial active2 
17% 7% 

MP Flexion, IP Flexion, and Adduction Point Thumb with Adduction Rail1 prototype 10% 4% 
1Adduction is passive, 2Adduction is active  

*Does not include impairment due to lack of sensory information 

ADDUCTION RAIL DESIGN 

The adduction rail presents a novel method to translate the thumb between a hand open position to an opposed adducted 

position. The adduction rail entails a curved, toothed track that serves as the interface between the prosthetic socket and the 

thumb carriage. The curve of the track enables the center of rotation of the adduction motion to be located virtually inside the 

residual limb thus reducing the total size of the prosthesis. The ratchet teeth on the track enable a similar locking mechanism 

as found in the Point Thumb and other mechanical digits offered by Point Designs. The carriage rides along the track and 

houses the pawls which engage the ratcheting teeth and thereby locks the carriage in an adducted position. Two levers enable 

the user to lock/unlock the pawls and translate the carriage along the track in a bi-directional manner. This dual pawl-lever 

system enables the ratchet to function in two directions unlike a traditional ratchet. A shell covers the carriage and provides a 

rotational degree of freedom between the thumb and carriage using a spring-loaded toothed mechanical interface. All features 

of the bi-directional adduction rail can be manipulated in a unilateral fashion. Finally, a variety of shell designs enables the 

fixturing of different prosthetic thumb options onto the adduction rail. 

  

Figure 2: (Left) Rendering of adduction rail prototype with design features highlighted. (Right) Physical adduction rail 

prototype with Point Thumb attached. 

Initial prototypes of the adduction rail were produced using metal laser sintering additive manufacturing techniques. The 

use of additive manufacturing methods enables the creation of internal mechanisms and unique toothed profiles which are used 

throughout the adduction rail. Hand tools were used to post-process the printed components which were then assembled into 

functional prototypes using other off-the-shelf springs and fasteners. Prototypes were provided to collaborating clinicians in 

order to conduct initial case studies of the Point Thumb and adduction rail. 

CASE STUDY 1 

Presentation - The subject is a 61-year-old right hand dominant male. He owns and works in an industrial metal shop. His 

left thumb was amputated at the carpometacarpal (CMC) joint due to trauma in 2002. He has not used a prosthesis before, due 

to limited device designs for his level of amputation and has adapted well to life without his left thumb. He reports only having 

issues with controlling two-handed tools and playing guitar. He desires a heavy-duty thumb component for his work 

environment and to reduce the over-use syndrome he has begun to experience in his right hand/arm.   

Treatment – The patient was fit with a partial hand socket, a static Point Design thumb, and the adduction rail prototype 

(see Figure 3). He was immediately impressed with his ability to hold large objects (tube of cleaning wipes and a tissue box). 

Smaller objects were a bit more troublesome to grasp (screwdriver handle and a screw). The patient was able to use the device 

for at least three weeks both at work and at home. 

Shell with mounting 
locations 

Toothed track for 
adduction motion 

Release lever 

Spring-loaded locking 
rotation mechanism 
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Figure 3: The adduction rail prototype and Point Thumb mounted to the partial hand socket. 

Outcome – Patient reported, remotely, that he has liked the thumb but has not been able to get to the office for in-person 

follow-up due to illness in the family. Additional follow-up for this patient will be conducted in the coming months to collect 

more feedback and some outcome measures. As seen in Figure 3, one of the challenges with this fitting was the patient’s 

presentation and the fitting of the adduction rail track close to the residuum. This issue was addressed in the next iteration of 

the device that was used in the case study in the following section and the fitting was significantly improved. 

CASE STUDY 2 

Presentation – The patient is a 45-year-old female who sustained a workplace injury in 2010 resulting in the amputation 

of her left thumb at the carpometacarpal (CMC) joint. The injury also resulted in a long transradial amputation of her right 

hand. At the time of the evaluation, the patient reported using various transradial prostheses but had not received a prosthesis 

for the left thumb. Prior to the accident she was right-handed but has since relied heavily on her left hand for activities of daily 

living. Her left hand became the dominant side, capable of hook and cylindrical grasp paired with extreme wrist flexion and 

fine motor grasp between index and middle digits via MCP adduction. She is the primary caretaker of her home, performing 

most of the upkeep, including: lawn care, gardening, caring for chickens and large dogs, cooking, sweeping, dusting, shopping, 

etc. She has resorted to compensatory strategies and modified tools to continue performing as many of her ADL’s as possible, 

but reported significant overuse symptoms and a heavy reliance on others for assistance. 

Treatment – Due to the variability of the patient’s daily tasks, a passively positionable thumb and novel adduction rail 

were recommended to improve her grasp security with delicate objects, as well as heavy duty – outdoor activities. The adduction 

rail prototype would allow her to manually maneuver the thumb in various opposed and non-opposed positions. The patient 

was fit with a trial prosthesis that included a custom high temperature vulcanized (HTV) silicone socket with a vivak frame. 

The adduction rail prototype and Point Thumb were mounted on the frame and aligned in a manner that gave the patient access 

to as many grasp patterns as possible. 

 

   

 

 

   

 

Figure 4: Patient demonstrating the ability to achieve a variety of oppositional grasps to hold various objects as 

well as a flat hand posture to maximize use of the intact digits. 
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Outcome – The patient immediately saw functional benefit of the prosthesis in the clinic. She demonstrated the ability to 

position the thumb and rail with both her right transradial prosthesis and distal end of her residual limb. The patient used the 

prosthesis for approximately 3 weeks. She reported using the prosthesis 3-5 hours at a time, with the longest duration being 8 

hours. She found it to be most useful in carrying heavy items such as buckets of water, chicken feed, and dog bowls. Inside the 

home she found immediate benefit when holding anything with a handle, including brooms, vacuum cleaners, pots, pans, duster, 

paint brush, and a paint roller. She reported significant benefit in having the ability to modify the adduction angle to best 

position the thumb according to the object being grasped. Due to her being so well adapted to using her remaining digits for 

fine motor tasks, she appreciated the ability to move the thumb to a non-opposed position so it would not interfere, especially 

when typing and using a computer mouse. A definitive prosthesis will be provided and continued follow up including outcome 

measures are planned. 

CONCLUSION 

Thumb amputations, particularly at the CMC joint, present a variety of complicated functional, psychological, and 

occupational challenges. Restoration of the adduction and rotational degrees of freedom of the thumb is important for 

facilitating most grasps used in performing ADLs. The prototype adduction rail system presented here, in combination with the 

Point Thumb, allows for a robust thumb prosthesis that provides for flexion, extension, adduction, and rotation of the thumb. 

The two case studies presented here illustrate the need for such a device in that a traditional statically mounted thumb would 

limit the patient’s ability to perform a number of key functional grasps. In both cases, use of the adduction rail and Point Thumb 

allowed patients to achieve their functional goals, ranging from metal work to caretaking activities. These positive early trial 

fittings indicate that the adduction rail system provides significant benefits to patients with CMC level amputations. 
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ABSTRACT 

Thumb amputation presents a significant challenge for 
people due to the thumb’s importance in creating stable 
functional grasps. Most thumb amputations are a result of 
trauma and most people with these amputations work in 
heavy manual labor occupations. The lack of many durable 
and functional prosthetic devices has caused many of these 
people to change or lose their jobs. This can lead to 
significant psychological and quality of life issues. 

Here we present three different case studies of patients 
with metacarpophalangeal (MP) joint level thumb 
amputations being fit with a heavy duty ratcheting 
mechanical thumb prosthesis, the Point Thumb. The Point 
Thumb features anatomical flexion at both the MP and 
interphalangeal (IP) joints, a virtual MP joint center for better 
anatomical joint alignment, heavy duty metal construction, 
10 different lockable positions, and the two methods of 
unlocking to allow for unilateral use. The first case is a 
patient with multiple digit amputations who desired to return 
to a manual labor job. The second case is a patient with an 
amputation of his dominant thumb who desired to improve 
effectiveness performing activities of daily living (ADLs). 
The third case is a patient with a left thumb amputation who 
desired to lift heavy objects to continue his hobbies and work. 
This patient had previous prosthesis experience and found the 
Point Thumb to be more functional than a cosmetic 
restoration or the TITAN Thumb. In all cases, the Point 
Thumb allowed patients to achieve their functional goals. 
These cases highlight the unique challenges present with 
thumb amputation and demonstrate the potential of the Point 
Thumb to provide users with a robust prosthetic thumb 
capable of handling heavy manual labor occupations. 

INTRODUCTION 

Approximately 500,000 people in the United States are 
currently living with an upper limb amputation [1]. About 
92% of upper limb amputations are of the hand, finger, or 
thumb [1] and an estimated 45,000 new hand and finger 

amputations occur every year [2]. About 83% of these 
amputations are a result of trauma [1], [3]. The majority of 
these amputations are of fingers, 73%, with thumb 
amputations making up only 16% [4]. However, the loss of a 
thumb is far more significant than the loss of a finger; an 
amputation of the thumb at the MP joint leads to 40% 
impairment of hand function and 22% whole body 
impairment [5]. Additionally, the thumb is required to 
perform all but one of the most common grasps used to 
perform activities of daily living (ADLs) (Figure 1) [6]. Not 
only does the loss of a thumb create tremendous functional 
challenges, it can also create psychological challenges 
including depression, anxiety, social isolation, and low self-
esteem [7], [8]. Despite the obvious importance of the thumb, 
recent studies have shown that the replantation rate for thumb 
amputations is declining [9] and patients are rarely fit with a 
prosthetic device of any kind [10].  

 
Figure 1: Most common grasps used to perform ADLs [6] 

BACKGROUND 

Clinical Significance 

The thumb plays a critical role in hand function as it 
provides the primary source of opposition in nearly every 
functional grasp [6]. Thus, the nearly 74,000 people in the US 
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with thumb amputations face significant functional 
challenges [1], [4]. For the thumb, an amputation at the MP 
joint leads to 22% of whole body impairment [5]. This degree 
of functional impairment can lead to job displacement as 
many of these amputations occur in heavy manual labor 
occupations which can no longer be performed after the 
amputation (Figure 2).  

 
Figure 2: (Top) Work performed prior to partial hand amputation. 
(Bottom) Job status after receiving partial hand amputation [11] 

Prosthetic Options 

There are several prosthetic options currently available 
for people with thumb amputations. In general, they can be 
sorted into four categories: cosmetic, body-powered, 
passive/positional, and externally powered (Figure 3).  

 
Figure 3: Overview of prosthetic solutions for thumb amputations. 
(a) custom silicone thumb (stamos and braun prothesenwerk) (b) 

livingskinTM (Ossur) (c) X-Thumb (Didrick Medical) (d) 
ThumbDriver (Naked Prosthetics) (e) VINCENTpartial passive 

(Vincent Systems) (f) TITAN Thumb (Partial Hand Solutions) (g) i-
Digits Access (Ossur) (h) VINCENTpartial active (Vincent 

Systems) 

Cosmetic devices, such as livingskinTM (Ossur), are 
mostly an aesthetic option and provide limited functionality. 
Body-powered devices, such as the X-Finger (Didrick 
Medical) and the ThumbDriver (Naked Prosthetics), are more 
functional by providing active flexion and opposition. These 
devices are limited, however, by their reliance on a custom 
fit and limited grip force. Passive/positional devices, such as 
the VINCENTpartial passive (Vincent Systems) and TITAN 
Thumb (Partial Hand Solutions), provide adjustable flexion 
and opposition so are generally more functional than 
cosmetic solutions. These devices, however, often require the 
use of the user’s contralateral hand to position the device. 
Externally powered devices, such as the VINCENTpartial 
active (Vincent Systems) and i-Digits Access (Ossur), are 
controlled using myoelectric signals and provide active 
flexion, manual or active adduction, and active opposition. 

Durability and intuitive control systems are generally a 
challenge with these types of devices.  

Table 1 provides a comparison of the different prosthetic 
options available in terms of their range of motion. The 
impairment values are calculated using the American 
Medical Association (AMA) guide for evaluating upper 
extremity impairment [5]. This comparison does not factor in 
issues like loss of sensation, device durability, and device 
ease of use, all of which have a significant role in device 
adoption and retention. Even so, this shows that large 
functional gains can be made by simply including flexion at 
one or two joints.   

Table 1: Thumb prosthesis functional comparison from the 
perspective of digit and hand impairment remaining after fitting 
the prosthesis. 

Prosthesis Examples Impairment* 
Digit Hand 

No Device --- 100% 40% 
Static Opposition Post livingskinTM 55% 22% 

MP Flexion TITAN Thumb 37% 15% 
MP and IP Flexion Point Thumb 31% 12% 

MP Flexion and 
Radial Abduction 

VINCENTpartial 
passive 27% 11% 

MP Flexion and 
Adduction 

i-Digits Access1 
VINCENTpartial active2 17% 7% 

1Adduction is passive, 2Adduction is active 
*Does not include impairment due to lack of sensory information 

As durability is a key issue for people desiring to return 
to work in heavy manual labor jobs, body-powered and 
passive/positional devices are generally preferred. Despite 
this preference, there are still limited options for heavy-duty 
devices and thus new devices must be developed. 

Point Thumb 

The Point Thumb, by Point Designs, is a new heavy-duty 
passive/positional device with 10 different lockable positions 
in flexion and two degrees of freedom (DoFs) (Figure 4).  It 
is the only device that features motion at the IP joint to 
achieve anatomical flexion as well as the only device to 
feature a virtual MP joint center to achieve anatomical joint 
alignment. With two methods of unlocking the ratchet 
mechanism, it is also able to be used unilaterally. 

Figure 4: (a) Rendering of Point Thumb prototype with design 
features highlighted. (b) Physical Point Thumb prototype 
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CASE STUDY 1 

Presentation 

The first patient is a 49-year-old male who sustained a 
workplace injury resulting in a partial hand amputation of the 
left 1st-3rd digits at MP joint and 4th digit distal to IP joint.  At 
the time of the initial clinical evaluation he and his wife were 
caring for 7 foster children including 2 infants. He has 
seasonal work as a firefighter which he aims to return to.  He 
is also considering returning to his previous job as a laborer 
which requires handling tools, lumber and heavy bags of 
supplies.   

 
Figure 5: (Left) Patient’s presentation and prosthesis with Point 
Thumb, two Point Digits, and one Point Partial. (Right) Patient 

lifting a weight with prosthesis. 

Treatment 

Due to the ruggedness of his occupational goals, 
passively positionable digits were recommended to improve 
grasp security.  The intended use of the prosthesis was for 
work and ADLs including his hobby of logging.   Externally 
powered options were contraindicated for his reported goals. 
The Point Thumb was considered a good option due to its 
robustness and ability to flex at the IP joint, which in this case 
was critical for achieving opposition with digits 1 and 2. 

The patient was fit with a partial hand custom high 
temperature vulcanized (HTV) silicone socket and carbon 
fiber frame.  The Point Thumb was used for the 1st digit and 
two full length Point Digits (Point Designs) were used for the 
2nd and 3rd digits.   Additionally, a partial finger prosthesis, 
the Point Partial (Point Designs), was used for the 4th digit by 
creating a separate custom HTV thimble style socket. 

Outcome 

The patient was able to securely hold long handled tools 
and cylindrical items. Pinch grip was made possible by the 
attachment of the Point Thumb mounting bracket to the 
silicone socket rather than the carbon frame. This flexibility 
allowed for some adduction to improve opposition, 
particularly active opposition between the Point Thumb and 
the 4th and 5th digits. 

The patient adapted to use of the prosthesis quickly.  
Within one month the patient reported using the device to 
assist in chainsaw operation as well as use of an axe.  He 
reported wear of the prosthesis up to 12 hours per day without 
issue but with an average of 4 to 6 hours.  

The Disabilities of the Arm, Shoulder, and Hand 
(DASH) standardized outcome measure was used to assess 

prosthesis effectiveness. The patient experienced a reduction 
in DASH score from 22 to 15, which while not meeting the 
minimum clinically important difference demonstrates 
important functional gains from the Point Thumb. 

CASE STUDY 2 

Presentation 

The second patient is a 36-year-old male who sustained 
a right dominant thumb amputation secondary to a workplace 
accident.  He previously worked in corrections and at the time 
of the initial clinical evaluation was considering alternate 
career options.  He did, however, express a desire to return to 
his prior employer in some capacity and for some time.   

While recovering from his injury, he is the primary 
caregiver for his children, while his wife works full time.  He 
has difficulty with numerous ADLs given decreased ability 
to pinch and grasp with his previously dominant hand.  
Measurements taken during hand therapy indicated an 85% 
reduction in hand strength of his dominant hand compared to 
his non-dominant hand.   

 
Figure 6: Patient’s socket with Point Thumb prothesis 

Treatment 

The patient’s goals dictated a digit for opposition that 
would be durable and very strong. His occupation 
necessitated a variety of thumb positions to provide pinch of 
flat lumber as well as grasp of round handles and tools. This 
requirement indicated he would benefit from the Point 
Thumb as it has motion at both the MP and IP joints. 

Outcome 

The patient was fit with a partial hand custom HTV 
silicone socket and carbon fiber frame.  The Point Thumb was 
integrated rigidly into the carbon frame with alignment 
allowing for precision pinch, tripod pinch, as well as 
cylindrical and spherical grasps. More quantitative outcome 
measures will be reported after the patient has used the new 
device for an extended period. 

CASE STUDY 3 

Presentation 

The third trial patient is a 57-year-old male who 
sustained a workplace injury resulting in the MP level 
amputation of the left thumb (Figure 7). At the time of the 
initial clinical evaluation he was working in a construction 
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environment, mainly in carpentry. His main functional goal 
was the ability to grasp objects such as tools and materials 
such as lumber to perform his daily tasks at work, continue 
working on cars as a hobby, and perform ADLs at home.   

 
Figure 7: (Left) Patient's presentation. (Right) Patient using Point 

Thumb to hold a spray bottle 

Treatment 

The patient was initially fit with a custom silicone 
restoration and a passively positional thumb, the TITAN 
Thumb, attached to a dynamic muscle contoured interface.  
An externally powered thumb was contraindicated due to the 
patient’s bulbus distal presentation as well as a dirty and 
possibly wet working environment.   

The patient found that the cosmetic restoration did not 
allow him to grasp heavy objects.  While the TITAN Thumb 
gave the patient increased ability to grasp heavy objects, the 
patient found the need to use his contralateral hand to unlock 
it unacceptable. The Point Thumb was then fit as a 
replacement to the TITAN Thumb and found to correct this 
issue by allowing unilateral use. 

The patient was ultimately fit with a partial hand custom 
HTV silicone socket and carbon fiber frame.  The Point 
Thumb was integrated into a carbon fiber thumb cap that was 
glued to the HTV silicone underneath and allowed for grasp 
of both large and small objects.   

Outcome 

The patient reported increased satisfaction with the Point 
Thumb due to the novel spring back mechanism. This trial 
fitting was very recent and thus the collection of standardized 
outcome measures data is ongoing. Further results will be 
reported after the patient has used the new device for an 
extended period.   

CONCLUSION 

Thumb amputations present a variety of complicated 
functional, psychological, and occupational challenges. Most 
people with thumb amputations work in heavy manual labor 
occupations and the lack of robust prosthetic options up to 

this point prevents many of them from returning to work. The 
Point Thumb is a new robust passively positionable 
ratcheting prosthetic thumb with flexion at the MP and IP 
joints designed for use in heavy-duty work environments. 
The three case studies presented here illustrate the 
complexity of thumb amputation cases and demonstrate the 
viability of the Point Thumb as a robust prosthetic thumb for 
heavy manual labor occupations. In all cases, use of the Point 
Thumb allowed patients to achieve their functional goals, 
ranging from using a chainsaw to carrying lumber. These 
positive early trial fittings indicate that the Point Thumb has 
strong potential and warrants further study. 
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ABSTRACT 

Multiarticulate upper limb prostheses for children remain sparse despite the continued advancement of 
mechatronic technologies that have benefited the adult population. Research in the field of upper limb prostheses is 
predominately adult focused, although rates of pediatric upper limb prosthesis abandonment are inflated when 
compared to adults. The function a prosthesis offers is a driving factor influencing whether a child will continue to 
wear their prosthesis. The current standard-of-care pediatric devices typically offer a single degree of freedom 
open/close grasping function, a stark departure from the multiple grasp configurations provided in advanced adult 
devices. However, as mechatronic technologies continue to advance and multiarticulate devices emerge on the clinical 
horizon, understanding how this technology translates effectively to the pediatric population is essential. This includes 
exploring grasping movements that may provide the most beneficial outcomes as well as effective ways to control the 
newly available dexterity. Currently, no available pediatric research platforms exist that are dexterous and boast open 
access to hardware and programming that allows for the investigation and provision of multi-grasp function. Here we 
present the development of a pediatric research platform. This dexterous pediatric-sized hand offers six degrees of 
freedom and programmable grasping configurations. We present our design metrics, discuss the mechanical and 
electrical design, and provide device performance results through benchmark testing.     

INTRODUCTION 

Upper limb (UL) prosthesis abandonment is a pervasive issue in pediatric populations. In fact, 35%-45% of
children will abandon their device in comparison to adults where abandonment rates are 23%-26% [1]. Adoption of a 
prosthesis requires the device to provide sufficient function and facilitate healthy social interactions to the extent that 
these benefits outweigh the drawbacks of discomfort, device weight, inadequate performance, and unwanted attention 
in social environments [1]. Standard-of-care devices often fall short of meeting these demands. One avenue to
addressing the shortcomings of current pediatric prostheses entails increasing the functionality of these devices which 
may seem a daunting task given that hands move with 27 degrees of freedom [2] allowing for complex manipulations. 
However, nearly all tasks we perform with our hands rely on a limited repertoire of movements, and 6-9 hand grasp 
configurations can account for nearly 80% of activities in home and professional environments [3].  

Numerous advanced adult UL prostheses are available and capable of achieving multiple grasp configurations 
including 4-5 of the top frequently used hand grasps [4]. However, there are limited pediatric devices with the same 
dexterity provide a single degree of freedom open/close prehensile motion with the exception 
of a very few such as the Vincent Young 3, which provides up to 13 individual grasps. Recently, there have been 
experimental or non-clinical pediatric devices developed and reported in literature [5] [9]. However, a common
motivating theme among these designs has been to minimize the device cost, citing the expensive nature of 
commercially available pediatric prostheses. Many of these devices are therefore limited in functionality with 1-3 
actuators [5] [7] and thus a limited inventory of grasping motions is provided.  

Despite current limitations, it is evident that advanced muti-grasp hands are on the clinical horizon for children. 
However, before effectively implementing these devices in the clinic or prescribing them to patients, further research 
and analysis are required to address current gaps in knowledge. For example, it is unknown which grasping motions 
may be most effective to support age-specific childhood play and daily activities. Further, it is unknown how 
conventional adult muscle-based prosthesis control may be translated to this population given that many were born 
with their limb difference and their affected muscles have never actuated an intact limb. However, few to no dexterous 
pediatric upper limb research platforms are available with open access to hardware and software programming that 
enable researchers to begin addressing these current knowledge gaps. 
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Our goal was to design an advanced child-size UL prosthesis with 
similar dexterity to those present in adult devices. We developed a UL 
pediatric prosthesis research platform that is openly programmable 
and capable of performing a multitude of grasp configurations. Here, 
we describe the design and fabrication of the Bionic Engineering and 
Assistive Robotics Laboratory  Pediatric Assistive Ware (BEAR 
PAW, Figure 1), as well as benchmark its mechanical and electrical 
performance.  

DESIGN METRICS 

 Multiple design constraints were adopted to guide the 
development of the BEAR PAW. Firstly, the size of the prosthesis was 
important as a tradeoff exists between size and maximum digit 
actuation; as individual digit actuation increases, the size of the device 
also increases to effectively house the necessary components. To 
accommodate this metric, we referenced 50th percentile 8-year-old 
male and female anthropometric data to proportion our design [10], 
[11]. Our design can achieve 6 degrees of freedom which includes
digit flexion/extension and thumb opposition. Weight is an important 
constraint, especially for children who do not yet have the strength of 
an adult [12]. The mass of an Ottobock Electrohand 2000 for children 

8-13 years old was used as a baseline for comparison ( ). To achieve a lightweight dexterous design, we 
prioritized 3D-printing techniques for the advantages of the material  weight and produced a  device.

Electronics and the corresponding control were developed under two considerations: compact design and ease of
use. An Arduino Pro Mini with a custom break out board mounted inside the wrist was developed to reduce the 
physical size of the electronics. Device communication was enabled via Bluetooth or USB to UART allowing for 
tethered or untethered control. A custom graphical user interface was developed in Processing 3 programming 
language to allow for ease of use through virtual buttons and potentiometers. Further, the device can accept serial 
inputs allowing it to communicate with common data acquisition systems. Together this allows for intuitive device 
control that can be agnostic to a variety of prosthetic control interfaces such as commercially available sEMG systems. 

To define the physical capabilities of device actuation both closing time and force output were considered. Here, 
the time to close should be less than , reflecting values found among commercially available prosthetic systems 
[13]. The BEAR PAW was able to achieve an average 
of  for full hand articulation. Additionally, load 
considerations were selected to facilitate effective 
device performance across multiple grasping motions 
in a research setting. Target grasping force values of at 
least   ( ) were selected as most grasps are 
applied to objects less than this value [14]. Here the 
force output was achieved for multiple grasp 
configurations with corresponding loads ranging from  

  to  . 

Finally, a device cost of less than $1000 was 
selected to promote the accessibility of our system to 
other research laboratories. This was achieved by 
utilizing off-the-shelf componentry and open access 
software for a total raw materials cost of approximately 
$500 USD. The above design requirements, their 
corresponding metric/value, and the values achieved by 
our design are presented in Table 1. These metrics are 
an aggregate of values reported in literature describing 
adult research platforms [15] paired with values 
derived from clinical and engineering discussions. 
 

 
Figure 1. The BEAR PAW: a pediatric 

multiarticulate prosthetic hand with six degrees of 
freedom and programmable grasp configurations. 
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MECHANICAL & ELECTRICAL DESIGN 

Mechanical: The BEAR PAW was developed in the computer 
automated design software SolidWorks 2020 and fabricated using a 
SigmaX R19 3D Printer with PLA material. The hand utilizes six KST-
X08 series servo motors to actuate digit flexion/extension and thumb 
opposition; therefore, it is capable of a multitude of common grasping 
movements. Servo motors are mounted on the palmar and dorsal sides 
of the hand for digit flexion and thumb opposition along with one housed 
inside the thumb for flexion. To actuate the hand, the servo motors and 
synthetic cables follow a common tendon-driven actuation mechanism 
(with the exception of the geared thumb opposition). Here a pulley 
adheres to the servo motor shaft on which the synthetic cable is attached. 
The cable transverses the finger and is attached to the fingertip. When 
the servo rotates in one direction the cable is wrapped around the pulley 
causing digit flexion. Digit extension is achieved via torsion springs built 
into each joint to return digits to their extended positions. 

A novel cable tensioning mechanism is incorporated into each digit 
as depicted in Figure 2. The end of the synthetic cable is attached to a 
string mount that can be translated by tightening the string tensioner screw. Slack in the cable is inevitable and 
therefore the tensioning mechanism allows this to be mitigated. The BEAR PAW also includes silicone padded 
fingertips which aid in grabbing objects. These were made from Dragon Skin Silicone that were poured into 3D printed 
molds of the fingertips. 

Electrical: The electronics enclosed in the hand consist of a 3.3V Arduino Pro Mini with an ATmega328 
microcontroller, and a custom breakout board allowing for power connections and communication with external 
peripherals i.e., the six KST-X08 series servo motors and the HC-05 wireless Bluetooth module. The BEAR PAW 
can also be tethered to a computer by using a USB to UART breakout board and has six independently programmable 
degrees of freedom.   

MECHANICAL & ELECTRICAL CHARACTERISTICS 

The BEAR PAW was attached to a testing rig to obtain the mechanical and electrical characteristics of single-
digit articulation along with 3 of the top 7 generalized hand grasps [14]. The force exerted by the hand, current under 
load, and power draw were captured. To obtain the mechanical force values, we developed a set of force-sensitive 
objects to be grasped by the BEAR PAW. Four custom manipulandum were fabricated to house calibrated SingleTact 
8mm 10N miniature force sensors. An ACS723 current sensor was used to acquire the current load from the servo 

motors during actuation and the corresponding voltage was 
obtained to determine the power draw. These signals were passed 
into a National Instruments USB-6210 data acquisition system 
sampling at  and were stored using a MATLAB script.
An Arduino program was written to actuate each motion over a 5 
second period which was repeated 10 times to collect sufficient 
data [16]. Manipulanda were strategically placed in front of the 
BEAR PAW to capture the mechanical and electrical values
during motion postures. BEAR PAW actuation for each 
manipulandum is displayed in Figure 3 a-d.  

A separate MATLAB script was written to read in the raw 
data for analysis. First, the force and current for each trial were 
converted from voltage via a linear transformation to newtons and 
amperes, respectively. Then each trial was cleaned to discard 
times when the hand was not active thereby collecting 2.5 seconds 
of force, current, and voltage data. The average force, current, and 
power values over the relevant time window were then calculated.

After obtaining the data for all ten trials across hand postures
the averages and standard deviations for the force, current, and

Figure 2. Cross-section of the distal and middle 
phalanx depicting the silicone rubber tip and the 
tendon tension mechanism. The string tensioner 

screw allows for the string mount to move up and 
down (motion given by the blue arrows) so that 

the string to be easily tensioned.

 
Figure 3. (a) Rectangular manipulandum used to test digit 
flexion and thumb opposition. (b) Sphere to test tripod (c) 
Flat edged small cylinder to test prismatic 4 finger grasp. 

(d) Large diameter cylinder to test power wrap. 
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power were calculated. It was found that among 
the motion postures, the forces, currents, and 
power ranged from , 

, and , respectively. 
This is tabulated in Table 2. The force was 
obtained to determine the capacity in which the 
hand can effectively manipulate objects in a 
research setting. Additionally, the current and 
power define specifications for future non-
tethered implementation.  

FUTURE WORK & CONCLUSIONS 

This paper presents the development of the BEAR PAW, an advanced multiarticulate pediatric prosthetic hand 
with similar dexterity to that of adult devices. As such, it has the capability to provide children with more dexterity
through multiple grasping configurations. We 
effectiveness as a research platform. The long-term goal of this work is to refine and release the BEAR PAW as an 
open-source research platform to study pediatric prosthetic use with dexterous devices. In preparation, we plan for 
expanded analyses to capture performance characteristics across a multitude of grasping configurations. Further,  an 
in-depth an
prostheses using the AHAP test [17]. Preparations are currently underway for an open-source release which includes
developing fabrication and assembly guides, building a comprehensive bill of materials, and refining software. 
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ABSTRACT 

Grip force sensory feedback is commonly stated as a 

desirable feature for upper-limb myoelectric prosthetics. 

Many techniques for non-invasive grip force feedback are 

being investigated. However, the choice of force sensor, 

feedback location, and experimental apparatus typically vary 

between research studies, making it challenging to compare 

results. A standardized device where individual parameters 

can be adjusted would allow researchers to evaluate the 

impact of each variable on results. An example of such a 

device is a simulated prosthesis. Simulated prosthesis devices 

enable non-disabled individuals to participate in myoelectric 

prosthesis research experiments while ensuring consistency 

in experimental apparatus between participants. We 

developed a lightweight, modular, and inexpensive simulated 

myoelectric prosthesis capable of delivering sensory 

feedback to fingertips and proximal forearm. We integrated 

mechanotactile feedback devices to deliver modality matched 

feedback to the forearm and somatotopically matched 

feedback to the fingertips. We compared a commercial force 

sensor before and after being encapsulated within a compliant 

material under a variety of loading conditions. The 

encapsulated force sensor outperformed the standard sensor 

in all non-ideal loading conditions by a large margin.  The 

use of this encapsulation technique dramatically increases 

accuracy in sensor readings when loading conditions differ 

from calibration conditions. This device will help facilitate 

myoelectric research by providing a consistent experimental 

apparatus between non-disabled participants for various 

control and feedback-oriented studies.  

INTRODUCTION 

Upper limb amputation results in loss of both motor and 

sensory function of the hand, harming an individual's 

economic, psychological, and social well-being [1]. 

Prosthetic technology attempts to mitigate these effects by 

restoring functionality to the lost limb. Current research in the 

upper limb prostheses field focuses on electrically powered 

devices controlled by the muscle signals in the residual limb, 

termed myoelectric prostheses [2]. Myoelectric devices 

utilize the existing neural pathways in an open-loop fashion, 

without specific feedback on the outcome of the action.  

Upper limb myoelectric prostheses users commonly state 

sensory feedback as a desirable feature, with grip force 

ranking as the highest priority sensory input [3]. Many 

methods of non-invasive grip force feedback implementation 

are being investigated with promising results [4]. However, 

parameters such as feedback location, force sensors, and 

experimental apparatus are typically unique to each 

experiment, making comparisons between studies difficult. 

There is an ongoing need for devices capable of adjusting 

these parameters to allow researchers to evaluate each 

variable independently.  

In previous studies, simulated prosthesis devices have 

been used to investigate myoelectric control [5] and sensory 

feedback techniques [6]. An evaluation of a simulated 

prosthesis device showed that it resulted in motion 

kinematics and performance metrics similar to those found in 

myoelectric users [7]. A Simulated Sensory Motor Prosthesis 

previously constructed within our lab allowed for 

somatotopically matched mechanotactile feedback during 

myoelectric control [8]. However, initial testing with the 

device showed various issues that justified a revision. The 

large size, non-modularity and weight of the device (1.3 kg) 

made it difficult to move naturally, causing discomfort over 

long periods.  

The objective of this work was to optimize the size, 

weight, and comfort of the Simulated Sensory-Motor 

Prosthesis while maintaining the ability to provide sensory 

feedback to both the forearm and fingertips. This allows for 

both modality and somatotopically matched feedback to be 

used on the same experimental apparatus. An additional focus 

was placed on modularity to allow for interchangeable 

components for various user sizes or experimental 

conditions. The device was fit with inexpensive compliant 
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force sensors to measure the grip force of the end effector 

reliably. These sensors were evaluated and compared to 

standard sensors under various loading conditions to ensure 

accurate grip force measurement. 

 

Figure 1: The MSP Overview 

MECHANICAL DESIGN 

Figure 1 shows an overview of the Modular Simulated 

Prosthesis (MSP) that was developed. A wrist and thumb 

support brace (MedSpec, USA) restrains the user’s hand to 

ensure isometric contraction during electromyography 

(EMG) control. This commercially available product is 

designed to be comfortable, lightweight, adjustable, and 

leaves adequate space on the proximal forearm for EMG 

sensors and other devices. Additional finger flexion restraints 

were required to prevent the fingertips from colliding with 

the end effector. This was achieved by extending the existing 

metal supports within the brace with 3D printed PLA 

supports. 

In previous simulated prosthesis devices, the prosthetic 

hand is typically mounted with a distal, radial, or ventral 

offset. Any combination of these offsets places the additional 

weight of the prosthetic hand off the axis of the user’s arm, 

resulting in an undesired torque. Because the human hand 

width is much smaller than its length and breadth, this torque 

is minimized by offsetting in the ventral direction. An 

adjustable offset in the radial direction was also added to the 

MSP to resolve any line of sight issues that may arrive for 

specific tasks. An end effector attachment system was 

developed to attach the prosthetic hand to the brace while 

accommodating a variety of arm shapes and sizes. The 

system consists of a 3D printed bracket that rests midline on 

the ventral surface of the wrist brace and a cable tightening 

system (BOA, USA) that rests midline on the dorsal surface 

of the wrist brace. Attached to the bracket is a 3D printed 

wrist adapter for end effector mounting. The bracket is 

temporarily secured to the ventral side of the arm using a 

large Velcro strip. The cable tightening system is then 

wrapped around to the dorsal side, where 3D printed quick-

connect clips are connected, completing the loop around the 

arm. The interlocking cable system is tightened to create a 

snug fit between the end effector and the participant’s 

forearm to minimize the relative movement of the device. 

A 3D printed, anthropometric, single-degree-of-freedom 

end effector was designed (Solidworks, 2018). The hand is 

driven by a Dynamixel MX-64AT servo motor (Robotis, 

Inc.). The fingers and thumb are actuated simultaneously 

using a linked bar mechanism, giving a gripping aperture of 

100 mm. This end effector has a mass of 298 grams with a 

maximum continuous grip force of 11 N. The total mass of 

the MSP is 691 g with the end effector included, can be 

comfortably worn for 3 hours, and costs less than $1000 

CAD. The end effector, feedback devices, and attachment 

system are all independent units creating a highly modular 

design that can be easily customized to fit specific needs. 

SENSORY FEEDBACK DESIGN 

Sensory feedback is integrated into the MSP using small, 

inexpensive mechanotactile tactors modified from our earlier 

work [9]. The tactor devices use a lightweight Dymond D47 

servo motor (Dymond, USA) with a 3D printed rack and 

pinion system to apply force to the user. We developed two 

mounting systems to apply somatotopically accurate 

feedback to the fingertips, or modality matched feedback to 

the forearm. The tactors are secured to the user with Velcro 

straps. Washable foam provides cushioning to prevent 

irritation to the user. The tactor with the fingertip mounting 

system is shown in Figure 2. The tactors can provide up to 12 

N of force with a throw of 14 mm. 

  

(a) (b)     . 

Figure 2: Mechanotactile Tactor Overview: (a) 

Fingertip Mounting System, (b) Motion Illustration 
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SENSORIZATION DESIGN AND EVALUATION 

Measurement of grip force can be done through small 

force sensors placed on the fingertip of the prosthetic hand. 

Capacitive force sensors have previously been shown to 

perform better than commonly used force-sensitive resistors 

for this application [9]. These sensors are designed to be 

attached to a flat surface, with the force loading evenly 

distributed across its surface area. However, prosthetic hands 

undergo a variety of loading conditions that do not represent 

this ideal situation. Prosthetic fingertips with barometric 

pressure sensors embedded in elastomer [10] have previously 

been shown to provide pressure sensitivity in non-ideal 

loading conditions. It was hypothesized that encapsulating a 

capacitive force sensor in a compliant material would 

disperse the force evenly throughout the sensor, allowing for 

more robust measurement to various loading conditions. 

Methods 

A SingleTact S8-10 capacitive based force sensor 

(SingleTact, USA) was compared before and after being 

encased in Dragon Skin 10NV, a compliant silicone rubber 

based material (Smooth-On, USA). The two configurations 

are shown in Figure 2. A load cell (Omega LCM703 

calibrated to a maximum error of 0.1N) was placed in line 

with an HS-35HD servo motor (Hitec RCD, USA) to apply 

force to the sensor through a PLA indenter. The load cell was 

read using Simulink Real-Time (Matlab 2014a) through a 

National Instruments data acquisition system (NI PCI6259). 

A force was applied between 0 and 10 N in a sinusoidal 

pattern for five total periods, similar to earlier work [9]. 

Loading periods of 0.5, 1, and 5 seconds were tested to 

account for dynamic loading effects. Each measurement was 

repeated three times to ensure repeatability between trials, for 

a total of 9 trials for each condition. 

An indenter was made with a circular flat contact surface 

(10 mm diameter) and covered in a 2 mm thick foam to ensure 

even force distribution over the entire surface area of the 

sensor. Loading of this indenter directly aligned with the 

sensor acted as the ideal condition for both the baseline and 

the encapsulated configurations. All other conditions were 

compared to the ideal condition to evaluate the sensor’s 

ability to adapt to various circumstances. An indenter with a 

10 mm diameter curvature was tested to represent grasping a 

curved surface. The indenter position was moved by 4mm in 

both the proximal and distal directions to evaluate the effect 

of a non-central loading condition. For only the encapsulated 

configuration, a centred applied loading condition at a 15-

degree angle was also evaluated. 

 

 

Figure 3: Loading Curve Comparison Between Various 

Conditions 

The baseline and encapsulated sensors voltage to force 

relationship was calibrated using a 5th-degree polynomial 

curve fit to all trials under the ideal condition. This calibration 

curve was used to predict force outputs under all other 

conditions. 

Results 

The results for all conditions are summarized in Table 2. 

In the ideal condition, both sensors performed within the 

manufacturer’s specifications at root mean square error 

(RMSE) of 2.2% and 2.5% of full-scale range (FS) for the 

baseline and encapsulated sensor. The RMSE of the baseline 

sensor was much more sensitive to changing conditions than 

the encapsulated sensor. The curved indenter condition 

produced a substantial decrease in performance for the 

baseline sensor, giving an RMSE of 36.4% FS. The 

encapsulated sensor was relatively unaffected with an RMSE 

of 2.9% of FS. Similarly, when the ideal indenter was shifted 

by 4mm, the RMSE for the baseline rose to 25.5% FS (distal 

offset) and 15.5% FS (proximal offset). The encapsulated 

sensor RMSE increased to 10.5% FS (proximal offset) and 

7.2% FS (distal offset). Finally, the encapsulated sensor 

showed an RMSE error of 7.6% FS during the 15-degree 

angled loading scenario. Figure 3 shows each sensor’s 

loading curve fit with a 5th-degree polynomial curve. The 

baseline sensor’s loading curves are much more varied when 
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contrasted with the encapsulated sensor, illustrating the 

dependency on environmental conditions. For example, at a 

load of 10 N, the baseline sensor voltage output varies by 0.72 

V (50.7% FS over 10 N) depending on the condition, while 

the encapsulated sensor only varies by 0.11 V (14.4% FS over 

10 N). 

Table 1: Summary of Experimental Results for Grip 

Force Sensor Comparison 

Loading Condition Baseline Sensor 

RMSE (N) 

Encapsulated 

Sensor RMSE (N) 

Ideal 0.22 0.25 

Rounded 3.64 0.29 

4 mm Distal Offset 2.55 1.05 

4 mm Proximal Offset 1.55 0.72 

15 Degree Angle 
Offset 

- 0.76 

SOFTWARE DESIGN 

BrachI/Oplexus, an open-source graphical user interface 

(GUI) designed for myoelectric prosthesis control [11], 

enables the EMG signal interpretation and end effector 

motion.  A microcontroller (Arduino Uno, R3) controls the 

mechanotactile tactors and grip force sensors. Data logging 

capability is enabled at a frequency of 50 Hz. A custom GUI 

(Visual Studio, 2015) was created to communicate with the 

microcontroller for quick customization of tactor parameters. 

CONCLUSIONS AND FUTURE WORK 

A lightweight, modular simulated prosthesis was 

developed with integrated modality and somatotopically 

matched mechanotactile feedback. Grip force sensors were 

compared before and after being encapsulated in a compliant 

material under various loading conditions. In all non-standard 

loading conditions, the encapsulated sensors outperformed 

the baseline sensor. This device will help enable researchers 

to study feedback and control techniques in myoelectric 

prosthetics by providing a reliable test apparatus that easily 

allows for the manipulation of various parameters. 

Future work includes evaluating the performance of the 

MSP to ensure that the device is an accurate representation of 

a myoelectric user and evaluate the effectiveness of various 

sensory feedback techniques. More modular components, 

such as alternative feedback devices of various modalities, 

could be designed to fit onto the device. The device is 

currently tethered to a one-meter long power cable, which 

may be restrictive for some studies. A wireless version of the 

MSP would make the device more flexible. 
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ABSTRACT 

Nine of the top ten reasons that half of arm amputees reject prostheses are related to dissatisfaction with fit and 
comfort, primarily of sockets [1]. Traditional (particularly myoelectric) sockets severely limit range of motion (ROM), 
and create pressure, heat and moisture management, and tissue breakdown issues. Here we describe preliminary results 
from the testing of a new design of transradial frame and socket that combines advanced modern soft athletic shoe 
materials and construction with 3D printed frame counters to create a functionally viable 3D printed arm with 
integrated wrist and variable compliance socket weighing less than two pounds complete with harness and terminal 
device. The system has been used for cross country skiing and indoor rowing, sustaining hours of use in sweaty and 
friction-rich environments. The range of motion of the prosthesis was measured as compared to anatomical, showing 
a 59% improvement over a Veterans Affairs (VA) Hospital-provided self-suspending myoelectric socket. The arm 
and harness can bear tensile loads more than 50 pounds. Custom one-hand operable harness hardware can bear 65 
pounds with a factor of safety of more than three. 

BACKGROUND 

Socket design has changed little in decades and is sorely in need of updating. Much research tends to focus on 
the symptoms, rather than the causes of socket shortcomings. Significant symptoms of the inappropriate use of 
unbreathable materials in socket design include sweat that collects in liners and sockets, and the damage that can occur 
to residual limbs as a result of its retention and continued use, as shown in Figure 1.  

Recent research from the VA, for example, describes the use of a battery-powered device to remove sweat from a non-
breathable hard socket [2]. While materials for upper limb sockets have tended to follow that of legs, the increased 
range of motion requirements of upper limb joints, coupled with tighter radii of curvature and lower soft tissue volumes 
of upper residual limbs remain critical differences. These differences make the traditional hard composite and non-

          
Figure 1: Sweat captured in a custom silicone liner during approximately ten minutes of mountain biking 

(left). With continued use, this can lead to tissue breakdown (right). 
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breathable liner construction of sockets perhaps even less suitable for upper limb sockets than for lower limb. While 
leather lacing sockets were replaced with composites in the 1940s, this can anecdotally be attributed primarily to 
factors such as efficiency in cost and time for providers, rather than in outcome or performance.  

A number of manufacturers have released sockets that include deconstructed traditional frames and include 
flexible fabric components, allowing the adjustment of the shape and volume of the socket, including those produced 
by Lim Innovations and Martin Bionics [3, 4]. By virtue of the flexible components windowed in these sockets, which 
include polymer or fabric panels, and or gel or silicone liners within, these sockets can be adjusted throughout the day 
by the user for comfort. In general, these sockets continue to use non-breathable liners or inner sockets, are not 
available for the upper limb, or have upper limb versions that suffer from the standard limitations of self-suspended 
monolithic sockets (Figure [2]). 

Because of the tapered nature of residual limbs of almost any level, standard suspensions for transradial amputees 
rely on components that extend above the elbow: either a harness including flexible hinges and a backplate, or some 
part of a rigid socket. Self-suspending sockets of monolithic composite material (High Fidelity, Northwestern, 
Meunster, TRAC, etc) all make different compromises about how to balance the security of the suspension with the 
inevitable loss of range of motion caused by the volume limitation on expansion in the cubital fold, the limits of elbow 
relief, and the capture of the humeral epicondyles [5]. Standard harnessed body-powered sockets usually slip to some 
degree to allow full flexion, as the residual limb is forced out of the socket by the expanding tissue at the cubital fold. 
These changes that occur at the elbow of any limb during flexion and extension, intact or residual, are at the root of 
this problem. Any socket at all, particularly one that is of a fixed volume during use (even if it is adjustable), must 
compromise about what happens to the bones as well as to the changing shape of the soft tissue that contains them as 
the bones move within the prosthesis and, indeed, within the skin of the residual limb itself. Figure [3] shows these 
dramatic changes, including in the length of the skin surfaces on the anterior and posterior sides of the elbow (left). 

The posterior length is stretched approximately fourfold on flexion (center), most dramatically right at the olecranon. 
On the anterior side, the majority of the length disappears within the cubital fold (right). As anyone who has marked 

 
Figure 2: Adjustable volume transradial socket from Martin Bionics (left, similar to Chaz Holder’s arm from 

CZ Biomed), RevoFit Transfemoral Socket from Revo Labs (right) 

 

                     
Figure 3: Challenges in securing a transradial limb across the elbow: From extension to flexion, there is a 

significant change in the length of exposed skin on the anterior and posterior, such that the exposed posterior 
length increases approximately fourfold from extension to flexion, while the anterior length is reduced by twice 

the depth of the cubital fold on flexion. 
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the bony prominences of a residual limb for a prosthetic fitting is aware, the locations of all of them with respect to 
the skin surface, particularly the distal tip, depend significantly on the angle of flexion and are not static. The volume 
of the limb similarly varies, and circumferences around the elbow also increase significantly at full flexion. So far, no 
prosthesis for upper limb (or any level of amputation, for that matter), has sought to deal with these challenges by 
maintaining secure contact with the residual limb while adapting dynamically to the changes in skin surface length, 
limb volume, and the orientation of the bone within the limb. 

METHODS 

This research sought to address the deficiencies of current sockets by challenging both their materials and their 
design. We were inspired first by the modern athletic shoe industry, which has undergone dramatic changes since the 
1940s. During this time, these products went from being simply constructed, of canvas and leather, to the complex 
assemblies that they are today. Second, we were inspired by the iconic Apollo EVA spacesuit, surprisingly designed 
by the Platex undergarment company, even as aerospace companies sought to replace their “temporary” soft-goods 
design ultimately consisting of 21 layers of functional fabrics with a science fiction-inspired articulated hard suit [6]. 
It was incredibly important, once we realised that we were essentially designing a form-fitting garment that needed to 
dynamically attach hard components to the body, to think of this process as both garment patternmaking as well as 
product development.  

This proposed design returns the prosthetic arm to a shoe-inspired design, updating the leather construction 
common to both sockets and shoes of the 1940s with the materials and processes developed by the multi-billion dollar 
athletic footwear industry over the intervening 75 years. Modern athletic shoe uppers are now constructed by a variety 
of methods, including “sandwiches” of layers of overlapping cut patterns of materials with different degrees of stretch, 
breathability and wicking, which are combined to create a three-dimensional structure that itself has different 
properties in different places, and which integrates various hard structures, like shanks, arch supports, heel counters, 
and a lacing system.  

This the fourth generation of hundreds of individual prototypes that we have made, representing everything that 
we have learned over the last four years. Significant challenges included finding materials strong, light and cheap 
enough for the hard goods components, the development of the lacing system and the incorporated flexible hinges, 
determining the necessary performance of the socket over different regions of the surface of the residual limb, and 
reconciling those requirements with those of obtainable materials and available performance.  

DESIGN 

The proposed design consists of three major groups of components, shown assembled in Figure [4]. The counters 
(1), like the heel counter of a shoe, “counter” motion in one or several particular directions. These include the forearm 
counters (1.1) which have pads to register the ulna and radius, and for purchase when applying pressure in flexion or 
extension at the distal tip. The elbow counter (1.2), can be thought of as a traditional backplate deconstructed and with 
pads that grab the olecranon fossa and humeral epicondyles. The textile socket (2) is composed of upper and lower 
pieces nested together and containing a collection of pads designed to interface with the counters, as well as the bones 
of the residual limb.  

 

Figure 4: Arm components, including the textile socket, forearm and elbow counters, and the two dynamic 
lacing systems that secure the counters to the limb and socket throughout the range of motion.  
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This version of the arm shows a 59% improvement in range of motion over a traditional myoelectric self-
suspending socket (97 degrees), which is 94% of the patient (the author)’s anatomical 111 degrees. The complete 
system, including arm, harness, and Dorrance 5xTi hook, weighs 0.5 ounces less than a Bebionic hand and wrist, itself 
weighing just less than 2 pounds. The arm has been worn for hours of cross country skiing and indoor rowing, and 
can easily transport all of the heat and moisture from these high friction activities away from the limb to evaporate. 
While the design has yet to be tried on additional patients, we are now confident that it is both possible and worth 
doing, and have several efforts in place to do this. The arm could be used with any fabric sock with integrated 
electrodes for pattern recognition or direct EMG, and we have a concept, but no prototype for such a sock.  
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The socket and pads are firmly secured through sewn connections to the counters. Finally, four separate lacing 
systems, making a total of 10 flexible hinges, are integrated with the textile socket and counters to ensure an intimate 
connection with the residual limb throughout the range of motion. Figure [5] shows how the two dynamic lacing 
systems, which we call the top lace and the hinge lace, adjust themselves throughout the range of motion in order 
to maintain a firm connection between the residual limb and the counters. The top lace does this through its routing 
over the cubital fold, tightening as the limb is extended, reducing volume at the elbow just as the arm does. The 
hinge lace, in contrast, only slightly tightens at flexion, but mainly helps maintain an intimate connection by 
exchanging the length between the anterior and posterior members of the pair on each side of the limb. This (along 
with the pad at the distal tip), ensures that the limb is not forced out of the socket at flexion as often occurs.  

 

 

Figure 5: Diagram showing the changes in tension of the dynamic lace systems throughout (left), and of the 
four hinge crossings of the hinge lace loop, showing how the lace moves through the elbow counter (right). 

RESULTS AND CONCLUSION 
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ABSTRACT 

Optimization of the power consumption in Myoelectric hand prosthesis is a crucial issue that can affect the autonomy of 

the user and the weight of the device. This aspect seems to be barely addressed nowadays. Here we propose a high-level solution 

that can be implemented on a prosthetic hand, which combines a Current Sharing Algorithm and a Battery Management System 

with Optimal Output Current to: i) satisfy the daily requirements in terms of grasps and time, ii) enhance the battery life. This 

solution has been preliminarily implemented on the Mia Hand prosthesis (Prensilia SRL) showing promising results. 

INTRODUCTION 

In terms of consume, when used for biomedical applications, prosthetic hands can be classified as Portable Electronic 

Devices (PED). These are used during daily life for many consecutive hours without having the possibility to recharge the 

supplying power source, which usually consist of a battery pack. This aspect is often underestimated, and the result may lead 

to a poor design of a prosthetic hands which will require a bulky and heavy battery system. It is worth notice that "weight" 

represents one the most critical features for producing a successful and competitive prosthetic. In the design of robotic limbs, 

it is a common practice to take the weight at a minimum[1]. Due to the suspension system, and the external electronics, 

prosthetic devices are felt heavy by amputees even when the weight is similar to the sound limb. 

The selection of the battery should also consider how the provided energy is distributed between the electronic components 

of the prosthetic hand. For the sake of clarity, all electronic components are going to be divided in two categories: a) Fixed - 

all components which power consumption is almost fixed during the operation (i.e. passive elements, microcontrollers, 

amplifier, etc.)1; b) Variable - all components which power consumption may drastically change during time (i.e. power 

converter, drivers, motors, etc.). 

Concern must be address towards this second category in order to prevent unforeseen stress-full situations where huge 

amount of energy is demanded to the battery. A control strategy that does not take into account such dilemma may cause any 

prosthetic device to not be able to satisfy the daily operative time required by a patient or, in the worst-case scenario, may lead 

to battery failure. Since the described problems could ask for a re-design of the prosthetic hand, the objective of this paper is 

to present a high-level solution that can be implemented on any hand already available on the market. The presented solution 

will be divided in two parts: i) Current Sharing Algorithm, and ii) Battery Management System with Optimal Output Current. 

METHOD  

Case study 

The case study we used is a research prosthetic hand (model Mia hand, Prensilia SRL) characterized by a transmission 

mechanism that implements a semi-independent actuation of the abduction/adduction of the thumb and of the flexion/extension 

of the index, by means of a single actuator. Thus, with only three BLDC motors the hand is capable to perform most of the 

grasps and gestures useful in activities of daily living [2]. 

Current Sharing Algorithm 

Current Sharing Algorithms (CSA) are a solution adopted in systems where a common resource, in this case the current, 

must be shared between multiple devices. Examples of current sharing algorithms can be found in many different applications: 

they have become very common in power electronics( [3], [4]), where multiple loads require to be supplied with the same 

amount of current (sometimes also referred as Load Sharing Algorithm), in this cases the CSA tends to make disappear any 

 
1 The current consumed by all components changes during time since it depends on the battery voltage, but in this first 

category variations are so small that can be considered almost negligible. 
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unbalance between load currents, bringing the system to an equilibrium condition. Another application of the CSA can be found 

in the photo-voltaic field [Solar Array], where is used in order to provide energy in a sequential fashion to different points in a 

solar array, therefore optimizing the power efficiency. The algorithm presented in this paper can be seen as a generalization of 

the solutions presented above.  

The Mia hand is a perfect example of why the solution adopted in the power systems described above cannot be exploited. 

In particular, in this hand the major contribute, in terms of grasping force, comes from the thumb, therefore providing the same 

amount of current to all fingers would not represents an efficient solution. It would be preferable to implement a sequential 

strategy similar to that adopted by the solar panel. 

 

Figure 1: Left) Motor currents shared among the motors of the Mia hand exploiting the CSA proposed. Right) Pseudo code of 

the CSA implemented. 

The CSA developed for the Mia hand is presented in Figure 1 and can be described as follow: 

1. An optimal current (𝐼𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑚𝑎𝑥) that the battery is able to provide is estimated. This parameter will be exploited 

by the Battery Management System with Optimal Output Current presented below; 

2. Priorities are assigned to the motors according to the grasp selected by the patient/user (basically the order in 

which motor will move is defined); 

3. The motor with the highest priority starts to move and thus starts to absorb current. The amount of current “left 

or available” (𝐼𝑟𝑒𝑠𝑖𝑑𝑢𝑒 = 𝐼𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑚𝑎𝑥 − 𝐼𝑚𝑜𝑡,1), will determine the limiting current for the second motor in order 

of priority2. 

4. the last item is repeated for all the remaining motors. 

This process can be described as master-slave current sharing, were motor consumes current according to their priority 

with the commune purpose of sharing the source current without exceeding it. 

Battery Management System with Optimal Output Current 

The second part of the solution proposed in this paper aims to find the optimal current that the battery should provide to 

the CSA and that implements a Battery Management System (BMS). BMS are usually implemented in order to monitoring 

values descriptive of the pack’s present operating condition. This is very useful, for example, to determine at priory the 

instantaneous available power that can be supplied[5]. Unfortunately, estimating the parameters needed to design a BMS could 

be time-consuming and expensive. For this reason, it was preferred to empirically measure the discharging characteristic of the 

battery adopted by the Mia hand. To this aim, a series of tests were conducted in which the hand had to perform different type 

of grasps while the battery voltage was recorded. The test results can be described as a series of linearized curves which shows 

the trend of the battery voltage: over repetitions of the same grasps and over different values of supplying current. In order to 

select the optimal current from a set of infinite possible choices, a constrain had to be defined. Thanks to Ian M. Bullock and 

his colleges [6], it was possible to evaluate the number of daily grasps performed by amputated patients. These are around 2500 

grasps, divided between Cylindrical Grasps 40%, Precision 37.6% and Lateral 22.4%. In addition, from [7], [8], it was possible 

to determine the prosthetic daily wearing time, that is between 8 and 12 hours. This information set a target for the autonomy 

of the hand and thus are the target of our algorithm. 

Taking into account such requirements, the optimal solution is the one satisfying the following optimization function: 

 
2 In order to execute this kind of algorithm, the current absorbed by each motor must be measured.  
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objective function:   max
𝐼

 min (𝑉𝑒𝑛𝑑  − 𝑉𝑙𝑖𝑚𝑖𝑡) 

This is a max-min problem, where Vend is the estimated battery voltage level that is “left” once daily requirements have 

been satisfied, while Vlimit is the minimum voltage level guaranteed by the battery. This solution can be also described as follow: 

1. The number of grasps left to fulfil daily requirement are measured; 

2. A combination of the remaining grasps is selected; 

3. For each combination, the voltage left once daily target has been satisfied is estimated; 

4. Between all possible combinations, it is selected the one that permits to consume the highest current (best 

performance) without turning off the battery (battery failure). 

 

Figure 2: Example of application of the BMS with optimal output current3. 

In Figure 2 it is presented a possible scenario where a patient wants to perform a Precision grasp. The battery voltage is 

6V and the minimum operative battery voltage is 5V. In this example, for each grasp, the consumed current could take one out 

of five different possible values. In Figure 2 it is possible to notice that not all the combinations of grasps could fulfil the daily 

target. The red broken line highlights the solution of the optimization problem described above. It is important to notice that 

grasps are ordered by the algorithm as follow: 1) The first grasp type selected is the one requested by the user; 2) The remaining 

grasps are order from the most consuming to the least consuming. 

  

Figure 3 - Left) Battery Consumed Current - CSA vs no-CSA; Right) Grasping Force - CSA vs no-CSA 

 
3 The x-axis is homogeneous, first battery discharge characteristic is presented over the “left” number of grasps (#Grasps) 

then over the “left” resting time (tREST, period in which the hand is wore but not used). 
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RESULTS 

The results of the discussed algorithm are shown in Figure 3. It is possible to notice that the algorithm was able to drastically 

reduce the value of the maximum instantaneous power, measured in terms of maximum consumed current, required during 

grasp, while increasing the force exerted. The reason is that through sharing it was possible to supply the thumb motor, which 

is the major contributor in terms of grasping force, with an higher amount of current while preventing any degrading of the 

other motors performance. 

CONCLUSIONS AND FUTURE WORKS 

The presented work represents a preliminary study for the optimization of battery consume in the field of prosthetic hands. 

For the future it could be useful to: implement a model of the Mia hand battery as described in [5] and to integrate some kind 

of optimal control inside the CSA in order to have a more robust solution. 
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ABSTRACT 

The PSYONIC Ability Hand is a commercially available multiarticulated prosthetic hand with six degrees of 

freedom and sensorized digits. Through using contact reflexes and vibration feedback, users can grasp delicate objects 

without damaging them. We show results that two subjects successfully grasp hollow eggshells and fragile cups 

statistically significantly more often when provided with contact reflexes and touch feedback. 

INTRODUCTION 

The Ability Hand 

PSYONIC has developed the commercially available Ability Hand—a compliant, robust, sensorized prosthetic 

hand to be used by people with upper limb amputations. The Ability Hand is: 

• Multiarticulated – all five digits flex/extend and the thumb rotates both electrically and manually 

• Robust – compliant fingers allow the hand to withstand blunt force impacts to the fingers 

• Lightweight – 460 g, carbon fiber palms make the hand light and strong 

• Fast – using brushless motors with field-oriented control, the fingers can close 90 degrees in 200 ms 

• Waterproof – IP64 waterproof rating, enabling washing the hand in water 

• Sensorized – pressure from the fingertips, fingerpads, and lateral edges maps to a vibration motor 

 

The Ability Hand uses a standard electronic quick disconnect and integrates with commercially available 

control systems (e.g. Coapt Pattern Recognition, OttoBock/RSL Steeper myoelectrodes, etc.). Apple and Android 

phone apps are available to configure the hand over Bluetooth as well as make firmware updates. USB-C charging 

allows the hand to be fully charged within one hour. 

 

Fig. 1 The Ability Hand attached to a socket 
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Sensory Feedback 

Poor manipulability due to the lack of sensory feedback is a leading cause of prosthesis abandonment [1-2]. While 

body-powered prostheses can give users some sensory feedback, these devices are limited in achievable grasps and 

can cause overuse injury in the shoulders of the user. There are several functional advantages to providing sensory 

feedback in a multiarticulated prosthesis, including contact detection and body self-identification [3]. An external 

study by Matulevich et al. [4] shows that users could grasp foam, crackers, and hollowed eggs statistically significantly 

faster (between 1.4x-3.3x) when using contact detection from pressure sensors on a prosthetic hand. Another external 

study by Berke et al. [5] showed users performing tasks more than 15 seconds faster on average when provided with 

contact detection. 

In the Ability Hand, all five digits can be sensorized with four pressure sensors in each digit. The index and little 

fingers have pressure sensors on the distal fingertip, the fingerpad, and two on the outer lateral edges. The thumb, 

middle, and ring fingers typically have pressure sensors on the distal fingertip, the fingerpads, and one on each lateral 

side of the digit. These pressure sensor locations were chosen due to their increased likelihood of contacting objects. 

The sensor providing the highest pressure value is mapped to a vibration motor whose amplitude changes with the 

pressure applied. 

To test the efficacy of the sensory feedback, we recruited two volunteer subjects. The first subject, S1, was a 

male, age 42, with a right proximal below-elbow amputation. The second subject, S2, was a male, age 78, with a left 

distal below-elbow amputation. S1 was fitted with a commercial muscle pattern recognition system developed by 

Coapt that we integrated to use with PSYONIC’s hand. S2 used a custom linear transducer mechanism developed by 

PSYONIC that uses shoulder movements to control opening and closing the hand. 

Subjects S1 and S2 were asked to use the hand at home for 1 week. Immediately prior to and after the home trial, 

both subjects participated in two experiments: 1) a cup grasping task, and 2) an eggshell cracking test. All methods 

were approved by IRB #13920 at the University of Illinois at Urbana-Champaign. Subjects also consented to images 

and videos to be taken during the experiments. Preliminary experiments were performed in Akhtar et al. [6]. 

In the cup grasping task the subjects were asked to grasp ten empty plastic cups. The distance between the outer 

tips of the index finger and thumb was measured to determine the amount of deformation of the cup. This process was 

repeated over 4 conditions: 1) with Touch Feedback and with Visual Feedback, 2) without Touch Feedback and with 

Visual Feedback, 3) with Touch Feedback and without Visual Feedback, and 4) without Touch Feedback and without 

Visual Feedback. The order of the conditions was randomized. These conditions were selected to observe differences 

in grasping performance when providing touch feedback, both with and without visual feedback. 

For the eggshell cracking test participants were asked to grasp ten hollowed eggshells without cracking them. We 

recorded the number of eggshells cracked. Again, the process was repeated under the same four conditions as the cup 

grasping task. When providing touch feedback to subjects, a contact reflex was implemented in the hand that caused 

the hand to automatically stop when contact with the object was made. Fig. 2 shows a typical pressure sensor reading 

when grasping a hollowed eggshell. 

 

Fig. 2 Reading from pressure sensor on the finger pad of the distal index finger when Subject S1 grasped an eggshell. 
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Results from Subjects S1 and S2 across both sessions are given in Table I for the cup grasping task and Table II 

for the eggshell cracking test. For the cup grasping task, there was a statistically significant difference between 

feedback conditions as determined by a two-way repeated measures ANOVA (F(3,3) = 567.7, p < 0.0005). Post-hoc 

tests revealed that the touch feedback conditions (with or without visual feedback) statistically significantly 

outperformed both conditions without touch feedback (p<0.05). Consequently, we conclude that by providing touch 

feedback with contact reflexes users deform the plastic cup significantly less. There were no statistically significant 

differences between sessions, and the session had no significant effect on the condition. 

 

Table I Results from cup grasping task 

 
Session Touch, Visual (mm) Touch, No Visual 

(mm) 

No Touch, Visual 

(mm) 

No Touch, No Visual 

(mm) 

S1 
1 80.3 79.5 37.4 39.4 

2 78.7 82.2 51.4 48.9 

S2 
1 77.3 80.2 38.6 38.9 

2 87.3 89.5 49.5 54.3 

Grand Mean 80.9 82.9 44.2 45.4 

 

For the eggshell cracking test, there was a statistically significant difference between feedback conditions as 

determined by a two-way repeated measures ANOVA (F(3,3) = 21.63, p = .016). There was no statistically significant 

differences between sessions, and the session had no significant effect on the condition. Again, touch feedback with 

contact reflexes resulted in better performance, with less eggshells cracked compared to when no touch feedback with 

contact reflexes was given (with or without visual feedback). 

 

Table II Results from eggshell cracking test 

 
Session Touch, Visual (# 

cracked) 

Touch, No Visual (# 

cracked) 

No Touch, Visual (# 

cracked) 

No Touch, No Visual 

(# cracked) 

S1 
1 0 2 7 9 

2 0 3 6 6 

S2 
1 0 0 7 7 

2 2 1 8 6 

Grand Mean 0.5 1.5 7 7 

 

Fig. 3 shows images of the Subject S1 performing the eggshell cracking test. When touch feedback with contact 

reflexes was turned on, the subject could easily grasp the eggshell without cracking it, even while blindfolded. When 

touch feedback with contact reflexes was turned off, the subject usually cracked the eggshell, even when he could see 

it. Fig. 4 shows Subject S2 successfully grasping the eggshell while blindfolded when receiving touch feedback with 

contact reflexes. 
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Fig. 3 Subject S1 cracking an eggshell when not receiving touch feedback while seeing the eggshell (left), but 

successfully grasping the eggshell when receiving touch feedback while blindfolded (right). 

 

 

 
Fig. 4 Subject S2 successfully grasping the eggshell when receiving touch feedback while blindfolded. 

 

Qualitative feedback from the subjects after the home trials was positive. Subject S1 reported he mostly wore the 

hand during work. Common tasks included holding drinks, driving, shaking hands, and sweeping. He liked the light 

weight of the prosthesis as well as the bionic look. Subject S2 liked the fact that our hand could work with both off-

the-shelf myoelectric systems and a linear transducer system. He used a linear transducer system for the trial that he 

found to perform vastly better than a myoelectric system. He used this mainly to grasp glasses to drink from, for 

exercising on a stairmaster, and for assistance in typing (e.g. holding down the shift button on a keyboard). For 

improvements, he expressed that multiple settings for the pressure sensor contact reflexes would be helpful, as some 

objects require tight grips while others require delicate grips. 
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ABSTRACT 

The validation of myoelectric prosthetic control strategies for individuals experiencing upper-limb loss is 
hindered by the time and cost affiliated with traditional custom-fabricated sockets. Consequently, researchers often 
rely on virtual reality or robotic arms to validate novel control strategies, limiting end-user involvement. Here we 
present a multi-user, low-cost, 3D-printed transradial socket for short-term use that can be custom-fit and donned 
rapidly, used in conjunction with various electromyography configurations, and adapted for use with various residual 
limbs and terminal devices. The check socket was fabricated prior to participants’ arrival, fitted by the researchers 
within ten minutes, and donned in under one minute. It accommodated multiple individuals and terminal devices, and 
its total cost of materials was under $10 USD. Across all participants, the socket did not significantly impede 
functional task performance or reduce the electromyography signal-to-noise ratio. The socket was comfortable enough 
for at least two hours of use. The development of this universal transradial check socket constitutes an important step 
towards increased end-user participation in advanced myoelectric prosthetic research.  

INTRODUCTION 

Up to 50% of individuals with upper-limb loss abandon their myoelectric prostheses [1], often citing unreliable 
control as a critical factor [2]. More dexterous myoelectric control could improve prosthesis acceptance. However, 
validation of new control strategies with end users is limited by the time, cost, and expertise needed to fabricate a 
custom-fit socket with several embedded electrodes. Traditional transradial sockets include only two electrodes and 
require three to four visits with a prosthetist over three to six weeks for $800 to $3,000 before affiliated labor costs 
[3,4]. Due to these constraints, research is often limited to just one or a few individuals with upper-limb loss, often 
working in virtual reality environments or with a robotic arm mounted apart from the user. Other studies rely on intact 
participants or offline analyses with no active human involvement.  

One approach to increasing end-user participation is to reduce cost by using an adjustable socket. Recent work in 
this area has focused on photogrammetry and expandable foams [5, 6]. Though these sockets reduce cost, they still 
require a lengthy fabrication process that must be repeated for each individual. While sockets that are both 
customizable and affordable have been explored, they have yet to be adapted for myoelectric prosthesis use. 

To address these needs, we developed a multi-user, 3D-printed transradial check socket for functional validation 
of new myoelectric control strategies in research settings. The socket can be fabricated by the researchers prior to the 
participants’ arrival, and rapidly fit, donned, and used. We explored its comfort and functionality with a high-count 
surface-electromyography (sEMG) control system. The development of this socket constitutes an important step 
towards expanding the involvement of individuals with upper-limb loss in myoelectric control research. 

MATERIALS AND METHODS 

Device Development 

The multi-user check socket is designed to: i) optimize accessibility and cost; ii) accommodate a wide range of 
data acquisition (DAQ) methods, residual limbs, and prostheses; and iii) ensure durability, functionality, and comfort. 
The 3D-printed socket consists of four customizable struts that attach to a collet, which in turn connects 
to a custom terminal-device attachment that varies for each unique terminal device (Figure 1). A layer of self-adhesive 
wrap between the skin and the socket provides grip, and a second layer of self-adhesive wrap around the socket secures 
the fit. The socket design is available at https://github.com/utahneurorobotics/u-of-u-functional-test-socket. 
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i) Accessibility 

The 3D-printable design of the socket improves accessibility, enabling researchers without prosthetist expertise 
to complete both the fabrication and fitting processes. The socket is 3D-printed prior to the participant’s arrival. Upon 
arrival, the custom-fitting process can be completed within ten minutes, and the socket can be donned in under one 
minute (Table 1), not including electrode placement, as this time will vary depending on the DAQ system. The total 
cost of materials of one socket is approximately $8.00 (Table 2), excluding other 3D-printer costs such as maintenance. 
This contrasts with recent low-cost sockets ranging from $100 to $200 [5, 6]. All components are widely available 
materials. The accessibility of this design is conducive to greater participant involvement, allowing those with 
transradial amputations to rapidly use and validate advanced myoelectric prostheses.  

       

        Table 1: Time Approximation, by Process         Table 2: Cost Analysis, in USD 

Fabrication (3D printing) 6 hours, 30 minutes  3D-printed Components (i.e., filament) $3.50 

Fitting (molding struts) 10 minutes  Hardware (i.e., nuts and bolts) $1.00 

Donning < 1 minute  Self-adhesive Wrap $3.00 

Doffing < 1 minute  Memory Foam $0.50 

   Total $8.00 

ii) Adaptability 

Our socket is designed to be versatile and is compatible with a broad range of control methods, residual limbs, 
and terminal devices. The socket grants access to the skin for various means of control, and the 3D-printed struts can 
be molded around a range of DAQ methods (electromyography, magnetomyography, sonomyography, etc.) without 
affecting fit or comfort. The polylactic acid (PLA) filament allows the struts to be heated in a hot water bath or with 
a heat gun and quickly molded to the unique presentation of the participant’s limb. The adaptability of the 
socket improves the overall participant experience by accommodating limb-volume fluctuations and avoiding any 
painful sites (e.g., bone protrusions, neuromas, wounds). The design is adaptable to other open-source connectors that 
can be printed along with the socket to accommodate a variety of commercially available prostheses. Such adaptability 
is also conducive to improved hand orientation, as the default position of the prosthesis can be adjusted by rotating 
the terminal device attachment within the collet (Figure 1A).  

 

Figure 1: (A) Socket overview. (B) The residual limb is outfitted with sEMG electrodes and (C) wrapped securely in a disposable adhesive bandage. 
(D) After being heated, molded, and cut to the desired length, the custom-fit struts are attached to the collet, and the socket is donned. (E) A second 
layer of adhesive bandage is wrapped around the limb and socket system, and the socket is fit with a myoelectric prosthesis, pictured above with a 
TASKA hand. The 3D-printed components can be removed, reshaped, and reused with subsequent individuals without reprinting. 
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iii) Durability 

The struts are printed flat to ensure structural stability [7] and take their contoured shape only in the custom fitting 
process. PLA offers greater toughness and higher break elongation, break load, and break strength when compared to 
other thermoplastic filaments [8]. The struts are designed to minimize deflection and slipping; a reinforcing layer 
along the top of each strut distributes weight and maintains structural integrity, and surface texture along the bottom 
creates grip. The surface area of the widened struts also helps distribute pressure evenly throughout the socket. Such 
weight distribution is key to supporting loads beyond that of the terminal devices. The weight of the socket is 
approximately 150 g, which is at the low end of the 100- to 420-g range for traditional sockets and low-cost alternatives 
[5, 9]. Incorporating memory foam beneath the greatest load-bearing strut further increases comfort. Altogether, these 
design considerations ensure comfort while promoting greater maximum load and durability.  

Testing 

Before participant recruitment, we tested the mechanical capabilities of the socket. Using a plaster limb replica, 
two modes of extreme-use load suspension were evaluated: vertical and horizontal. Vertical load suspension is most 
prone to slippage, so masses up to 8 kg (approximately twice that of a gallon of water [10]) were incrementally and 
statically hung. The amount, if any, by which the socket had slipped was recorded. The socket was also moved rapidly 
to simulate a dynamic load condition such as going down a flight of stairs. Horizontal load suspension is most likely 
to induce fracture; the same mass was added, and the degree, if any, of downward deflection was measured. 

Three participants with transradial amputations were recruited for functional testing. The participants reported 
their perceived comfort at three time points in the experimental session using a 0-10 Likert scale [11, 12]. We utilized 
high-count sEMG (Ripple Neuro LLC, Salt Lake City, UT) and recorded data while participants mimicked movements 
of a virtual prostheses to train a modified Kalman filter [13] in order to provide myoelectric control. Signal-to-noise 
ratio (SNR) was measured with and without the socket during three movement sets [14]. Performance was evaluated 
via a target-touching task in a virtual environment [15] and the modified box and blocks test (BBT), in which 
participants were instructed to transfer 16 blocks arranged in a grid from one compartment of the box to the other [16].  

Across all metrics, we tested within-participant performance and group-mean performance to interpret our results 
in the context of the larger patient population. All data were screened for normality prior to analyses. We performed 
paired t-tests to compare the socket- and no-socket cases and to compare with reported literature values. 

RESULTS 

Mechanical testing demonstrated socket reliability. Vertical load suspension up to 8 kg yielded no measurable 
slipping in static or dynamic conditions. In horizontal load suspension, less than 1º of vertical deflection was noted in 
the connection between the dorsal-most strut and the collet. This minimal deflection was elastic, as the socket quickly 
reverted to its original orientation once the load was removed. No perceptible fractures resulted from loading. 

Three participants with transradial amputation were recruited for this study. Our socket encountered no difficulties 
accommodating the variance in arm length or circumference across these three individuals (residual limb length, 15 
cm to 20 cm; circumference, 26 cm to 27 cm).  

Comfort remained adequate throughout experimental sessions, but our socket was rated lower than participants’ 
traditional clinically-prescribed socket. Immediately after donning, our socket scored 6.7 ± 1.2 on a 0-10 Likert scale 
(mean ± standard deviation). In comparison, traditional socket scores were reported to be 8.8 ± 1.3. There was an 
imperceptible degradation of comfort over time, with comfort scores of 6.5 ± 1.5 partway through and 5.7 ± 2.1 at the 
end of the experiment. The mean difference of 1.0 in comfort falls within the 2.7-point minimum detectable change 
[12]. Notably, the participant with the lowest reported comfort score remarked that it was still tolerable for multiple 
hours of use. 

Functional testing demonstrated that the socket did not impede performance. SNR was comparable between 
socket- and no-socket cases across all three movements (Figure 2A). Similarly, target-touching performance was not 
hindered by the socket, as quantified by percentage times in target (PTT) (Figure 2B) and root-mean-squared error 
(RMSE) (Figure 2C). Lastly, modified BBT performance with our socket was comparable to literature values, with 
no reduction in the average number of blocks transferred with our socket as compared to values reported for 
myoelectric prosthesis users [17-19] (Figure 2D). Participants (N = 3) transferred 19 ± 3 blocks in 60 s compared to 
13 ± 0 for modified BBT (N = 2) and 21 ± 6 for original BBT (N = 17). 
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CONCLUSION 

We developed a novel, multi-user check socket that can be used to quickly assess myoelectric control with 
individuals with transradial amputation. The socket makes custom myoelectric control more accessible; it can be 
printed in less than seven hours, custom fit within ten minutes, donned in under a minute, and the total cost is 
approximately $8.00. The socket also accommodates multiple individuals without requiring reprinting, adapts to 
volume fluctuations and painful sites, and works with a variety of terminal devices and DAQ methods. Importantly, 
the socket presented here is not intended to serve as a clinical diagnostic check socket, nor is it meant for long-term 
use as a definitive socket; rather, it is best utilized briefly in a research or clinical setting to explore myoelectric control 
with a physical prosthesis. Future work should validate this socket with additional participants and terminal devices.   
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Figure 2: (A) Signal-to-noise ratio (SNR) was not affected by the socket for any movement type (N = 3). (B) For a virtual target-touching task, 
neither mean percent time in the target region (PTT) nor (C) mean root-mean-squared error (RMSE) were significantly different while using 
the socket (N = 3). (D) Modified box and blocks test (BBT) performance (N = 3) was comparable to literature values, with no statistical 
difference from reported values for the original BBT (N = 17). However, performance with the socket was significantly improved from reported 
values for the modified BBT (N = 2). *p< 0.025. 
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ABSTRACT 

Body powered upper-limb prostheses (bpp) have many 

advantages over EMG-controlled, electrically actuated ones 

(myo’s), including mass, reliability, and proprioceptive 
feedback. Despite these advantages, bpp are rejected as 

often as myo’s. Reasons mentioned include mass (despite 

being lower than myo’s), and comfort (especially of the 

harness). In addition, recent research has shown the 

operating forces of bpp being too high. As a result the main 

advantage of bpp – feedback – is overshadowed, and the 

high operating forces negatively influence the comfort.  

Current research at the Delft Institute of Prosthetics and 

Orthotics aims at improving the performance of upper-limb 

prostheses. First results show a promising future for 

prostheses controlled and/or powered by body movements, 

while satisfying the basic requirements for upper limb 
prostheses. 

 

INTRODUCTION 

For centuries mankind has tried to provide people with 

an arm defect with some kind of a replacement for the limb 

parts missing [1]. One of the oldest examples known, dating 

back to 330 B.C, is a prosthetic hand found on an Egyptian 

mummy. This device is a cosmetic hand prosthesis, i.e. 

without moving parts, primarily aiming at the restoration of 

the wearer's outward appearance. Dating from mediaeval 

times and some later ages, several examples of passive 
hands remain. Some of them with a moveable thumb only, 

some with the four fingers moving together in one finger 

block, and others with passive, individually adaptable, 

fingers. In these hands the thumb and finger configuration 

can be locked in a chosen position by the activation of a 

knob. A few examples are the famous hands of Götz von 

Berlichingen [2, 3] and the hands made by Ambroise Paré 

[1].  

The beginning of the 19th 
 

century brings about a 

tentative start with actively operated prostheses. Harnessing 

gross movements of other body segments operates these 

prostheses. Hence, this type of prostheses is called body-
powered (bpp). Examples include prostheses designed by 

Ballif in 1818 [2], by Van Peetersen in 1844 [2], and by the 

Count de Beaufort in 1860 [1], Figure 1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Around 1900 the first attempts to power prostheses 

from an external energy source, most likely to relieve the 

user from the relatively high operating forces in body 

powered prostheses, can be seen. Examples include 

electrically powered prostheses [2, 4], or pneumatically 
powered ones [2, 5]. 

During WWII the idea of using myo-electric signals for the 

control of prostheses was conceived [6]. After extensive 

research and development myo-control evolved into the 

present day EMG-controlled, electrically actuated 

prostheses (myo’s) and is still the subject for many 

researches to try and improve this control method. 

At the Delft Institute of Prosthetics and Orthotics 

[DIPO] three basic requirements for upper limb prostheses 

were established: cosmesis, comfort, and control [7]. 

Judging bpp and myo’s against these requirements it can be 

seen that bpp have many advantages over myo’s, including 
mass, reliability, and proprioceptive feedback. Despite these 

Figure 1 - Prosthetic forearm designed by Count De Beaufort 
in 1860. The hand is controlled by a cable, indicated by O, 

which is attached to a shoulder harness. 
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advantages, bpp are rejected as often as myo’s. Reasons 

mentioned include mass (despite being lower than myo’s), 

and comfort (especially of the harness) [8]. Moreover, the 

functionality of myo’s still lacks behind bpp (with the result 

of the Cybathlon 2016 and 2020 as an example). 
Recent research has shed even more light into why bpp are 

rejected: the operating forces are too high [9-11]. As a result 

the main advantage of bpp – feedback – is secluded, and the 

high operating forces negatively influence the comfort.  

At the Delft Institute of Prosthetics and Orthotics 

(DIPO) current research aims at improving the performance 

of upper-limb prostheses. 

 

METHODS 

Within several ongoing projects DIPO tries to improve 

different aspects of upper-limb prostheses. Four of these 

projects will be highlighted here: 
 

• Natural grasping  

Within this project a body-powered voluntary closing hand 

prosthesis with adaptive fingers, a high pinch force to 

operating force ratio, and a low mass will be designed. 

 

• Self-grasping hand 

The goal of this study is to design a next generation 

adjustable prosthetic hand. This prosthetic hand must be 

able to grasp objects without the help of the sound hand, and 

without the need of a harness or batteries. 
 

• Haptic interface for prostheses control  

This project aims to combine the advantages of externally 

powered prostheses (low operating effort, high pinch force) 

with the advantages of body-control (feedback). The idea is 

to measure movements of the body to control the aperture of 

the terminal device, and to measure pinch forces in the 

terminal device and feed them back to the body. 

 

• Servo mechanisms  

This project aims to enable prosthesis operation with low 

operating efforts. The envisioned servo mechanism uses 
pneumatic energy, as electro-mechanical servo mechanisms 

suffer from a high mass, and are sensitive for water and dirt. 

 

RESULTS 

The current status of the above mentioned project is 

discussed below. 

 

• Natural grasping  

A prototype hand was developed [12]. It has four adaptive, 

under-actuated fingers and a stationary thumb, Figure 2. The 

hand requires less energy (50-160%) of the user compared 

to current bpp-hands, while its mass is only 152 grams. 

Clinical test are ongoing. 

 

 
 
Figure 2 - The prototype of the Delft Cylinder Hand. It has four 
adaptive fingers actuated with two hydraulic cylinders in each 
finger, except for the little finger which has only one hydraulic 
actuator. The springs return the fingers to the open position at 
rest, and partly compensate for the counteracting forces of the 
cosmetic glove (not shown in the picture) as well. The cylinders in 
the hand receive the pressurized hydraulic fluid from a master 
cylinder incorporated in a shoulder harness. 

 
 

• Self-grasping hand 

Among the users of a hand prosthesis, about one-third uses 

a passive device. Nonetheless, little research is performed 

on improving passive hand prostheses [13]. At DIPO an 

innovative passive hand mechanism was designed. This 

hand has articulating fingers and can perform the hook grip, 

power grip and pinch grip. The gripping function is 

controlled indirectly by pushing an object to the hand, or 

directly by pushing the prosthetic thumb against a fixed 

object. The grip force is proportional to the applied push 
force. By releasing the push force, the grip force is locked 

and the object is being held. In order to release the object, a 

button has to be pushed after which the object can be 

released by pushing the object slightly into the hand. The 

hand, Figure 3, has a mass of 130 grams. A commercial 

version of this hand is almost ready for release. 
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Figure 3 – The Self-grasping hand, shown without the cosmetic 

glove. In the right picture, the button to unlock the hand is visible 
on the dorsal side of the hand [www.moveable.nl]. 

 

 

 
 

• Haptic interface for prostheses control  

The designed interface utilizes skin anchors [14], Figure 4, 

connected by sensors and an actuator to record 

force/displacement and to provide feedback from sensors in 

the terminal device.  

 

 
 
Figure 4 – The skin anchors placed on the body of a test subject. 
The cables are connected to the experimental set-up used verify the 
idea behind the haptic interface. 

 

An experimental set-up, Figure 5, showed that the system 

indeed is able to provide input to the terminal device and 

gives proper feedback to the user [15]. Current activities 

include the design of a wearable actuator system. 
 

 
 
Figure 5 – The experimental set-up. On the left the prosthetic 
simulator; in the middle and right part of the figure the master-
slave unit is shown. Also visible are the cables and on the 
foreground, the skin anchors. 

 

• Servo mechanisms  

A hybrid system, Figure 6, was designed that closes a 

voluntary closing terminal device by a Bowden cable as 

usual, and automatically activates a pneumatic servo as soon 

as an object is grasped. The output of the servo is 

proportional to the cable force, with a three-fold 
amplification.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 6 - An overview of the experimental setup. A cable 
(excursion cable) is connected to the force demand valve (FDV). 
The sliding bar will move when the excursion cable is pulled, this 

movement will cause the lever, which mimics a finger of the hand 
prosthesis, to rotate. Once the lever reaches the pinch load cell, 
representing the object to be grasped, the force in the excursion 
cable will rise. This increase in force will cause the FDV to start 
increasing its output pressure, which is connected to the pneumatic 

Sliding bar 
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piston. This will cause the pneumatic piston to start applying force 
on the lever. The same force locks the sliding bar. 
 

DISCUSSION AND CONCLUSION 

The current projects at DIPO all show the future 

promises for upper-limb prostheses. The Delft Cylinder Hand 

is the first hand prosthesis that fulfils most requirements of 

the user: low mass, low operating effort, and proprioceptive 

feedback. The haptic interface shows a promising way of 

avoiding the harness, while maintaining the proprioceptive 

feedback. In combination with the pneumatic servo 

mechanism a prosthesis that combines body-control with a 

low operating effort comes within reach.  
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ABSTRACT 

Prosthetic hand operation often results in high levels of cognitive burden on the user which can lead to fatigue, 

frustration and device rejection. Previous work that quantified this cognitive load relied on subjective questionnaires 

or distraction tasks. We have adapted a protocol capable of real-time, objective, non-distracting assessment of 

cognitive load for use with individuals controlling a myoelectric prosthesis. Here we present this platform to assess 

cortical dynamics during prosthesis use. We describe a custom-built lightweight prosthesis simulator and an 

electroencephalography (EEG) assessment. We also present pilot work that shows how alpha inhibitory activity 

recorded with a wireless EEG system can be used to assess cognitive load. 

INTRODUCTION 

 

Efforts to improve upper-limb myoelectric prostheses often aim to provide a high degree of functionality to those 

living with limb-loss [1]. Despite technological advancement, these devices provide limited capabilities compared to 

intact limbs and impose a high cognitive load that results in fatigue and frustration [2], which can lead to device 

rejection [3]. Measurements to directly evaluate cognitive load are needed in order to further understand how efficient 

visuomotor behaviors develop during prosthesis learning and use. For this, electroencephalography (EEG) is ideally 

suited as it allows the measurement of ongoing neural activity with high temporal resolution. Active processing in 

engaged and task-relevant areas of the brain is reflected by a suppression in the magnitude (power) of oscillations in 

the alpha range (8-12 Hz) [4], [5]. The development of skilled motor performance is characterized by the efficient 

allocation of processing resources to task-relevant areas of the brain [6]. Recently, this approach was used to 

demonstrate a decrease in alpha power detected across the scalp during prosthesis use compared to an anatomical 

hand, reflecting more conscious control [7]. Based on this work, we present a platform to assess brain dynamics during 

prosthesis use. The first section describes a customizable, lightweight myoelectric prosthesis simulator created for the 

platform. The second section describes the wireless EEG equipment and the analysis used in the platform. We 

conclude by showing pilot data of the alpha distribution on the cortex reflecting functional inhibition which can be 

indicative of high cognitive load. 

METHODS AND PILOT RESULTS 

Prosthesis simulator  

A novel, custom built, lightweight (approx. 900 g) 3D-printed myoelectric prosthesis simulator was built (Figure 

1). This device allows for people with intact limbs to control a prosthesis. The University of Alberta’s Handi Hand 

[8] was mounted to a wrist brace with a medial offset, a position chosen to minimize the effect on modulating arm 

kinematics [9] and to reduce visual occlusion of the prosthesis [10]. Two electrodes (Myoware, Advancer 

Technologies) placed on the dorsal and ventral surfaces of the forearm record electromyographic (EMG) activity from 

wrist extensors and flexors to be used for hand control. Force sensitive resistors (Interlink Electronics®, CA USA) 

(FSRs) embedded in the fingertips of the index and thumb of the prosthetic hand detect pressure changes normal to 

the sensor that drive vibrating resonant motors providing haptic feedback to the user.  
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Control 

Signals from the two EMG channels are amplified, 

high pass filtered at 20 Hz and notch filtered at 60 Hz. 

Signals are then rectified and integrated to drive a 

proportional open-close controller. Proportional control of 

the closing and opening velocity of the hand is done by 

mapping the maximal and minimal velocities to the 

maximal and minimal EMG activity recorded. To 

normalize the controller for each participant, they are asked 

to perform wrist flexion and extension maximal voluntary 

contractions (MVCs) for 5 seconds at the beginning of the 

session to determine the maximal amplitude for each of the 

electrodes. Similarly, the minimal activity for flexors and 

extensors is experimentally determined by recording the 

baseline EMG activity of each sensor during a period of 5 

seconds while the arm is resting in the prosthesis  simulator. 

The minimal activity is set to a value three standard 

deviations above the mean recorded activity to reduce 

unintentional activation of the channels. 

Feedback 

Changes in resistance captured by the FSRs at the 

fingertips control two haptic motor drivers (DRV265L, Adafruit Industries, New York, NY) that activate two 

corresponding linear resonant actuators (C10-100, Precision Microdrives, London, UK). These coin motors are in the 

inside lining of the forearm cuff and in direct contact with the skin of the forearm. The amplitude of the vibration of 

the haptic motors is mapped proportionally to the resistance change of the FSRs to represent the force detected at the 

fingertips. The magnitude of the minimally detectable vibration is determined individually for each participant and 

used as the lower edge of the mapping with the FSR signal.  

EEG recordings 

Cortical activity was recorded using EEG sampling at 1000 Hz. The electrodes are positioned on the head based 

on the standard 10/20 Channel system, with all referenced to the left and right earlobe. Data are transmitted wirelessly 

via Bluetooth from the cap directly to a PC and recorded using the software provided by the system manufacturer 

(Cognionics Data Acquisition, Version 3.6). 

Blink and eye artifacts were removed using Principal Component Analysis and visual assessment [11]. EEG 

signals were then band-pass filtered from 0.1 to 100 Hz. Time-frequency decomposition of the signal was performed 

through short-time FFT on Hanning-tapered and zero-padded (up to 2000ms) overlapping segments (50% overlap) of 

500 ms. These windows were recorded from 1000 ms before and after initial contact with the object to assess grasping 

force modulation (total time window of 2000 ms). Alpha power of EEG spectra has been previously used as a proxy 

to quantify functional inhibition of cortical areas [5], [7], [12], [13]. With this model, a greater level of alpha activity 

reflects a higher level of functional inhibition of a brain region [5]. After the FFT transformation, power (μV2) in the 

alpha range (8-12 Hz) was averaged across overlapping FFT segments for each channel and trial. Channels on the 

scalp were divided in 7 functional regions of interest (RoI); left temporal (T7), left central (C3), frontal (Fz), right 

central (C4), right temporal (T8), parietal (Pz) and occipital (O1, O2). Power is then averaged across these channels 

to yield values for each region. Finally, the values are divided by the average baseline value obtained during the resting 

state to obtain an index of change in activity from the resting state [14].  

Using this method, we were able to qualitatively identify high levels of alpha power reflective of functional 

inhibition of the occipital lobe during an eyes-closed recording. The occipital lobe is responsible for the processing of 

incoming visual information [15]. A sample recording from one participant is presented in Figure 2. This increase in 

alpha activity in posterior regions of the brain indicating low cortical activation has been well described since the late 

1920’s [15]. The wireless EEG setup presented here can identify alpha activity changes across the scalp.

Figure 1. Experimental set-up displaying the custom prosthesis 

simulator and the dry-wireless EEG system. During experiments, 

the user’s hand and arm are visually occluded. 
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DISCUSSION 

A common goal in developing new myoelectric 

technology is to increase the clinical effectiveness of 

prostheses [3]. Despite advances in technology, most devices 

impose a high cognitive burden that can result in fatigue and 

frustration [2], and eventual prosthesis rejection [3], [16], [17]. 

Here, we present a platform to assess cognitive load during 

prosthesis use. The development of our prosthesis simulator 

facilitates experimentation with individuals not affected by 

limb-loss, allowing us to increase the statistical power of our 

studies. Furthermore, this system was manufactured using 

light-weight 3D printed parts, allowing for less constrained 

movements compared to previous simulators requiring 

suspension systems to offset the weight [10].  

 Previous work has sought to assess cognitive load during prosthesis use using EEG [18], [19], however, only one 

previous study has displayed an overall reduction of alpha activity across the scalp in during prosthesis use compared 

to use of anatomical hand [7], indicating higher levels of cognitive load compared to the use of the anatomical hand. 

Based on this work, we present a platform aimed to help researchers and prosthesis developers investigate the effects 

of their prosthetic implementations on cognitive load. The advantage of our platform lies in the wireless EEG system 

utilized, as it does not restrict the movement of the user and avoids having large cable artifacts [20]. Furthermore, 

unlike the previous study using EEG to assess alpha activity [7], our protocol also includes a baseline normalization 

step, in which the relative differences in alpha activity between resting state and prosthesis use allows for the analysis 

of alpha changes exclusively due to prosthesis use, and allows for normalization across multiple assessment days [21].  

From a practical perspective, it is important to understand how users develop efficient control of a prosthesis. 

Adaptive learning processes rely on the engagement of appropriate mental resources during practice and performance 

[14], [22], [23], and high levels of cognitive load have been shown to hinder them [22], [24]. As supposed to 

performance-based tests where users can increase their success rate with a higher level of attention and conscious 

engagement, we hope to combine this platform along with them to create a prosthesis-use testing battery evaluate not 

only performance but also user experience and cognitive strain while they learn and use the devices.  Furthermore, 

EEG based assessments can provide insights about the cortical mechanisms responsible for the high levels of cognitive 

load, and drive evidence-based interventions on how to address them. Currently, we are conducting work using this 

EEG based approach to investigate the effects of adding augmented feedback on the cognitive load required to operate 

a myoelectric prosthesis, as augmented feedback could potentially reduce the visual attention and cognitive burden 

required to operate a prosthesis [18]. 
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ABSTRACT  

Increasing a prosthesis user’s sense of agency over their device may lead to improved patient outcomes. Measuring 
agency, however, can be difficult. Widely used questionnaires may be prone to cognitive biases and an established proxy for 
agency, the intentional binding paradigm, can be attentionally demanding. In this study, we present and test a novel 
psychophysical time discrimination task to detect the intentional binding effect, i.e. the perceived compression of the time 
interval between a controlled action and its effect. The task uses a two-alternative forced choice time comparison task to 
avoid the attentional demands associated with temporal estimation using an auxiliary clock display (such as a standard Libet 
clock protocol). We show that the psychophysics protocol can detect the intentional binding effect during voluntary 
movements in a small pilot study (n=4). Participants also completed a standard Libet clock protocol that showed inconsistent 
results. We conclude with a discussion of protocol improvements. The psychophysical time discrimination assessment shows 
promise for use as an objective sense of agency metric suitable for prosthesis users.  

INTRODUCTION 

Users of myoelectric prostheses sometimes reject their devices, a choice that can attributed to a reduced sense of 
embodiment [1]–[3]. Embodiment involves several interrelated components such as the sense of localization, ownership, and 
agency [2]–[5]. In prosthesis users, the sense of ownership is elicited by coherent sensory feedback, whereas the sense of agency 
arises when there is consistent control of the device [1], [6]. Typical hand movements have intact sensation and control, 
generating a sense of ownership and agency, leading to a strong sense of embodiment [6]. However, in a prosthesis user, one 
or both of these contributing factors to embodiment may be deficient dependent on accessible sensory information or the fidelity 
of the control system.  

Sense of agency (SoA), the focus of this work, is defined as the feeling of control over one’s actions, which involves 
distinguishing self-generated actions from actions generated by others [3], [7]–[11]. When an action and its effect are 
temporally and spatially congruent, a stronger SoA is generated; however, when incongruent, the resulting error in sensory 
prediction reduces the likelihood that the SoA will arise [9], [10]. The SoA can still be modulated by other agency cues beyond 
sensorimotor integration such as sensation within the residual limb or the functionality and fit of the device [1], [2], [9], [12]. 

Existing approaches to measure the SoA are susceptible to various limitations and potential biases. Explicit measures of 
agency rely on conscious awareness as individuals directly report their agentic experience during movement trials on 
questionnaires [8], [10], [11], [13]. Subjective questionnaires are prone to both experimenter and cognitive biases through the 
influence of social desirability and impression management, and its heavy reliance on conceptual and evaluative self-awareness 
[7], [8], [14]. Frequently these questionnaires are paired with implicit measures in an attempt to avoid these associated demand 
effects, but implicit methods have not been well adapted to motor contexts. 

The most widely used implicit measure of the sense of agency is the intentional binding paradigm [3], [8], [11], [13]–[17]. 
An intentional binding effect occurs between a voluntary action and its sensory consequence where an individual will perceive 
the time interval to be smaller than it actually was (Figure 1) [6], [8]. This warped time perception is attributed to delayed 
awareness of the active action and early awareness of the consequence, which temporally shifts these elements towards each 
other [11], [14]. Intentional binding is often measured using a clock reading paradigm, such as the Libet clock, in which 
participants report the end of an action-effect trial using the position of a rotating dot. A major limitation of the Libet clock 
approach, especially in motor contexts, is that the individual has to split their attention between the action and the position of 
the clock hand which can bias the estimation of event timing [10]. Attending to the dynamic clock display is visually and 
cognitively demanding, which could lead to reduced engagement in the motor task [14].  
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Figure 1: The intentional binding effect. Active movements are perceived to be temporally shorter than passive movements. 

Here we propose and test a novel implicit measure of the SoA based on the intentional binding effect. We implement a two-
alternative forced choice time discrimination task with an adaptive staircase to estimate the intentional binding-driven time 
compression observed during active movements. The temporal discrimination task between an active and a passive movement 
removes potential subjective bias seen with standard agency questionnaires and eliminates the need for Libet clock reporting, 
which may not be suited to prosthesis user experience assessment due to attentional demands. Here we tested this novel 
assessment and a traditional Libet clock protocol on four participants in a computer-based cursor movement task. This objective 
approach forms the basis for a potentially more reliable assessment of agency for prosthesis users as it provides a new measure 
that avoids limitations associated with previous methods. 

METHODS 

Four able-bodied Acadia University students were recruited for this study (two females, two males). Written informed 
consent according to Acadia University REB was obtained from participants before conducting the experiment. The experiment 
was run using a custom MATLAB program (ver. 2021, The MathWorks, Inc., Natick, Massachusetts, United States). All visual 
stimuli were presented on a 27-inch monitor with 1920 x 1080 resolution. Participants controlled on-screen movements with a 
wireless mouse (Logitech G703) set to 400 dots per inch sensitivity (the Windows mouse sensitivity setting was set as the third 
tick from the left on the linear adjustment slider). A barrier was placed over the participant’s right forearm and hand to block 
visual movement cues of the arm throughout the experiment. Participants wore foam earplugs underneath over-ear noise-
cancelling headphones playing Brownian noise to block any ambient audio cues.  

Experimental Protocol 

While seated, participants moved a small blue square cursor along a line from left to right to hit a red square target 22.4 
cm away. The movement was initiated with a mouse click and concluded with a second mouse click. The experimental protocol 
consisted of the following 5 blocks: 

Block 1 & 2: Familiarization trials of active and passive movements with no Libet clock present. Participants began with 
a training block of 25 cursor movement trials. In Block 2, participants watched 25 cursor movement trials (passive trials) 
recorded during Block 1 played back in a random order by the computer. Each participant’s moving hand and arm were 
obscured from view while they focused on the screen. 

Block 3: Psychophysics method testing. Participants completed an active cursor movement trial followed by a passive 
movement. The passive movement played back by the computer matched the trajectory of the preceding movement except its 
speed was modified. Participants were then asked to select the movement that was slower (i.e., longer duration) (Figure 2 - 1). 
The temporal stretch (or compression) of the passive movement was updated over subsequent trial pairs using an adaptive 
staircase [18]. Staircase parameters were set to determine the 50% discrimination threshold of the just noticeable difference 
(JND) of the magnitude of temporal adjustment between active and passive movements (Figure 2 – 2). The block continued 
until either the adaptive staircase hit 23 reversals, or the participant completed 200 total trials, whichever occurred first. The 
final temporal adjustment reached indicated the participant’s perceived action-effect intervals for voluntary control with respect 
to their perceived action-effect intervals for involuntary control.  

Block 4 & 5: Libet clock testing. Participants were asked to make the same action as before, but now a Libet clock (as in 
[16]) was positioned around the target. During the movement, a black dot rotated around the clock face. After a variable period 
of additional dot rotation following movement completion, participants were asked to estimate the position of the dot when the 
action ended. The difference between the actual movement end time and the clock-reported end time was recorded for each of 
40 trials. In Block 5, participants were asked to watch 40 passive movements (recordings from Block 4 played back in a random 
order) and use the Libet clock to make the same estimation of movement end time.  
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RESULTS 

For three of the four participants, the psychophysics protocol detected an intentional binding effect during active 
movements. Pereived time compression of the active movement compared to the passive movement was more than 156 ms in 
these participants (Table 1). The adaptive staircase seemed to converge to the 50% discrimination threshold as evidenced by 
slopes of the best fit line over the final 8 reversals approaching zero (Figure 3). However, Participant 4’s perceived time 
compression was vastly different (+374 ms). This participant made a mistake on the first JND trial pair selection and made 
comments about the initial difficulty of the task. The slope of the best fit line over the last 8 reversals was largest in this 
participant (Table 1), suggesting that the staircase may have still been converging at the end of their psychophysics block.  

The traditional Libet clock assessment showed inconsistent detection of an intentional binding effect as active trials were 
perceived as similar to or longer in duration than passive trials (Table 1). A coding error resulted in an inaccurate data record 
for Participant 1.  

 
Figure 2. Psychophysical assessment to measure the intentional binding effect. 

 
Figure 3. Representative adaptive staircase to determine temporal discrimination threshold for Participant 1. 

Table 1: Summary of experimental results for Psychophysics and Libet clock assessments 
 Psychophysics protocol Libet clock 

Participant # JND (ms) Slope of last 8 reversals Estimate-Actual (ms) 
1 -363 5.29 N/A 
2 -164 -18.5 +2.9 
3 -156 14.6 +105.85 
4 +374 -29.4 +347.25 
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DISCUSSION 

Here we have demonstrated the feasibility and potential for a psychophysical approach to measure the sense of agency in 
people making movements. A robust intentional binding effect was observed in three of four participants. In the fourth 
participant, the initial task settings seemed to be too difficult for proper psychometric characterization. In an upcoming 
validation study of the protocol, we will add a JND familiarization block of 3 trial pairs and we will adjust the parameters of 
the adaptive staircase to ensure initial task success and increase the average staircase length to improve convergence. 

The traditional Libet clock protocol produced unexpected results: active movements were perceived as longer than passive 
ones. Attentional demands of the task may explain this observation. In active movement trials, participants may focus their 
attention on the moving cursor resulting in delayed observation of the rotating clock. In passive movement trials, participants 
could focus more intently on the clock, reducing any response delays. Traditional Libet studies often involve key presses in 
response to auditory stimuli in which these attentional issues may be a nonfactor [16]. In future work we could test this 
attentional demand hypothesis by tracking gaze fixations during Libet motor trials. An interval estimation method where 
participants are required to verbally estimate the temporal interval between an action and its outcome may be more suitable to 
motor tasks [10], however, our earlier work suggests that similar approaches produce highly variable results [3].   

Our novel psychophysical approach shows promise in objectively measuring intentional binding in a motor context. The 
assessment can be adapted for prosthesis users to provide detailed insight into the sense of agency in patient populations. 
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ABSTRACT 

A sample of 411 individuals with either unilateral 
or bilateral upper limb amputation (ULA) reported 
prostheses engagement when they performed a 
spectrum of common one- and two-handed tasks. We 
compared frequency of performing one- and two-
handed activities by laterality (unilateral versus 
bilateral), by amputation level (for unilateral amputees), 
and by type of prosthesis used (for unilateral transradial 
amputees). A greater proportion of persons with 
bilateral amputations reported engaging their prosthesis 
in both one- and two-handed tasks. Those with more 
proximal amputation engaged their prostheses in fewer 
activities, and persons using myoelectric single degree 
of freedom devices engaged their prostheses in a greater 
proportion of activities as compared to those using other 
device types. 

INTRODUCTION  

Few studies have characterized upper limb 
prosthesis engagement in everyday tasks. Prior research 
suggests that persons with unilateral upper limb 
amputation rely on their non-amputated side and 
perform the majority of daily activities with their non-
involved side. [1] Unilateral combat amputees reported 
using their prostheses during 21-25% of 23 activities, 
with those with more distal limb loss tending to perform 
more activities with their prostheses as compared to 
those with proximal (transhumeral (TH), shoulder level 
(SH)) limb loss. However, this study did not include 
persons with bilateral amputations. A separate study of 
unilateral and bilateral upper limb amputees reported 
that they engaged their prosthesis during 34-36% of 
activities included in the OPUS Upper Extremity 
Function Scale (UEFS). [2]  

While we expect that persons with bilateral limb 
loss would engage their prosthesis in a greater 

proportion of activities, prior work did not stratify the 
sample by laterality, [1] or reported no differences [3]. 
It is likely that the type of prosthesis would impact the 
number and type of activities performed with a 
prosthesis. Myoelectric prostheses, for example, should 
not be exposed to water or harsh environments. 
Additional research is needed to describe prosthesis 
engagement during everyday activities. Such data would 
be useful for informing prosthetic training activities. 
Therefore, the purpose of this study was to characterize 
prosthesis engagement during everyday tasks, 
comparing performance for persons with unilateral and 
bilateral amputation. Further, we compared engagement 
of the prosthesis by unilateral amputation level, and by 
prosthesis type for persons with unilateral transradial 
(TR) amputation. 

METHODS 

The data for this report is a subset of cases collected 
in a large telephone survey. The sample consisted of 
U.S. military Veterans and civilians recruited through a 
variety of sources including VA databases, the Amputee 
Coalition of America, and a private prosthetics service 
company. Participants with major amputation (at wrist 
or more proximal) of at least one upper limb were 
included. Participants from the larger survey were 
included in this report if they were prosthesis users and 
reported information on prosthesis type and activity 
performance with the prosthesis.  

 Respondents shared demographic characteristics, 
amputation history, and current prosthetic device use 
and engagement in everyday tasks. Respondents 
reported whether they performed or attempted to 
perform each of 34 items with the assistance of their 
prosthesis in the past 2 weeks. The 34 items included 23 
items from the UEFS, 5 additional items recommended 
by Jarl [4], and additional items identified by our 
research team as being challenging or relevant to women 
with upper limb amputation. We categorized 11 of these 
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activities as likely to be performed using one hand and 
23 as two-handed activities. 

We stratified the sample by laterality and calculated 
the proportion of each subgroup who completed each of 
the 34 tasks with their prosthesis. We compared the 
proportions using chi-square analyses. We compared 
proportions by amputation level for those with unilateral 
amputation using Kruskal-Wallis tests. We corrected for 
multiple comparisons using the Benjamini Hochberg 
procedure. [5] 

We calculated the proportion of one and two-
handed tasks completed by unilateral and bilateral 
amputees, and for unilateral amputees by amputation 
level, and compared the proportion of tasks completed 
using t-tests and ANOVA.  

We classified the type of prosthesis used as body 
powered, myoelectric single degree of freedom (DOF) 
terminal device, and myoelectric multi-DOF terminal 
device, and compared the proportion of respondents 
who completed each activity with their prosthesis using 
Kruskal-Wallis tests. We also compared the proportions 
of tasks completed by prosthesis type using ANOVAs. 
These comparisons were limited to the sample with 
transradial/wrist disarticulation in order to provide 
robust estimates. 

RESULTS  

The sample for this report included 379 unilateral 
and 32 bilateral amputees. Characteristics of the sample 
are shown in Table 1. Participants were predominantly 
male (81%), white (83%), and not Hispanic (94%). TR 
amputation was most common (66%), followed by TH 
(20%) and SH (6%) levels.  

Table 1: Characteristics of the Analytic Sample (N=411) 

 

Persons with unilateral amputation engaged their 
prosthesis in an average of 24% of unilateral tasks and 
38% of bilateral tasks. While those with bilateral 

amputation engaged their prosthesis in 64% of unilateral 
and 46% of bilateral tasks (Figure 1).  

Figure 1. Box plots showing mean, median and 
distribution of proportion of tasks completed with 

prosthesis by laterality 

 

Figure 2a and 2b. Statistically significant differences in 
task performance by laterality 

After adjusting for multiple comparisons, there 
were statistically significant differences in performance 
of 7 one-handed and 7 two-handed tasks by laterality 
(Figure 2). A higher percent of those with bilateral 

Proportion of Tasks Completed with Prosthesis

BilateralUnilateralLaterality

All TasksTwo-handed TasksOne-Handed Tasks
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Gender N (%)  Mn (sd) 

 Female 79 (19.2) Age 61.8 (14.3) 

 Male 332 (80.8) Race N (%) 

Laterality N (%)  White 340 (82.7) 

 Unilateral 379 (92.2)  Black 32 (7.8) 

 Bilateral 32 (7.8)  Unknown 25 (6.1) 

Amputation level 
(unilateral only) 

N (%)  Mixed 14 (3.4) 

 Shoulder 25 (6.1) Ethnicity N (%) 

 Transhumeral 62 (20.0)  Hispanic 26 (6.5) 

 Transradial 272 (66.2)  Not Hispanic  373 (93.5) 
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Eat with utensils

Write name

Open door with knob

Drink from paper cup

Use key in lock

Brush/comb hair

Wash face
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Figure 2a. One-Handed Tasks

Bilateral Group (N=32) Unilateral Group (N=379)
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Remove dollar from wallet
Pour 12 oz can
Type keyboard

Eat sandwich
Put on socks
Use scissors

Tie shoelaces

Percent

Figure 2b. Two-Handed Tasks

Bilateral Group (N=32) Unilateral Group (N=379)
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amputation (compared to unilateral) completed these 
tasks, except tying shoelaces which had a higher 
completion rate for those with unilateral amputation. 
For persons with unilateral amputation, those with TR 
amputations engaged their prosthesis in an average of 
28% of unilateral tasks and 43% of bilateral tasks as 
compared to those with TH (14% and 26%) and SH level 

amputation (10% and 22%), respectively.  

 

Figure 3a and 3b. Statistically significant 
differences in task performance by amputation level 

Task completion rates varied significantly by 
amputation level for 8 one-handed tasks and 13 two-
handed tasks (Figure 3). For these tasks, a higher 
percentage of the TR amputation group completed tasks 
with their prosthesis compared to those with more 
proximal levels. 

A comparison of task performance by prosthesis 
type (for TR, unilateral amputees only) found that on 
average, body-powered prosthesis users engaged their 
prosthesis in 27% of unilateral tasks and 43% of 

bilateral tasks, compared to myoelectric single DOF 

users (35% and 50%), and myoelectric multi-DOF users 
(24% and 36%), respectively. 

Two one-handed tasks and 6 two-handed tasks 
differed significantly by prosthesis type (Figure 4). 

 
 

 
Figure 4a and 4b. Statistically significant differences in 

task performance by prosthesis type 

DISCUSSION 

This study compared frequency of self-reported 
engagement of the prosthesis when performing one- and 
two-handed activities of bilateral and unilateral 
amputees by amputation level and by type of prosthesis. 

Persons with bilateral amputation engaged their 
prosthesis in more activities as compared to those with 
unilateral amputation. Specifically, persons with 
unilateral amputation engaged their prostheses in 24% 
of unilateral and 38% of bilateral tasks, while those with 
bilateral amputation engaged their prosthesis in 64% of 
unilateral and 46% of bilateral tasks. Our findings differ 
from that of Ostlie et al. who found that prosthesis users 
reported engaging their prostheses in approximately half 
of daily activities with a non-significant tendency for 
bilateral amputees to use their prosthesis in more tasks. 
[3] 

Our study provides new information about the types 
of activities performed by prosthesis users, augmenting 
recent data obtained through accelerometer-based 
activity monitoring that found individuals with 
unilateral TR amputation engaged in bimanual activity 
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Open door with knob

Drink from paper cup
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Figure 4a. One-Handed Tasks

Body-powered (N=178) Myo-single DOF (N=48) Myo-multi-DOF (N=32)
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Lift bulky 15lb bag
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Figure 4b. Two-Handed Tasks

Body-powered (N=178) Myo-single DOF (N=48) Myo-multi-DOF (N=32)
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Figure 3a. One-Handed Tasks

Shoulder (N=25) Transhumeral (N=82) Transradial (N=722)
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Carry laundry basket
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Figure 3b. Two-Handed Tasks

Shoulder (N=25) Transhumeral (N=82) Transradial (N=722)

MEC 2022

191



an average of 4 hours a day, but engaged in unilateral 
activities with their prosthesis for only 20 minutes [6].  

 Tying shoelaces emerged as a commonplace two-
handed activity among those with unilateral amputation, 
along with removing paper currency from a wallet and 
donning socks. Among one-handed activities, eating 
with utensils, opening a doorknob, manipulating a key 
in a lock, and drinking from a paper cup were reported 
with the greatest frequency.  

By comparison, bilateral amputees used their 
prostheses in 64% of unilateral and 46% of bilateral 
tasks. The most common one-handed tasks were eating 
with utensils and writing. Engagement of prostheses in 
two-handed tasks was less common than reported with 
one-handed tasks. Removing paper currency from a 
wallet, pouring a 12 oz. can and typing on a keyboard 
were the most commonly performed tasks. 

While users of TR prostheses reported engaging 
their prostheses in one- and two-handed tasks more 
often than those with more proximal amputations, 
individual from this latter group reported engaging their 
prostheses across a spectrum of tasks (lifting and 
carrying tasks were performed the most). With respect 
to prosthesis type, engagement in both one- and two-
handed tasks was highest for those using single degree 
of freedom myoelectric prostheses. This finding may 
reflect the enhanced grip strength associated with this 
prosthetic design. 

Some persons with ULA may perform everyday 
tasks with only one extremity, or perform them by 
engaging their knees, teeth or other body parts or using 
assistive devices. We did not ask how respondents 
performed tasks, only whether they engaged the 
prosthesis during tasks. We did not ask about non-
prehensile tasks and cannot make conclusions about 
differential engagement of the prostheses in these types 
of tasks. Spiers et al. observed a preponderance of non-
prehensile prosthetic activities in daily activities [7]. 
Further research is needed to determine how prostheses 
are used, and whether there is active prehensile 
manipulation or non-prehensile use.  

SUMMARY & CONCLUSIONS 

Our findings demonstrate that individuals with 
bilateral ULA engage their prostheses in more tasks, 
especially more one-handed tasks as compared to those 
with unilateral ULA. Task performance with a 
prosthesis was reported less often for those with more 
proximal amputation levels than those with more distal 
amputation levels. Lifting and carrying tasks were the 
most common one-handed tasks performed by people 
with more proximal amputation levels. While similar 
patterns were observed across prosthesis type, 

engagement of single degree of freedom myoelectric 
devices was reported with greater frequency than 
engagement with body-powered or multi-articulating 
myoelectric hands. 
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ABSTRACT 

Pattern recognition control uses EMG from the entire residual limb to more intuitively control prosthetic devices. 
However, this requires a more intimate socket fit to maintain contact with these additional sensors. When users 
complain of issues with control, it can be difficult to diagnose if the issue is a need for additional practice and training 
or if there are issues related to the prosthetic fit that need to be addressed. Since pattern recognition allows the 
recalibration of the system by the user in any location, there is the opportunity to use this feature to assist in 
troubleshooting issues remotely.  By analysing the data logging of calibration data in a pattern recognition system, it 
is possible to better identify the cause and potential solution in a remote setting.  

INTRODUCTION 

With pattern recognition (PR), multiple EMG channels can be used as input with all of the information used to 
calculate which “pattern” is being recreated. Since muscle signals do not need to be targeted and isolated, more 
information can be extracted from the user, potentially increasing the ability to control a multi-degree-of-freedom 
system [1]. The user needs to show the system each movement (calibrate the controller), which can be done by 
following prompts on a computer interface or following along with the prosthesis while it is moved through the 
different available movements. EMG is recorded by the controller and the classifier is then calculated. 

For PR to be successful, the EMG channels must maintain good contact with the residual limb. When fitting a 
user in the office or a therapy environment, the EMG quality can be monitored as the user begins to perform functional 
tasks in different planes of movement and adjustment to fit made as needed. However, different environments 
temperatures and weight gain/loss can all affect signal quality.  

When the user lives nearby it can be easy to have them come in for regular rechecks and adjustments; however, 
when a user lives far away, it can be difficult to troubleshoot the issue and identify if the issue with control is related 
to EMG quality or if the issue might be related to the need for additional training and/or a review of the patterns of 
movement associated with each degree-of-freedom.  

As part of a study related to pattern recognition control of a transradial prosthetic system, users from across the 
country were recruited for home trials. During the home trial subjects were instructed to send home logs each week. 
However, there were instances of poor control noted and it was not logistically possible to bring in subjects for return 
rechecks. Since, during pattern recognition calibration EMG data are recorded and used to create the classifier, this 
property of the controller was used to collect data that could be used in a diagnostic manner for evaluation of fit and 
function. A protocol was developed to record information in various positions to allow repairs and adjustment to take 
place without an in person visit. This technique was also used to verify fit prior to beginning home trials. 

METHODS 

Eight individuals with a unilateral transradial amputation were fit with a Coapt pattern recognition system [2] 
passive wrist, and i-limb TMR revolution [3]. The study (including the ability to collect and record EMG data) was 
approved by the Northwestern University IRB. During the calibration process of pattern recognition control, data were 
recorded to be used to generate a classifier as the prosthesis moved through the various movements. The system would 
first collect EMG of the users’ arm at rest (to align with “no movement” of the prosthesis). The prosthesis would then 
cycle through all of the enabled grasp patterns, opening and closing of each grasp 2 times. For this study, all calibration 
data was recorded and stored on the embedded controller for later post-processing. 

Users were provided OT prior to participating in an 8-week home trial to evaluate their pattern recognition control 
of the multiarticulating hand. They were trained to calibrate their prosthesis whenever they felt their control had 

MEC 2022

193



degraded. They checked in weekly using a home log system. Logged issues or calls to the prosthetist/OT over this 8-
week window often needed to be followed up and these issues were often difficult to diagnose. In a clinical setting, 
users would be brought in for a recheck to evaluate fit and function. Since this was not always possible due to distance, 
alternative options were explored.  

Since EMG was recorded for later evaluation during the calibration, a fitting evaluation protocol was designed to 
use this recording for diagnostics. All subjects had a minimum of 3 grasp patterns enabled. During regular calibration, 
muscle contractions are recorded for 2 repetitions of hand open and hand close for each grasp (i.e., 4 cycles per grasp). 
For our users and at least 3 grasp patterns enabled, this allowed for the collection of 13 (no movement plus 4 cycles * 
3 grasp patterns) 3-second data blocks. Users were prompted to perform specific movements in various positions 
during the data recording phases of calibration. The order of movements requested was recorded so that the data 
collected could be mapped to arm position/contraction type. Table 1 shows the protocol developed and used in most 
cases. For these diagnostic trials, when collecting movement and maximum voluntary contraction (MVC) data, 
subjects were instructed to move the arm around in space when the device was moving. When conducted remotely, 
this prompting occurred via phone call/skype to assist with timing. Six participants used the evaluation protocol 
developed to diagnose fit and training issues. Some subjects also performed the protocol in lab as a “check out” of fit 
prior to starting the home trials. 

Table 1: List of prompted movements for each calibration for evaluation of EMG quality 

Arm supported: Regular calibration with the arm supported (resting on a table) 
Arm down at side: Regular calibration with the arm relaxed down at the side (hanging) 
Arm in front of body: Regular calibration with the arm in front (as if shaking hands) 
Arm sweeps and MVC (Maximum Voluntary Contractions) 
During the data collection blocks for this calibration, the subject was prompted as follows: 

1. Arm down at side and contract all forearm muscles at MVC 
2. Arm in front and contract all forearm muscles at MVC 
3. Arm out to side and contract all forearm muscles at MVC 
4. Forearm relaxed and sweep arm from down at side to up to cabinet level and back 

down, diagonally 
5. Forearm relaxed and sweep arm side to side at cabinet level  
6. Forearm relaxed and push in on socket and wiggle 
7. Forearm relaxed and pull slightly on socket 

Subject prompted to doff and re-don system and repeat the following: 
Arm in front of body 
Arm down at side 

 

Data were downloaded from the embedded controller for further processing. In most cases this occurred when the 
arm was sent back by mail (cheaper than flying the user back for an in-person visit) or by downloading to a study 
computer sent to them. A custom Matlab script was written to import the files and create graphs of the 8 channels of 
EMG. Data were plotted with each movement plotted in sequential order (i.e., no movement followed by 
open/close/open/close of each configured grip) with the channels shown 1-8 from top to bottom. The date/timestamp 
of the data was included in the title for reference and custom titles could be applied. Some of the issues (mechanical 
and therapy related) that were possible to diagnose:  
• No issues with EMG (i.e., clean) during normal use but intermittent EMG saturation either in different positions 

or during MVCs: Electrode lift off from contraction or position. Or an intermittent loose wire 
• Constant EMG saturation or noise: Broken/loose wire or consistent lack of skin/electrode contact 
• EMG saturation during muscle contractions: User contracting too hard 
• No EMG noted at all (flatline): broken wire or electrode shorted  
• High baseline noise on one or multiple channels: 60 Hz interference or potential skin/electrode contact issue with 

ground electrode 
• Clean EMG collected but hand did not move properly during calibration: hand requires repairs 
• EMG improperly timed contractions of regular training (contraction only in small part of each window): subject 

needs more training 
• EMG barely detectible for all movements: EMG location not ideal or contractions too light 
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• Clean EMG but user has poor control after recalibration: user needs more training/alternative imaging for different 
grasp patterns 

• EMG after redonning very different than first 2 trials: user needs more practice with repeating proper donning or 
recreating grasp patterns 

RESULTS 

The protocol was used throughout the study to confirm socket fit and EMG quality when subjects were in the lab 
for testing/fitting and also when subjects experienced control issues at home. Figure 1 shows an example of early 
fitting with the pattern recognition system. EMG muscle contractions are noticeable on every EMG channel but there 
is higher baseline noise on multiple channels. This signal noise can occur when electrodes pick up on 60 Hz 
interference or because of poor skin/electrode impedance matching, or intermittent electrode contact of one or more 
electrodes (either domes not fully contacting the skin or loose wired connection).  

  
Figure 1: High baseline noise on multiple channels 

likely due to poor skin/electrode impedance matching or 
ground electrode not fully contacting the skin. 

Figure 2: EMG analysis after arm sent in for 
adjustment. Noise seen on Channel 3 and loose wire 

located inside socket 

 

Figure 2 shows a second example of the evaluation protocol used for remote troubleshooting. The subject had 
complained of poor control and was prompted through the diagnostic protocol prior to sending his arm in for review. 
Upon inspection of the data, channel 3 showed consistent noise across all movements and positions. This EMG contact 
was assessed and it was found that the wire connection inside the socket at the ring terminal to the EMG dome had 
broken during use. Though this failure would likely have been found with a thorough inspection of the device, the 
evaluation protocol made diagnosis and repair much quicker. 

A more complex example can be found in Figure 3. This subject had previously undergone a revision surgery and 
was experiencing continued volume loss during the home trial. It was identified during planned follow up that he was 
having issues with control in some positions. The EMG from the evaluation protocol was compared to the locations 
of the electrode channels within the socket. The 4 images show the data collection for a) arm resting, b) arm at side, 
c) arm in front, and d) channel locations in the socket. When the arm was resting, it appeared that the soft-tissue was 
pulling away from the anterior channel (channel 4) and then pulling away from the posterior channels when the arm 
was extended (channels 3, 7, 8). Spacers were added to increase the depth of compression of the electrode domes on 
these 4 channels and the prosthesis was returned to the user. He reported improved control after return of the device 
and the EMG quality was verified at his next scheduled in person visit. 

Other cases were noted where, upon completion of the evaluation protocol, the EMG quality was good. In these 
cases, the subjects would continue to work with the Occupational Therapist either in person or remotely to identify 
phantom movements that would create EMG unique to each grasp pattern.  

DISCUSSION 

Pattern recognition control has become more common in upper limb prosthetic fittings; however, the increase 
number of EMG channels associated with these systems can make troubleshooting fit and function difficult. It is  
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possible to visually review the EMG when the user is present but if issues arise a way of assessing the issue remotely 
is useful.  

When EMG calibration data is recorded onto the prosthesis, this feature can be used to collect data to assess EMG 
and fit. This protocol was used on six individuals participating in home trials and was useful to diagnose loss of contact 
and broken wires, which were repairable without an in-person visit. In this study we needed to ship the prosthesis back 
to physically collect the data from the arm (or ship a laptop to the user), but if the data were downloaded remotely to 
a secure server it would be possible to identify problems with training or other issues that don’t require repair to be 
completely resolved remotely. Additionally, the ability to remotely download the data would have allowed subjects 
to repeat the series of diagnostic training sessions to confirm that the repairs/socket modifications resolved the issue. 

This evaluation protocol was also useful for confirming fit prior to the home trial by prompting the user to control 
the device in various planes of movement and as a baseline before home trial in case issues would arise later. This 
paper presents work done for a research study, but a similar evaluation protocol would be useful in the clinical 
environment to assist the prosthetist and occupational therapist to determine when it is necessary for a user to schedule 
follow up care.  
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Figure 3: Remote troubleshooting with one subject. The 4 images show the data collection for a) arm resting, b) 
arm at side, c) arm in front, and d) channel locations in the socket. The 8 EMG channels are shown 1-8 from top to 
bottom in a-c. The thin vertical lines delineate where the EMG from the various movements (4 different hand grasp 
patterns) have been concatenated. Each vertical grey band represents 3seconds of data. 
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ABSTRACT 

The Patient Experience Measure (PEM) was 
designed to assess psychosocial experiences of upper 
limb prosthesis users. While the PEM has been 
validated in a national study, differences in PEM 
scores based on participant characteristics have not 
been investigated yet. We present a secondary analysis 
of survey data demonstrating significant differences in 
PEM scores by amputation laterality (unilateral vs. 
bilateral), amputation level, and prosthesis type.   

INTRODUCTION  

The Patient Experience Measure (PEM) is a 
validated tool for assessing psychosocial experiences 
of upper limb prosthesis users consisting of six scales: 
social interaction, self-efficacy, embodiment, 
intuitiveness, wellbeing, and self-consciousness. The 
PEM was initially developed for use for studies of 
sensory enabled prostheses [1] and was subsequently 
refined in a large calibration study using contemporary 
measurement methods [2]. The prior calibration study 
examined structural validity, the ordering of items 
within scales, and the presence of differential item 
functioning by participant characteristics.  However, 
we have not yet reported the summary scores of the 
PEM scales or analyses of the scores within subgroups 
of participants. The purpose of this analysis is to 
quantify and compare the PEM scores of key 
subgroups of interest. Specifically, we examined 
whether differences across the PEM subscales existed 
by prosthesis laterality, amputation level, and 
prosthesis type.  

METHODS 

This study presents a secondary analysis of data 
collected for the PEM calibration study. The sample 
consisted of U.S. military Veterans and civilians 

recruited through a variety of sources including VA 
databases, the Amputee Coalition of America, and a 
private prosthetics service company.  Data was 
collected through telephone survey. 

The PEM subscales query a variety of 
psychosocial experiences of upper limb prosthesis 
users (see [2] for full list of items within each 
subscale). The social interaction scale consists of 11 
items addressing use of the prosthesis in physical 
interactions with others, such as shaking hands. The 
self-efficacy scale consists of 12 items addressing 
confidence in using the prosthesis to perform specific 
types of activities, such as handling fragile or small 
objects. The embodiment scale consists of 5 items 
related to self-attribution of the prosthesis and how it 
interacts with the body image. The 4-item intuitiveness 
scale includes items addressing the naturalness, 
clumsiness, speed, and concentration involved in 
using a prosthesis. The wellbeing scale consists of 6 
items related to one’s sense of wholeness, happiness, 
confidence, relaxation, freedom, and relief when not 
wearing a prosthesis.  Finally, the 4-item self-
consciousness addresses the user’s sense of 
vulnerability, incompleteness, difference from others, 
and shyness when not wearing a prosthesis. Higher 
scores indicate better experience for all scales. 

Scores of PEM scales were calculated for 
subgroups of participants across the following 
characteristics: amputation laterality (unilateral (UA) 
versus bilateral amputation (BA)), amputation level 
for UA only (transradial (TR), transhumeral (TH), 
shoulder (SH)) and prosthesis type (cosmetic (Cos), 
body powered (Bod), myoelectric single degree of 
freedom  terminal device (MyoS), myoelectric multi-
degree of freedom terminal device (MyoM)) Subgroup 
scores were compared using ANOVAs and t-tests.  
Prosthesis type comparisons were limited to the 
sample with unilateral TR/wrist disarticulation to 
provide robust estimates. 
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RESULTS  

The sample for this analysis included 459 upper 
limb prosthesis users. The mean sample age was 61.9 
(14.4) years old, 88 (20%) participants were women, 
and 378 (82%) were white. (Table 1).  Of participants 
with unilateral TR amputation, there were 195 
(65.4%), 53 (17.8%), 34 (11.4%) and 16 (5.4%) who 
used cosmetic, body powered, myoelectric single 
degree of freedom (DOF)  and myoelectric multi-DOF 
prostheses respectively. 

Table 1: Characteristics of Full Analytic 
Sample (N=459) 

 

Statistically significant differences were observed 
in PEM scores of persons with UA and BA (Figure 1). 
Mean and standard deviations of all measures are 
shown by subgroup in Table 2. Specifically, social 

interaction scores were higher among those with BA 
(p=0.0092), while wellbeing (p=0.04) and self-
consciousness (p=0.01) scores were higher (i.e. better) 
among those with UA. 

Distributions of PEM scores by amputation level 
are shown in Figure 2. There were significant 
differences in 4 PEM scales by amputation level: 
Social Interaction (p=0.002), Self-efficacy 
(p<0.0001), Embodiment (p<0.0001), and 
Intuitiveness (p=0.01). In all 4 scales, those with TR 
amputation had the highest scores while those with 
amputation at the SH level had the lowest scores. 
Participants with TH amputation tended to have 
intermediate scores. 

Finally, distributions of PEM scores for those 
with TR unilateral amputation are shown by prosthesis 
type in Figure 3. Only social interaction (p=0.02) and 
self-efficacy (p<0.0001) scores differed significantly 
by prosthesis type. Those using cosmetic devices had 
the lowest scores on these two scales, myoelectric 
multi-DOF users had the highest social interaction 
scores, and body-powered users had the highest self-
efficacy scores. 

DISCUSSION 

This study found statistically significant 
differences in PEM scores by amputation laterality, 
amputation level, and prosthesis type.  Our analyses 
were bivariate only, and further multivariate analyses 
are needed to identify independent predictors of PEM 
scores to control for potential confounding. 

 

 

Gender N (%)  Mn (sd) 

  Female 88 (19.2) Age 61.9 (14.4) 

  Male 371 (80.8) Race N (%) 

Laterality N (%)   White 378 (82.4) 

  Unilateral 426 (92.8)   Black 40 (8.7) 

  Bilateral 33 (7.2)   Unknown 24 (5.2) 

Amputation 
level (UA only) 

N (%)   Mixed 17 (3.7) 

  Shoulder 26 (6.1) Ethnicity N (%) 

 Transhumeral 102 (23.9)   Hispanic 28 (6.1) 

  Transradial 298 (70.0)   Not Hispanic  421 (91.7) 

    Unknown 10 (2.2) 

 

Table 2 PEM scores by subgroups 

  
Social 

Interaction 
(N=390) 

Self-efficacy 
(N=405) 

Embodiment 
(N=406) 

Intuitiveness 
(N=406) 

Wellbeing 
(N=454) 

Self-
consciousness 

(N=454) 
 N  Mn (sd) Mn (sd) Mn (sd) Mn (sd) Mn (sd) Mn (sd) 
Amputation 
Laterality        

  Unilateral  426 49.6 (9.9) 50.0 (9.,9) 50.0 (9.9) 50.1 (10.2) 49.4 (9.7) 50.2 (10.0) 
  Bilateral 33 56.5 (8.3) 53.1 (9.9) 52.7 (10.2) 49.6 (7.7) 45.7(12.0) 45.6 (8.5) 
Amputation level        
  Shoulder 26 44.4 (11.5) 44.7 (12.8) 45.6 (11.6) 45.9 (9.6) 49.6 (11.8) 51.6 (10.2) 
  Transhumeral 102 47.6 (10.7) 46.9 (9.8) 46.7 (9.6) 48.4 (8.7) 49.9 (8.4) 50.0 (9.6) 
  Transradial 298 50.7 (9.3) 51.4 (9.3) 51.4 (9.5) 51.0 (10.6) 49.2 (9.9) 50.2 (10.1) 
Prosthesis type        
  Body-powered 195 50.3 (9.6) 52.4 (9.2) 51.0 (10.0) 51.3 (10.3) 49.1 (10.2) 50.5 (10.0) 
  Myoelectric single 
DOF 53 52.1 (8.7) 51.6 (9.6) 52.5 (8.5) 50.6 (11.1) 49.2 (9.5) 49.3 (10.7) 

  Myoelectric multi-
DOF 34 53.6 (8.8) 51.0 (6.2) 50.8 (8.0) 48.1 (9.8) 49.2 (9.6) 52.0 (9.8) 
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Higher self-consciousness scores (i.e. less self-
consciousness) in those with UA (as compared to BA) 
may be because persons with UA can perform tasks in 
public with their intact hand, limiting the attention 
drawn to their prosthesis. Similarly, higher scores in 
wellbeing may be because those with UA feel less 
impacted by their amputation. However, persons with 
BA had higher social interaction scores than those 
with UA, indicating that they feel more comfortable 
using their prosthesis in social greetings and to 
communicate emotion through touch. This may be 

explained by the increased experience and practice 
they have acquired with these tasks, given that they 
must perform them with their prosthesis, whereas 
persons with UA may predominantly perform them 
with their intact arm/hand, and thus do them 
infrequently.  

 
Figure 1. Violin plots showing PEM scores by laterality 

 
Figure 2. Violin plots showing PEM scores by unilateral amputation level. 
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The finding that persons with TR amputation had 
higher scores in self-efficacy, embodiment, social 
interaction, and intuitiveness is consistent with prior 
studies[3]. These scales reflect, to some degree, 
participants’ experiences using the prosthesis and the 
ways in which they engage the prosthesis to 
accomplish tasks. 

Persons with SH level amputation have limited 
means of control, which may contribute to lower 
overall perceived usefulness and functionality of the 
prosthesis. In contrast, scores on the wellbeing and 
self-consciousness scales, which address experiences 
when not wearing a prosthesis, did not differ by 
amputation level. 

Comparisons by prosthesis type yielded 
significant differences in the social interaction and 
self-efficacy scales. These scales primarily ask about 
active prosthesis use in various tasks. Cosmetic 
prostheses are typically only used for supporting or 
stabilizing, which would explain their lower scores on 
these scales. There was no measurable difference in 
embodiment, intuitiveness, wellbeing, and self-
consciousness subscales for people with unilateral TR 
amputation across prosthesis types, perhaps due to 
lack of sensitivity or potential confounding by user-
relevant factors determining prosthesis choice. A 
variety of factors might explain why a person with TR 
amputation would be prescribed or choose to use a 
given prosthesis type, such as cost, durability, 
aesthetic factors, or reliability. Future analyses may 
identify other PEM score predictors or confounders. 

SUMMARY & CONCLUSIONS 

This study compared PEM by laterality, 
amputation level and prosthesis type.  Findings 
suggest differences in psychosocial experiences that 
can be further explored in future research.    
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Figure 3. Violin plots showing PEM scores by prosthesis type. 
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ABSTRACT 

Evaluating hand dexterity is a critical aspect of assessing novel prosthetic technology and informing patient care. 
Current upper-limb dexterity assessments primarily target gross motor function and do not directly measure the ability 
of an individual to finely regulate their grip force. An increasingly popular test of fine motor function among 
researchers is a fragile-object test, in which participants are instructed to lift and transfer an object while minimizing 
their applied grip force. Here we present another instantiation of this fragile-object test, dubbed the electronic grip 
gauge (EGG). We use the EGG to quantify grip force and transfer rate for intact hands and myoelectric prostheses 
under three distinct conditions: 1) implicit grasping when transferring the object as fast as possible, 2) grasping when 
participants are instructed to minimize their grip force using endogenous tactile feedback and/or indirect sensory 
feedback, and 3) grasping when participants are instructed to minimize their grip force and have auditory feedback 
proportionate to their grip force. We show that a lack of tactile feedback is a significant reason for poor prosthetic 
control, as evidenced by significantly better prosthetic control with auditory feedback. We also show that even with 
supplemental auditory feedback, performance of the prosthetic hand was still substantially worse than the performance 
of the intact hand. These results suggest that artificial sensory feedback can improve prosthetic control, but that 
improvements in mechanical design and/or real-time control are also needed to replicate the dexterity of intact human 
hands. 

INTRODUCTION 

Up to 50% of amputees abandon their prostheses, often citing poor control and a lack of sensory feedback as 
primary reasons [1]–[3]. Clinical measures of upper-limb function typically focus primarily on gross manual dexterity. 
For example, the Box and Blocks test (BBT) is a widely used test of upper-limb prosthesis function in which 
participants transfer small wooden blocks over a vertical barrier from one side of a box to another as quickly as 
possible in one minute [4]. However, the BBT, like many other clinical measures of upper-limb function, does not 
directly measure the ability of an individual to finely regulate grip force, which is a vital aspect of hand control when 
manipulating fragile objects [5]. 

A common variant to the BBT to assess fine motor function involves introducing a “break” threshold to the 
wooden blocks to replicate transferring a fragile object such as an egg. This modification requires the user keeps their 
grip force above the force required to pick up the object and below the force required to “break” the object. 
Instantiations of this fragile-object task have involved metal plates separated by a weak magnetic field [5]–[7], paper 
blocks held together loosely with toothpicks [8], and 3D-printed blocks held together weakly with embedded magnets 
[9]–[11]. A more recent instantiation involves a 3D-printed block embedded with a strain gauge and accelerometer to 
precisely measure the grip force and load force exerted on the object [12], [13]. 

Here we build on these prior studies and introduce a similar instantiation as [12] involving a 3D-printed block 
embedded with a strain gauge and accelerometer, referred to as the electronic grip gauge (EGG). We first present an 
overview of the device design and different testing conditions. Then, we use the instrumented egg to quantify 
differences in the control of myoelectric prostheses and intact hands for healthy participants. We show that both grip 
force and object transfer time are substantially greater for myoelectric prostheses compared to intact hands. We also 
show that providing supplemental sensory feedback (auditory feedback) in proportion to the applied grip force 
significantly reduces prosthetic grip force and transfer time, further supporting the idea that a lack of tactile sensory 
feedback is a primary reason for poor control. This work also provides quantifiable benchmarks for intact hands and 
myoelectric prostheses for this increasingly popular fragile-object test. 
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METHODS 

Device Design 

The EGG consists of a 100-lb load cell (TE Connectivity 
Measurement Specialties), triple-axis accelerometer (Adafruit), and 
wireless microcontroller (Arduino MKR WiFi 1010) contained in a 
3D-printed polylactic acid (PLA) shell (Fig. 1). The microcontroller 
amplifies and streams data from the load cell and accelerometer to 
the computer wirelessly at 100 Hz using the User Datagram Protocol. 
An LED on the microcontroller can be programmatically set to 
visually show the state of the EGG. The base of the EGG can be filled 
with small lead weights to vary the weight of the object between 132 
g and 414 g. The assembled instrumented egg measures 
60.5x42.7x80.5 mm and can be readily grasped by various 
prostheses. An embedded battery provides roughly 2 hours of battery 
life.  

Experimental Conditions 

The EGG can be used under three different test conditions. In the first test condition, participants simply pick up 
and transfer the EGG as many times as possible within one minute while grip force is recorded. This test condition 
provides a measure of the transfer rate, similar to the BBT, and the users implicit grasping force, similar to the 
Grasping Relative Index of Performance [14]. 

In the second test condition, the experimenter sets an upper threshold on the grip force, such that the EGG will 
“break” and emit an audible sound if the participant’s grip force exceeds the threshold. The participants are instructed 
to pick up and transfer the EGG as quickly as possible without breaking it. The difficulty of the task can be adjusted 
by lowering the break threshold or by increasing the weight of the EGG. In this study, the breakpoint was set to 11.2 
N and the device weighed 414 g. The ratio of break force to weight in this study was 0.027 N/g; prior studies have 
used ratios of 0.032 N/g, 0.02 N/g, 0.015 N/g, and 1.34 N/g [7], [5], [9], [11], [8]. Because the EGG does not visually 
deform with increasing grip pressure, the only feedback the participants have regarding their applied grip force is 
endogenous (e.g., proprioception from forearm muscles or efference copy) or indirect (e.g., sounds of the prosthesis 
motor). Thus, this test condition provides a measure of the participant’s innate sensorimotor grasping precision. 

In the third test condition, the participant is again instructed to pick up and transfer the EGG as quickly as possible 
without breaking it. However, in this test condition, the participant is provided with auditory feedback regarding the 
grip force applied to the EGG. That is, a tone is played continuously and the pitch of the tone increases as the applied 
grip force approaches the break threshold. If the break threshold is exceeded, a second tone is played indicating the 
EGG has broken. This test condition also provides a measure of the participant’s grasping precision. Using this test 
condition (continuous feedback) in conjunction with the previous test condition (discrete feedback) provides a way to 
systematically probe the impact of tactile sensory feedback on grasping precision. Significantly greater performance 
with continuous auditory feedback implies tactile feedback is 
impaired. 

Participants and Experiment  

Three neurologically healthy and physiologically intact 
participants volunteered in this study. Participants were between the 
ages of 18 and 21 (100% male). Informed consent and experimental 
protocols were carried out in accordance with the University of Utah 
Institutional Review Board. Participants were instructed to complete 
the three aforementioned test conditions (no feedback, discrete 
feedback, and continuous feedback), ten times each, with using both 
their intact hand and an EMG-controlled prosthesis. Participants 
moved the EGG over a 2-in vertical barrier.  

 
Figure 1: Exploded view of the EGG. The 3D-printed 
shell consists of top, bottom, front and base pieces 
connected with linear guide rails. The load cell and 
wireless microcontroller are housed between the top 
and bottom pieces. 

 
Figure 2: Prosthesis Setup. Participants wore an 
sEMG sleeve around their forearm and held a 
prosthesis via bypass socket fit around their wrist. 
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Prosthesis Control 

Surface EMG from the participants was collected using a custom EMG sleeve [15]. EMG was sampled at 1 kHz 
and filtered using the Summit Neural Interface processor (Ripple Neuro Med LLC) as described in [16]. EMG features 
used for estimating motor intent consisted of the 300-ms smoothed mean absolute value on 528 channels (32 single-
ended channels and 496 calculated differential pairs) calculated at 30 Hz, as described in [16].  

A modified Kalman filter was trained to predict hand flexion and extension, as described in (Thomson et al., MEC 
2022) and previous reported in [16], [17]. The participants donned a prosthetic hand (LUKE Arm; DEKA) using a 
custom bypass socket [18]. A latching filter was applied to the kinematic output of the prosthetic hand to increase 
grasping stability [7], [19]. 

Performance Metrics and Analysis 

Data consisted of the transfer time and peak grip force for each test condition, each hand, and each participant. 
All data were screen for normality. Data were aggregated across participants and two-way analysis of variance 
(factors: hand and test condition) was performed. Subsequent pairwise comparisons (Wilcoxon rank-sum test) were 
performed using the Dunn-Sidak correction for multiple comparisons. Additionally, a grouped comparison with 
pooled data from the three test conditions was performed between the prosthesis and intact hand. 

RESULTS 

Overall, transfer time (Fig. 3) and grip force (Fig. 4) were 
significantly greater for the prosthetic hand compared to that of the 
intact hand (p’s < 0.05; Wilcoxon rank-sum test). Across all three test 
conditions, average transfer time was 283.3% longer for the prosthesis 
and grip force was 92.6% stronger for the prosthesis.  

When a break threshold was introduced (discrete feedback), we 
observed no significant difference in performance for the prosthetic 
hand or intact hand. For the prosthetic hand, this resulted in a 
substantial failure rate (i.e., roughly 50% of the peak forces exceed 
the blue line representing the break threshold in Fig. 3). For the intact 
hand, implicit grasping force (no feedback condition) was already 
below the break threshold and remained similar. 

When continuous auditory feedback was introduced on top of the 
break threshold, prosthetic performance improved significantly (p < 
0.05; Wilcoxon rank-sum test). That is, transfer time was reduced by 
20.3% and grasping force was reduced by 23.7%. For the intact hand, 
continuous auditory feedback did not significantly improve the task 
performance relative to the discrete feedback condition. Overall, the 
median transfer time and grip force of the intact hand was similar 
across all three test conditions. 

CONCLUSION 

This study introduces another instantiation of a fragile-object test, 
based heavily on the design previous introduced in [12]. We expand upon the work in [12] by highlighting the 
embedded design and exploring different test conditions with both prosthetic and intact hands. The EGG introduced 
here quantifies grip force, load force, and object transfer time to enable more in-depth comparisons of fine motor 
function across people and technologies. Furthermore, the different test conditions provide an opportunity to 
systematically probe an individual’s ability to finely regulate their grip force and quantify their innate tactile sensory 
feedback. 

The results present here show that a lack of tactile sensory feedback is a significant reason for poor prosthetic 
control, as evidenced by improved dexterity when continuous auditory feedback is provided in proportion to exerted 

 
Figure 3: Grip force is significantly greater for the 
prosthetic hand compared to that of the intact hand. Data 
show peak grip force exerted on the EGG for ten trials for 
each of the three participants (N=30). Boxplots show 
median, inter-quartile range, and most-extreme, non-
outlier values. Plus marks denote outliers. Blue line 
indicates the break threshold that participants attempted 
to keep their grip force below for the discrete-feedback 
and continuous-feedback conditions. Asterisks indicate 
different medians between conditions * (p<0.05), ** 
(p<0.01), *** (p<0.001); Wilcoxon rank-sum test; N=30 
per group between test conditions and N=90 per group 
for the pooled comparison between the prosthetic and 
intact hands. 
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grip force. Furthermore, we also show that even with supplemental 
auditory sensory feedback, performance of the prosthetic hand was 
still substantially worse than the performance of the intact hand. 
Thus, it is likely that a combination of diverse improvements in the 
areas of mechanical design, real-time control and sensory feedback 
are necessary to make prosthetic hands as dexterous as healthy intact 
hands. 
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Figure 4: Transfer time is significantly greater for the 
prosthetic hand compared to the intact hand. Data show 
peak force exerted on the instrumented egg for ten trials 
for each of the three participants (N=30). Boxplots show 
median, inter-quartile range, and most-extreme, non-
outlier values. Plus marks denote outliers. One outlier at 
a value of 32.04s is not shown for the prosthetic-hand no-
feedback condition. One outlier at a value of 63.45s is 
not shown for the prosthetic-hand discrete-feedback 
condition. Blue line indicates the break threshold that 
participants attempted to keep their grip force below for 
the discrete-feedback and continuous-feedback 
conditions. Asterisks indicate different medians between 
conditions * (p<0.05), ** (p<0.01), *** (p<0.001); 
Wilcoxon Rank Sum Test (N=30 per group between test 
conditions and N=90 per group for the pooled 
comparison between the prosthetic and intact hands). 
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ABSTRACT 

Upper limb external powered prosthetic technology in recent years has experienced advancements that have 

produced significant increases in costs to clinics, payers, and end-users. In the United States, for new technology to 

be considered, the technology must fit into a coding structure called the HCPCS L-Code system. If an established L-

code has not been established or the l-code does not describe the new technology, an NOS (not otherwise specified) 

code might be utilized. Depending on the payer source, an NOS code might not be allowed and/or the desired 

reimbursement of the NOS code will be reduced significantly. Usefulness of these new technological advancements 

must also be provided to justify its use over more conventional technology. Both usefulness and cost of a specific 

technology are intimately tied to the overall economic value of the prosthesis. Because the way healthcare is provided 

and paid for in the United States, new technology and innovation is often first introduced in the United States. This 

paper intends to share the author's direct experience working within private clinics, federal institutions as well as 

manufacturers and payers. The goal is to provide insight on the challenges faced by payers, prosthetic providers, and 

end-users regarding the economics of innovation in the prosthetic and orthotics industry. Researcher, therapists and 

MD’s and prosthetist should all benefit from this overview. Examples of the coding structure, increases in time for 

prosthetists to provide and maintain and justify new technology will be shared along with how payers handle 

innovation and payments.     

INCREASES IN COST, TIME, AND SERVICE 

Upper limb innovation and advancement has created an increase in costs to payers with the use of NOS codes 

which have resulted in doubling, tripling, and even quadrupling costs over traditional myoelectric systems. With this 

comes an increased co-pay to the end-user. Add to this the increased setup and servicing time by the treating provider 

along with the increased time commitment to the end-user. When comparing the delivery time required for an upper 

limb prosthetic system to that of a lower limb prosthesis, is not uncommon for the delivery time of an upper limb 

prosthesis to take up to two times longer for effectively deliver. Additionally, the time and expense required for proper 

occupational therapy to effectively train the user with the new technology must be considered. As technology 

advances, it is not uncommon for the technology to exceed the bandwidth of most clinicians providing and training 

this new technology. Because payment for a prosthetic device in the United States is all inclusive for the prosthetist 

providing the prosthesis, evaluation time, fitting time, and follow-up (for the first 90 days after delivery) are included 

in the payment of the prosthesis. Follow-up care after the initial 90 days is billable for a prosthetic office visit based 

on 15-minute increments. Payment will also be dependent upon whether the prosthetic provider has a contract with a 

particular payer.  

OUTCOME MEASURES AND PROSTHETIC OPTIONS PROVIDED 

While lower limb prosthetic evaluations have a variety of objective outcome measures to evaluate pre-prosthetic 

and post-prosthetic function which help to determine the current and anticipated functional level of the end-user, upper 

limb prosthetic outcome measure assessments are not as available or are less effective in predicting prosthetic 

effectiveness. Upper limb pre-prosthetic outcome measures rely primarily upon subjective reporting of the end-user. 

Post-prosthetic objective outcome measures are not as effective in predicting anticipated functional level of an upper 

limb end-user, and while they are available, they seem to be less effective in predicting when the end-user can progress 

to a more advanced technology. In addition, who conducts these upper limb outcome measures is critical. Often it is 

a tight collaboration between the occupational therapist and the prescribing MD as to when advancement to more 

complex technology is appropriate. Add to this, the challenge of an insurance company’s upper limb prosthetic policy 

on the specific technology is allowed or not allowed, when it can be provided, and the timeframe a specific technology 

has to be utilized before another is considered. The chances of getting approval for advanced technology that does not 
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have an established L-code or has not been proven to be significantly effective over conventional technology can be 

very challenging. 

ECONOMICS, PAYERS, AND L-CODES 

In the United States, there are numerous insurance plans or payer sources available for the financial coverage of 

prosthetic devices. The Centers for Medicare & Medicaid Services (CMS) which developed the Healthcare Common 

Procedure Coding System (HCPCS) L-code system establishes specific codes and corresponding fee schedules for a 

combination of codes that make up an entire prosthesis. Specific to lower limb prosthetic codes, there are local 

coverage determinations (LCD’s) which specify what codes can and cannot be utilized together along with set prices 

that determine final payment for a particular lower limb prosthesis. These LCD regulations alert the prosthetic provider 

to the proper and improper combination of established codes for a complete lower limb prosthesis. It is a method to 

manage the total costs of a lower limb prosthesis. Specific to upper limb prosthetics and the HCPCS L-code system, 

there are no LCD regulations that alert the prosthetic provider of proper and improper coding combinations for the 

delivery of a complete upper limb prosthesis. This is both a blessing and a curse. Not knowing what CMS will allow 

for payment can create delays for delivery of an upper limb prosthesis. CMS through the establishment of their Pricing 

Data Analysis and Coding (PDAC) system, has started to provide Correct Coding bulletins that have stipulated what 

codes can and cannot be utilized with upper limb multiarticulate hands and partial hands. While not a formal LCD, 

the Correct Coding bulletins have created challenges for upper limb innovation.  

CMS is a federal insurance program that provides payment to individual 65 and older or to individual who qualify 

for a state funded Medicaid plan for low-income individuals. The Veteran Administration (VA) is the other Federal 

program established for military and veterans of the military. The VA has their own set of regulations that are based 

on the L-code system. Other insurance programs, known as 3rd party payers, provide prosthetic payment based on the 

type of prosthetic plan available from a particular insurance company. 3rd party payers also have specific upper limb 

prosthetic policies stipulating what is and is not allowed. Co-pays by the prosthetic end-user may or may not be a part 

of the insurance plan. Work related injuries are another category of insurance known as Workers Compensation which 

cover prosthetic needs of an injured worker. Because workers compensation often involves an attorney and there is 

liability for the injury, the process for prosthetic approval involves a legal proceeding. In these cases, advanced 

technology might be approved over that of any other type of insurance.  

CONCLUSION 

While advanced technologies and new innovation have benefits that may increase the usefulness of a particular 

upper limb prosthetic device to the end-user, not everyone who needs an upper limb prosthesis will benefit from new 

innovation. If there is a possibility an end-user could benefit from new innovation, obtaining it may be cost prohibitive. 

Access is dependent upon several factors including the type of insurance the end-user has, whether the loss of limb 

was the result of a work-related accident and how willing a provider is to try and obtain the technology. Continued 

research studies utilizing validated outcome measures must also show significant improvement to justify the total cost 

of the prosthetic limb being provided over more conventional technology.  The uprising of Go-Fund-Me campaigns 

to raise thousands of dollars to offset the cost to the end-user of advanced upper limb technology is evidence of how 

the economics prosthetic innovation is at play. New policies and regulations from payers stipulating what codes and 

technology will or will not be allowed for upper limb technology is also evidence of the economics at play in upper 

limb prosthetics.  
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