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ABSTRACT 

Most major upper limb amputations result from trauma. 

Occasionally, these traumatic injuries include localized inury 

to the nerves of the brachial plexus. Patients may seek 

elective amputation following severe brachial plexus injury 

(BPI) [1].  The evaluation and development of a prosthetic 

treatment plan for this cohort often involves surgical 

considerations prior to prosthetic intervention.  This paper 

will review the types of injuries that can be sustained to the 

brachial plexus nerve complex as well as surgical options 

associated with brachial plexopathy cases.  A representative 

case study will document the surgical and prosthetic 

considerations of an individual that was involved in a motor 

vehicle accident that left him with a flail upper limb 

secondary to BPI.  For this case presentation long term 

follow-up, patient perceptions and functionality will be 

discussed.  .  

INTRODUCTION 

Brachial plexus nerve injuries can have devastating 

consequences to an individual’s overall functionality and 

quality of life [2].  These significant injuries can lead to the 

inability to return to premorbid occupations and activities. 

The deficits associated with BPI may be partial or full and 

can often require months to years to fully realize the full 

possibilities of functional return [3,4]. This realization of 

requires the consideration of critical surgical timeframes 

which are often unknown or neglected, undermining long 

term outcomes for those with BPI cohort [5].   

Patients may live with their flail limbs for years, at times 

supported and protected in various bracing systems.  Over 

time, gravitational forces acting on the neurologically 

impaired shoulder muscles and glenohumeral joint may cause 

the limb to sublux. In such cases the supporting musculature 

and ligaments are no longer sufficient to maintain the 

humeral head in the glenoid fossa.  In addition, without 

protective sensation, this cohort can sustain severe injury to 

their limb without their immediate awareness. In many cases 

discussions of elective amputations are driven by continued 

inadvertent injury to the flail and insensate hand and limb. 

Elective amputations should not be considered a failure but 

an opportunity for reconstruction [6,7].  Collective effort 

from the patient, patient’s family, surgeon, rehabilitation 

physician, prosthetist, occupational and physical therapists 

will be key in developing the best rehabilitation plan.   

BPI TYPE AND SEVERITY 

The type and severity of a BPI are a function of the 

mechanism, extent and location of the injury.  Nerve root 

avulsion injuries occur when the nerve root is torn from the 

spinal cord and cannot be surgically repaired.  As the name 

implies, a nerve stretch injury results from a mild stretch of 

the nerve that may allow some functional return over time.   

In such injuries it is generally accepted to receive 

occupational/ physical therapy and allow time for functional 

return.  Nerve rupture represent a more forceful nerve stretch 

injury that may result in partial or full nerve tears. Such 

ruptures may be repaired surgically depending on the location 

of the injury.  

Depending on the mechanism of injury, various portions 

of the brachial plexus can result in different palsy 

presentations.  These include upper trunk, lower trunk, and 

pan nerve injuries, each with specific clinical presentations.   

Upper trunk palsy of the brachial plexus is often the result of 

the arm being pulled down while the head is forcefully 

pushed to the opposite side of the arm involved [8].   Such 

injuries generally results in muscle weakness around the 

shoulder joint as well as elbow positioning capabilities, with 

compromise to the deltoid, rotator cuff, and biceps 

musculature.  Lower trunk palsy can result from injuries 

where the arm is forcefully pulled upward.  These injuries 

will generally result in functional loss at the hand of the 

affected extremity, with claw-like hand deformities 

commonly occurring.  Pan palsy is when both upper and 

lower trunks are injured resulting in complete paralysis of the 

musculature around the shoulder, elbow and hand.  This is 

often referred to as flail limb.  
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BPI TREATMENT APPROACHES 

There are several treatment approaches that can be 

considered when the nerves of the brachial plexus nerve are 

injured.  Viable options depend on the where the nerves were 

injured as well as the extent of the associated nerve damage.  

They include nerve repairs, nerve grafts, nerve transfers, 

tendon and muscle transfers, and joint arthrodeses. 

Nerve repair can be done to surgically restore the cut 

ends of nerves. These can assist in stabilizing joints, restoring 

elbow functionality and a sensible hand following nerve 

injury [9].   Nerve grafting occurs when a healthy nerve from 

another part of the body is used to replace a missing or 

damaged nerve.  Nerve transfers from one muscle to another 

can occur to provide alternate innervation to a major muscle 

group when the primary innervation has been injured.  

Tendon and muscle transfers can be performed to address 

significant functional deficits by restoring key joint 

movements.     

When surgical reconstructive efforts fail to yield a 

functional hand or elbow, some patients may wish to pursue 

elective amputation of the flail limb.  This is often coupled 

with glenohumeral arthrodesis, and is performed when there 

is adequate muscle strength in the trapezius, levator scapulae, 

rhomboids, and serratus anterior [10,11].  The generally 

accepted position of the glenohumeral joint is in 30 degrees 

flexion, 30 degrees abduction, and 30 degrees internal 

rotation [12,13].  In general, a 4 month postoperative period 

is required for fusion occur [13].   

While there are many different references to these fusion 

angles discussed the literature, the guiding principles are to 

pace the residual limb in enough glenohumeral joint 

abduction to clear the axilla as well as allow the patients to 

perform axillary hygiene, to place the residual limb in enough 

forward glenohumeral flexion to bring the arm and terminal 

device of the prosthesis toward the midline for functional 

activities and minimize subluxation of the glenohumeral joint  

CASE STUDY 

Written informed consent was obtained from the patient 

prior to his inclusion in this paper.  In 2012 our case study of 

a 22 year old male was involved in a snowmobiling accident 

that left him with nerve avulsion injuries to his the brachial 

plexus resulting in a flail limb.  This individual worked on a 

family dairy farm and expressed an interest in returning to his 

family business.  He described himself as a “hands on” 

individual desiring to return to as much functionality as 

possible.  The patient’s contralateral scapular range of motion 

was with in normal range, and contralateral scapular strength 

was sufficiently strong to operate cable operated components.  

The medical team discussed several options with the patient, 

ultimately choosing shoulder joint arthrodesis coupled with 

an elective elbow disarticulation as the best option to restore 

functionality for his lifestyle (Figure 1 and 2).   

 

Figure 1: Initial limb following should fusion in 2012 

 

Figure 2:  Internal hardware in initial shoulder fusion 

Following the elective surgical procedures and 

prosthetic fitting the patient expressed satisfaction with his 

ability to move his arm again (Figure 3).  He was able to 

demonstrate full functionality of the prosthesis in both elbow 

control and terminal device function.  He reported regular use 

of his cable operated device on his family farm daily running 

equipment, carrying and manipulating objects. Regular clinic 

visits for frequent repairs to his device support the patient’s 

reports of sustained regular use of the device for heavy duty 

activities on his farm.   

 

Figure 3:  Initial body powered prosthesis with work hook, 

external locking elbow joints and chest strap. 

At 8 years post injury, our case demonstrated several 

anatomic characteristics common to sustained severe BPI.  

(Figure 4).  For significant nerve root avulsion injuries these 

include atrophy of the deltoids, infraspinatus, supraspinatus, 

biceps, and triceps muscles.  Bony anatomy becomes very 

prominent, including the spine of the scapula, acromion, and 

coracoid process.  The lack of protective sensation, 

diminished muscular padding, and significant prominence of 
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bony anatomy creates significant design consideration when 

designing a prosthetic socket for individuals with brachial 

plexopathies.  

 

Figure 4:  Limb presentation 8 years post injury, elective 

amputation and shoulder arthrodesis characterized by soft 

tissue atrophy and significant bony prominence around the 

shoulder. 

In 2018 the internal fixation hardware from the 

arthrodesis was removed from the patient’s limb due to 

harness pressures and prosthesis usage on his highly 

atrophied limb (Figure 5).  The surgeon evaluated and 

determined that the glenohumeral joint had fused well 

enough to remove most of the internal hardware and screws.   

 

Figure 5:  Subsequent removal of most internal fixation 

hardware with adequate bony fusion 

In 2020 the patient continues to work on his family farm 

as well as running his own business offering handy man 

services.  He is currently married and has children.   He 

continues to wear his prosthesis every day full time for all of 

his home and work activities (Figure 6).  He continues to need 

repairs to his prosthesis indicating that indeed he uses the 

device daily and in a heavy duty capacity.   

 

Figure 6:  Current body-powered prosthesis 

CONCLUSION 

The prosthetic management of individuals with brachial 

plexopathies can be challenging and should involve several 

medical professional to develop the best treatment plan with 

optimum outcomes.  Brachial plexus surgical interventions 

can improve the overall functionality when considering 

prosthetic intervention.  In this particular case study the 

shoulder arthrodesis produced a very functional outcome for 

almost a decade.  The patient actively utilizes his limb and 

prosthesis for most of his activities.   

This case study does not reflect every patient’s particular 

situation.  This patient is a young, active male that has 

excellent scapular strength and range of motion.  In some BPI 

cases patients may not be able to generate the required force 

and excursion requirements to operate a body powered 

systems and require externally powered components to create 

the desired functionality (14).  Patients will require individual 

evaluation to determine their functional capabilities 

following BPI so that an appropriate prosthetic treatment plan 

can be created.   

These cases present many challenges to the rehabilitation 

team.  Decisive surgical decision making can create a limb 

that is better reconstructed for improved prosthetic 

functionality.  
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ABSTRACT 

Most transradial amputees are fitted with a prosthetic 
hand but use it actively for only 50% of activities of daily 
living (ADLs). Studies with the multigrip Michelangelo 
hand reported that many patients perceived ADLs easier 
to perform than with a conventional prosthetic hand [3] 
and could also demonstrate improvements in objective 
ADL performance. Other multigrip hands available on the 
market offer more grip types than the Michelangelo hand 
but have not yet been subjected to published clinical 
studies. Thus, it is unknown whether more grip types 
result in even greater perceived ease of ADLs execution. 

Subjects wearing the bebionic or i-limb hands were 
assessed with the same hybrid questionnaire as used in the 
previous Michelangelo study. Demographic information 
on all subjects was also collected. The results were then 
compared to the historical data collected in the previous 
Michelangelo study. 

Data were available from 36 unilateral subjects with 
transradial amputations, 10 each wearing a bebionic or i-
limb, respectively, and 16 historical datasets of subjects 
who used a Michelangelo and conventional hand, 
respectively.  

Means for ease scores and “useful” ratings across 23 
ADLs did not differ between the multigrip hands but were 
better than those for the conventional hands. There were 
no statistical differences between the 3 multigrip hands. 
The mean numbers of ADLs by usefulness and method of 
use (prosthesis actively used to grasp, prosthesis passively 
used to stabilize, assistance of residual limb, sound hand 
alone) rating were also similar.  

Analyzing the ease of individual activities, Michelangelo 
mean ease scores for several activities showed modest 
positive differences compared to conventional 
myoelectric hands. In contrast, the bebionic profile 
indicates fewer activities that were scored easier than 
conventional myoelectric compared with Michelangelo 
profile, but the difference in the scores for several 
activities were much greater than for the Michelangelo 
hand. For the i-limb, there were also several activities for 
which differences in the mean scores compared to 

conventional myoelectrics were much greater than that for 
Michelangelo.  

In conclusion, all multigrip myoelectric hands may reduce 
the difficulty for performing ADLs vs. conventional 
hands. However, the availability of more grip types in a 
hand does not necessarily result in greater ease of 
performance of ADLs in general. Interestingly, the 3 
multigrip hands studied showed different activity profiles 
that they facilitate. For some activities, there was a clear 
advantage for some hands over others. Thus, clinicians’ 
knowledge of the patients’ functional needs and the 
differential features of the available multigrip hands is 
crucial for selecting the best suitable hand for an 
individual patient. In addition, this study also highlights 
the need for more sophisticated control (e.g. pattern 
recognition) that facilitates easier and more intuitive 
access to a greater number of grips in a prosthetic hand 
than the current 2-channel myoelectric control.   

 

INTRODUCTION 

Multiarticulating and multigrip myoelectric prosthetic 
hands have been available on the market for about 15 
years now. A study published in 2015 (3) demonstrated 
improved ease of performing activities of daily living 
(ADL), increased usefulness, and more active use to grasp 
objects with the Michelangelo® hand (Ottobock, 
Germany) that offers 7 grip types and hand positions as 
compared to standard myoelectric hands that offer only 
the opposition grip. The purpose of this study was to 
gather information on the perceived ease, usefulness und 
way of use of two multiarticulating hands with multiple 
grip options, i-limb (Össur hf, Iceland; 12-18 grip types 
and hand positions, depending on version) and bebionic 
(Ottobock, Germany; 14 grip types and hand positions), 
and to compare the results with those previously 
published for Michelangelo hand [3] to answer the 
question whether or not more available grip types result in 
more perceived functionality of a prosthetic hand.  
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METHODS 

IRB approval was obtained for prospective data 
collection. The Multigrip Myoelectric Hand Survey was 
launched in March of 2016. Data collection started in 
June of 2016 and was completed in September of 2017. 
All subjects were asked to complete two questionnaires. 
The first was a combination (Pröbsting et al, 2015) of a 
modified Orthotics and Prosthetics User Survey – Upper 
extremity Functional Status (OPUS-UEFS) [5, 6] and the 
Prosthetic Upper Extremity Functional Index (PUFI) [7]. 
The modified OPUS-UEFS asks subjects to rate how 
easily he/she can perform ADLs with the prosthetic hand, 
and the addition of the PUFI asks about how each ADL 
was performed and how useful the prosthesis was for each 
ADL. The second questionnaire was a set of questions 
including the reasons for selecting the type of hand, the 
most frequently used grip patterns, and ranking the 
importance of hand features. Demographic information on 
all subjects was also collected. This included age, sex, 
years of prosthetic use, amputation side and etiology of 
the amputation. These results were then compared to 
previous data collected on the Michelangelo hand [3]. 

 

RESULTS 

Patient Population 

Data were collected from 25 subjects using either a 
bebionic or i-limb hand. Five subjects were excluded 
from the final analysis; two had above-elbow amputations 
and the other three were bilateral users. 70% of these 
subjects were male, and 30% were female. The results 
from 20 i-limb and bebionic users with unilateral 
transradial amputations were then compared to results 
from a previous study of 16 male myoelectric hand users 
fitted with a Michelangelo hand. The mean age for the i-
limb group was 50.4±17.6 years, while the mean age for 
the bebionic group was 37.4±14.2 years. In comparison, 
the mean age for the Michelangelo group was 43.9±17.3 
years. Bebionic users had had their device for an average 
of 1.65±1.10 years, while i-limb users had had their 
device for an average of 2.08±1.87 years. In contrast, the 
Michelangelo users had only been using their myoelectric 
hand for 0.24±0.18 years. 

 

Clinical Results 

The means for ease scores across the subset of 23 ADLs 
for each of the multi-grip myoelectric hands were 
remarkably similar (Table 1), but all higher than the 
scores reported for the conventional myoelectric hands in 
the study with the Michelangelo hand [3].  

Table 1: Ease scores and # activities for which hand was 
rated Very Useful or Useful for 23 ADLs 

Mean  

± SD 

Convent
ional 

Michel
angelo 

bebio
nic 

i-limb 

Ease score 
for 
performing 
23 ADLs 

27  

± 9.7 

37  

± 12.7 

33  

± 
13.5 

35  

± 14.9 

# activities 
for which 
hand was 
rated Useful 

15.7  

± 3.6 

17.9  

± 4.0 

17.2  

± 4.9 

17.7  

± 4.9 

 

The mean numbers of ADLs by usefulness rating were 
also similar and, likewise, higher than the mean for the 
conventional myoelectrics (Table 2).   

Table 2: PUFI Prosthesis Usefulness Ratings by 
Prosthetic Hand 

Mean 
#Activities 
± SD 

Conven
tional  

Multi-grip Myoelectric 
Hands 

Michel
angelo 

bebio
nic 

i-limb 

Not Useful 11.7  
± 3.1 

9.8  
± 3.9 

9.7  
± 4.0 

8.9  
± 5.0 

Useful 4.9 
± 3.4 

4.2  
± 2.7 

3.8  
± 3.1 

6.1  
± 2.6 

Very 
Useful 

6.4  
± 4.1 

9.1  
± 4.3 

9.2  
± 3.7 

7.2  
± 4.4 

 

The mean number of ADLs by way of use was also 
similar, with the number of ADLs performed by using 
both hands and the prosthesis actively was slightly higher 
for bebionic, and the number using only the sound hand 
slightly lower for bebionic (Table 3). 

Table 3: PUFI Method Assessment by Prosthetic Hand 

Mean 
#Activities 
± SD 

Conven
tional  

Multi-grip Myoelectric 
Hands 

Michel
angelo 

bebio
nic 

i-limb 

Both hands, 
prosthesis 
actively 

7.1  
± 4.1 

9.3 
± 4.6 

10.7 
± 2.9 

9.8  
± 3.0 

Both hands, 
prosthesis 
passively 

2.4  
± 2.4 

1.8  
± 1.9 

2.1  
± 2.5 

2.2  
± 1.8 
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The comparative ease of performing the 23 ADLs of the 
OPUS-UEFS with the multigrip or conventional 
prosthetic hands showed that each of the advanced hands 
had strengths and weaknesses (Figure 2). While the 
Michelangelo hand scored somewhat better than the 
conventional hands across the board (except 2 ADLs), the 
bebionic and iLimb hands scored considerably better in 
some (6 or 9, respectively) but also much worse than the 
conventional hands in some other (5 or 3, respectively) 
ADLs.   

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 ADL Ease Profiles.  Differences in mean ease scores by ADL for multi-grip hands compared to conventional 
myoelectric hands. Red bars signify decreased ease, Green, increased ease approaching a clinically meaningful difference, 
and Blue differences less than what could be considered clinically meaningful. * p<0.05 as reported in the Michelangelo 
study. 

 

 

 

 

 

 

-0.5 0.0 0.5 1.0 1.5 2.0

Wash_face
Put_toothpaste

Brush_comb
Put_on_remove_T-Shirt

Button_shirt
Attach_zip_jacket

Put_socks
Tie_shoe_laces

Drink_paper_cup
Use_fork_spoon

Cut_meat
Pour_from_can

Write_name
Use_scissors

Open_door
Use_key

Carry_laundry
Dial_phone

Use_hammer
Fold_bath_towel
Open_envelope

Stir_in_bowl
Put_on_take_off_prosthesis

Peel_potatoes
Open_chips

Open_bottle
Sharpen_pencil
Take_banknote

Michelangelo vs. conventional

*

*
*

*

*

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

bebionic vs. conv.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

i-limb vs. conv.
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DISCUSSION 

The aim of the study was to investigate whether more 
than 12 grip types and hand positions offered by a 
myoelectric hand might further reduce the difficulty of 
ADLs as shown for the Michelangelo hand with its 7 
grips and hand positions.  

Overall, the ease, usefulness and way of use of all three 
multigrip hands did not significantly differ compared to 
each other. Compared to conventional myoelectric hands, 
there was an overall improvement in ease and usefulness 
ratings and an increase in ADLs in which the multigrip 
hands were actively used to grasp. While Michelangelo 
showed moderate improvement in all but two ADLs, 
bebionic and i-limb showed considerable improvement 
for some ADLs but also substantial decline in ease and 
usefulness for some other ADLs. This suggests that there 
is no “perfect” posthetic hand and that clinicians must 
match the functional ADL needs of each patient with the 
hand that meets these specific needs best. 

 

CONCLUSIONS 

All multigrip myoelectric hands may reduce the 
difficulty for performing ADLs vs. conventional hands. 
However, the availability of more grip types in a hand 
does not necessarily result in greater ease of performance 
of ADLs and greater perceived usefulness in general. 
Interestingly, the 3 multigrip hands studied showed 
different activity profiles that they facilitate. For some 
activities, there was a clear advantage for some hands 
over others. Thus, clinicians’ knowledge of the patients’ 
functional needs and the differential features of all 
multigrip hands available on the market is crucial for 
selecting the best suitable hand for an individual patient. 
In addition, this study also highlights the need for more 
sophisticated control (e.g. pattern recognition) that 
facilitates easier and more intuitive access to a greater 
number of grips in a prosthetic hand than the current 2-
channel myoelectric control.   
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Innovative Outcome Measurement in Upper Limb Prosthetic Rehabilitation 
Authors:  Kerstin Baun MPH OTR/L, John Miguelez CP, FAAOP(D), Dan Conyers CPO, FAAOP 
 
Introduction:  Outcome measure development has long been recognized as a need in the field of upper 
limb prosthetic rehabilitation to map individual patient progress, highlight needs for component 
development and cost justification.1   In response, several measures have been created and proven 
valid.2-10 However, gaps remain in the effort to capture the complex facets of prosthesis use that 
ultimately determine success—physical, psychological, social and environmental.  This paper describes a 
suite of 3 measures developed over the past decade that together capture these complex facets more 
completely.  These measures include the Capacity Assessment of Prosthesis Performance of the Upper 
Limb (CAPPFUL), the Comprehensive Arm Prosthesis and Rehabilitation Outcomes Questionnaire 
(CAPROQ) and the Wellness Inventory (WI).  Each measure will be described individually, including 
validation data and their value and potential for guiding patient care, device selection and development 
and cost justification.  All studies related to measure development were approved by the WIRB. 
 
Outcome Measure Descriptions: 
Capacity Assessment of Prosthesis Performance of the Upper Limb (CAPPFUL):   
CAPPFUL is designed as a versatile, low-burden measure of prosthesis performance for any UL 
functional prosthetic device type and any UL amputation level. Unlike most measures of performance, 
CAPPFUL assesses overall performance and 5 functional performance domains during completion of 11 
tasks.  These require movement in all planes while manipulating everyday objects requiring multiple 
grasp patterns. Performance domains include control skill, adaptive and maladaptive compensatory 
movement, component utilization and time for task completion.  Performance is scored relative to function 
of a sound upper limb, preventing ceiling effect. For the individual patient, scores within performance 
domains can target further training needs and assist the treatment team in focusing on optimal strategies 
to develop performance and function.  Multiple administrations assist the team in objectively measuring 
improvement in performance with the prosthesis over time.  Information gathered assists not only to guide 
therapeutic training but also to determine need for components and/or fit and design 
modifications.  Cumulative data, across prosthetic options and levels of amputation, can establish 
expectations for current devices, provide reimbursement justification and set goals for future product 
development. Current administrations including validation study subjects exceeds 200. 
Validation:  Psychometric evaluation indicates good interrater reliability, internal consistency, known-
group validity, and convergent and discriminant validity. Specifically, interrater reliability was excellent for 
scoring on the task, domain, and full-scale scores (intraclass correlation coefficientsZ.88-.99).Internal 
consistency was good (aZ.79-.82). CAPPFUL demonstrated strong correlations with measures of hand 
dexterity or functioning (rsZ.58 to .72) and moderate correlation with self-reported disability (rZ.35).11 

Comprehensive Arm Prosthesis and Rehabilitation Outcomes Questionnaire (CAPROQ): 
The CAPROQ is designed to measure patient reported outcomes in key facets of rehabilitation for adults 
with UL absence or loss:  perceived function, satisfaction and pain.  It is a low burden measure to guide 
individual patient care, as well as assess and improve care models and inform future prosthesis selection 
and development for the UL loss community.  Results inform the treatment team of current status and 
change of status through the continuum of care and assists with targeting of further training needs as well 
as providing valuable feedback regarding prosthesis fit and function.  CAPROQ cumulative data, across 
prosthetic options and levels of amputation, provides patient perspectives regarding currently available 
devices, potential reimbursement justification and guidance for future product development.  Original 
CAPROQ was administered 687 times and since validation study completion, over 100 administrations 
have been completed with more being added weekly. 
Validation Study:  Psychometric evaluation with 261 subjects demonstrated adequate-to-strong factor 
loading on each subscale, good-to-excellent internal consistencies for measure subscales and moderate-
to-strong convergent validity.  Specifically, confirmatory factor analysis indicated adequate-to-strong 
factor loading on each subscale: satisfaction (.623-.913), perceived function (.572-.860) and pain (.422-
.834).  Internal consistencies for the measure subscales were good-to-excellent (.89-.95) and convergent 
validity indicated moderate-to-strong statistically significant associations between the CAPROQ and the 
measures tested—Disabilities of Arm Shoulder and Hand questionnaire (DASH), Trinity Amputation and 
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Prosthesis Experience Scale Revised (TAPES-R) and Brief Pain Inventory (BPI).  Currently this validation 
study is in submission process for peer review. 
 
Wellness Inventory:   
The wellness inventory screen was designed to inform prospective prosthesis recipients of how they 
compare to other people in areas such as coping style, perceived quality of life and other areas that have 
been shown in the rehabilitation research literature to have an impact on how people perform after 
acquiring a physical disability.  It is a short battery of seven validated screening instruments that 
measures resilience12, health-related quality of life (OPUS)13, pain (SF-36/12)14, depression15, alcohol use 
(AUDIT-C)16, drug use/misuse, and posttraumatic anxiety (PC-PTSD)17.  In 2014, analysis of results from 
123 patients was conducted confirming high prevalence of mental health concerns in this sample.  The 
WI seeks to promote patient self-understanding during treatment and beyond and, if indicated, to mobilize 
provision of mental health services by appropriate providers. Re-administration of the WI 6-12 months 
post prosthesis fitting can determine change in status through the continuum of care.  Since inception, 
over 500 WIs have been administered across seven centers in the US. 
 
The WHO International classification of function18, identifies 3 domains (Body Functions/Structures, 
Activities, Participation) and 2 contextual factors (environmental and personal) in complex relationship 
with a health condition such as upper limb difference.  The CAPPFUL addresses Body Structures and 
Function, and Activities through performance assessment.  The CAPROQ, through patient report, 
addresses all three domains along with environmental factors.  The WI, through structured interview, 
covers personal factors.  However, not all of these assessments are appropriate for administration at all 
times in the continuum of care.  The Wellness Inventory is most aptly used early in the rehabilitation 
process and can assist the patient in decision making regarding whether to pursue psychological care 
and provides insight for the treatment team in terms of factors that might impact rehabilitation.  The WI 
can be re-administered subsequently to determine change in status or identify further needs.  The 
CAPROQ can also be administered pre prosthesis fitting to obtain baseline data in areas of pain and 
perceived function.  Re-administration post prosthesis fitting tracks changes in these areas as well as 
capturing satisfaction data.   The CAPPFUL is strictly designed for post prosthesis fitting use; with initial 
administrations, training needs can be identified as well as potential design and component modifications 
needed.  Subsequent administrations can demonstrate progress and further training opportunities, 
component/prosthesis effectiveness and overall return of function.   
 
Conclusion:  Goals for outcome measures vary from ensuring provision of excellent individual patient 
care to assessment of currently available devices to justification of cost related to both current of future 
products and more. When administered in concert, the measures described (CAPPFUL, CAPROQ and 
Wellness Inventory) provide complimentary data relevant to each stage of care and capture detailed 
information regarding psychological coping, physical performance with the prosthesis and patient 
perceptions across all areas of function.  Furthermore, in aggregate, data from these measures has the 
potential to reveal trends in outcomes for different levels of amputation, different prosthetic options and 
provider care model effectiveness.   
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ABSTRACT 

Background: Musculoskeletal complaints (MSCs) are a highly prevalent problem in subjects with upper limb 

absence (ULA). Studies have been conducted to better understand the risk factors for the development and 

persistence of MSCs, and show relations with psychological and work-related factors. The opinions of patients with 

ULA have not been taken into account so far. Their perspectives can contribute to address important factors and aid 

in the improvement of treatments. This study therefore executed a focus group with subjects with ULA, to get 

insight in the patient perspectives and to develop a framework of all factors involved in the development and 

persistence of MSCs.  

Methods: A focus group was held with adult individuals with ULA. With open questions, the general topic of 

MSCs and the main topic of the risk factors for MSCs were addressed. The transcript of the focus group was used to 

build a framework, by formulation (sub)categories of risk factors in an inductive way. The final set of categories 

was entered in the Atlas.ti software to identify sections of the transcript corresponding to a (sub)category.  

Results: Eleven subjects with ULA participated in the focus group, of which three experienced no MSCs and 

eight had MSCs in the previous year. The opinions of the participants resulted in five main categories containing 29 

subcategories: prosthesis-related, psychological & cognition, environment, general, and activities. Especially the 

factors in the ‘psychological & cognition’ and ‘activities’ category were deemed important.  

Conclusion: The outcomes of the focus group regarding the categories ‘psychological & cognition’ and 

‘activities’ cannot be endorsed with current literature, as literature on these categories is limited. Future research 

should therefore address the gaps between the patient perspectives and the literature, to fill the gap and to extend the 

knowledge on risk factors for MSCs.  

INTRODUCTION 

Many subjects with upper limb absence (ULA) complain about musculoskeletal complaints (MSCs), as we 

noticed in our clinic. Frequently heard complaints are carpal tunnel syndrome, epicondylitis (tennis elbow), 

stenosing tenosynovitis (trigger fingers), shoulder impingement, and neck and back complaints. Several studies have 

investigated the prevalence of MSCs in persons with ULA and the related population characteristics [1-4]. The year 

prevalence of MSCs in Dutch individuals with ULA was shown to be twice as high compared to their two-handed 

peers (65% versus 35%) [1]. MSCs are often chronic and observed in the residual limb, unaffected limb, neck or 

back, and with higher pain intensity and resulting in higher disability [1, 2]. Presence of MSCs in single-handed 

individuals will result in dual disability; adding disability due to MSCs to the disability caused by single-handedness 

[5]. This has consequences for daily life and emphasizes the high personal and societal impact [2, 3].  

Studies have been conducted to better understand the risk factors for the development and persistence of MSCs. 

In patients with ULA, the presence of MSCs was associated with higher perceived physical work demands and 

lower general and mental health [1, 3]. Additional risk factors for the presence of MSCs in individuals with ULA 

are: higher age, being divorced or widowed, and lower mental health [1]. Prosthesis wear (daily duration of 

prosthesis use, number of activities with prosthesis use, and type of prosthesis) did not appear to be related to the 

presence of MSCs [1, 2, 4]. A possible explanation provided for the differences in prevalence between the subjects 
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with ULA and the two-handed population, may be the use of compensatory movements, but this has not been 

examined so far [4].  

The opinions of patients with ULA themselves on contributing and persisting factors for MSCs has remained 

underexposed at the moment. Their experiences with MSCs and their perspectives can highlight the importance of 

several factors, and can address the need for improvement of treatments. This study therefore executed a focus group 

with subjects with ULA, to get insight in their opinions and to develop a framework of all factors involved in the 

development and persistence of MSCs in this population. 

METHODS 

 The Medical Ethics Review Board of the University Medical Center Groningen (METc UMCG) concluded that 

formal approval of the study was not necessary (METc 2019/228). All participants signed an informed consent 

before the start of the study. 

Participants were recruited via a list of adult eligible patients composed by a clinician and via an advertisement 

in a magazine of the Dutch patient organization for persons with ULA. At the start of the focus group, which took 

place in April 2019 at the UMCG, the Netherlands, participants filled in a short questionnaire with socio-

demographic data. During the 60 minutes-focus group, open questions about MSCs were asked. The first two 

questions introduced the topic of MSCs: 1) Who is familiar with MSCs, and if so what type of complaints have been 

experienced?; 2) Who is not familiar with MSCs, and how can that be explained? However, the main topic of this 

focus group were the risk factors of MSCs: 3) What are/could be the causes of these complaints? 

The audio-recordings were transcribed verbatim. A framework was composed based on the transcript of the 

focus group. Two assessors (AAP, SGP) started with the familiarization process by reading the transcript of the 

focus group to get a sense of the whole text. Independently of each other, they developed a framework by 

formulating main categories and subcategories of risk factors in an inductive way. These (sub)categories were 

discussed and the data was reassessed. In a second discussion, differences were deliberated to reach consensus until 

a final set of categories was determined. In the next step, the transcript was entered in the Atlas.ti software. The 

framework was applied to the transcript and sections of the transcript that corresponded to a particular (sub)category 

were identified. The selected information was displayed in a list of quotes and corresponding categories. The results 

were analysed and discussed to draw conclusions until consensus was reached between the assessors. 

RESULTS 

Eleven participants (six males) participated in the focus group. Median age of the participants was 46.3 years 

(range 31.4 – 69.7 years). Three participants did not experience MSCs in the previous year, while eight did. Of these 

eight participants, seven experienced MSCs during the last four weeks. The median duration of MSCs was 3.5 years 

(range 0.5 – 20 years). Three participants perceived their pain as light, one had quite some pain, and one rated their 

pain as both these options (two subjects failed to fill in this question).   

The opinions of the participants resulted in five main categories containing 29 subcategories (Fig. 1): 

prosthesis-related, psychological & cognition, environment, general, and activities. The two most mentioned 

categories were ‘psychological & cognition’ and ‘activities’. The main focus within the ‘psychological & cognition’ 

category was on the problem with setting boundaries. Participants felt that they had to give at least 150% in all of 

their activities, resulting in complaints: “…, with what I do have, wanted to overcompensate. More in a way to 

prove: I can do everything. What you can do, I can do too. And then some extra.” Difficulty to accept that they had a 

loss of function and, especially in those with acquired amputations, the wish to return to work in the same manner as 

before the amputation, contributed greatly to the development of MSCs. In the category ‘activities’, they addressed 

that compensation with the non-affected limb and performing physically demanding tasks were important 

contributors to the presence of complaints: “I am missing my left hand and I, in order to compensate, perform 

everything with the right side. And that makes me really chronically overload my right shoulder. But also my head, 

neck, just the whole area. Sometimes I have, what do you call that stupid stupid thing, … a tennis elbow.” 
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Prothesis-related
- Weight 
- Length (asymmetry)
- Incorrect use of prosthesis
- Prosthesis control
- Type of prosthesis/hand
- Reliability of  prosthesis

Musculoskeletal 
complaints

Activities
- Increased load on non-affected limb
- Repetition of movements
- Physically demanding tasks
- Duration of tasks
- Posture
- Physical fitness
- Changes in intensity of prosthetic use

General
- Time since amputation
- Congenital versus amputation

Environment
- Expectations from social environment
- Support from social environment, including employer
- Childhood upbringing
- Facilities at work and at home
- Caretaking of children
- Focus therapy on RTW after amputation
- Availability of therapies

Psychological & cognition
- Difficulties setting boundaries
- Acceptance/ awareness of limited function 
- Urge to prove capabilities
- Independence (asking for help)
- Discipline/motivation to apply knowledge
- Expectations about RTW after amputation
- Knowledge of training/therapy possibilities

 

Figure 1: Framework of risk factors for the development and persistence of musculoskeletal complaints according 

to persons with upper limb absence. RTW: return to work. 

 

DISCUSSION 

A framework was made based on the opinions of patients with ULA on origin and maintenance of MSCs. This 

framework highlights themes that are risk factors for MSCs according to the patient population. Comparing this 

framework to several models [6-9], shows similarities with the International Classification of Functioning, Disability 

and Health (ICF) [9]. This framework will help to assess necessary treatment modalities of individuals with ULA, 

who experience MSCs. Using a distribution of risk factors comparable to the ICF-model is helpful to understand and 

measure consequences of MSCs, and can be used in clinical situations.  

The opinions of the persons with ULA highlight the importance of psychological and physical factors. 

Psychological factors such as coping, support and work-related factors have been addressed in previous studies [1, 

3]. On the contrary, studies about the physical factors have not been executed in subjects with ULA so far, even 

though studies mention compensation as a possible risk factor [4]. Investigating compensation strategies should be 

one of the research priorities for future studies.  

Furthermore, to strengthen the framework, it should be supplemented with results of a literature review focusing 

on risk factors of MSCs in this population. Thus, creating an overview of all factors that may contribute to the 

development and persistence of MSCs. This overview may help synthesizing research priorities, which can then be 

taken into account in the development of new and better interventions to prevent and to treat MSCs in single-handed 

individuals.  

In conclusion, patients suggest that psychological and physical factors play a major role in the development and 

persistence of MSCs. However, limited literature results are available to support these findings. Future research 

should examine the current scientific knowledge on MSCs in this population in order to complete the framework. 

Thereafter, discrepancies between patient perspectives and the literature should be addressed. Ultimately, more 

knowledge on population-specific risk factors of MSCs will allow to treat MSCs more effectively and reduce 

disability.  
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ABSTRACT 

This case study presents upon the unique application of 

prosthetic rehabilitation principles for a young man 

presenting with bilateral antecubital pterygia or webbing of 

the elbows.  His case was further complicated by substantial 

bilateral congenital hand deficiencies.  Prior to prosthetic 

intervention, this patient’s upper limb function was confined 

to midline manipulation performed with his elbows.  

Following a surgical release of the webbing of his right elbow 

he had sufficient mobility to justify an exploration of 

prosthetic rehabilitation.  We report on the initial prosthetic 

fitting which has substantially expanded this young man’s 

working envelop and upper limb function.  This was 

accomplished through dual-site direct myolectric control of 

an electric hand mounted in relative internal rotation to 

facilitate midline function and preserve the patient’s sensory 

input from his right residual forearm and hand. 

INTRODUCTION 

Antecubital pterygium syndrome has been defined as an 

extremely rare genetic disorder characterized by bilateral, 

fairly symmetric antecubital webbing extending from the 

distal third of the humerus to the proximal third of the 

forearm with associated musculoskeletal abnormalities.  In 

the case in question, this physical presentation was further 

complicated by the presence of concomitant congenital hand 

deficiencies.  Collectively, this left the patient largely bereft 

of meaningful upper limb function.  This case describes the 

initial prosthetic fitting process and the subsequent 

improvements in upper limb functionality.  Written informed 

consent was obtained for the presentation of this case study. 

PATIENT PRESENTATION 

The patient initially presented with bilateral webbing of 

the elbows restricting him to a non-functional 5-10° of elbow 

function (Figure 1).  Distal to the elbow webbing, the patient 

presented with shortened forearms with significant 

congenital hand deficiencies inclusive of a single residual 

digit on his left upper extremity and two residual digits on his 

right extremity.  Active wrist flexion and extension was 

present in both upper limbs (Figure 1,2).  The patient’s 

presentation was otherwise unremarkable with normal lower 

limb and cognitive function. 

 

Figure 1:  Left elbow and wrist mobility demonstrated in 

pictures of end range wrist and elbow flexion and end range 

wrist and elbow extension. 

Following surgical release to the right elbow, the patient 

became capable of an expanded range of elbow motion, 

creating a possibility of additional functional gains through 

prosthetic rehabilitation (Figure 2).  

 

Figure 2:  Right elbow and wrist mobility demonstrated in 

pictures of end range of wrist and elbow flexion and end 

range of wrist and elbow extension 

Prior to prosthetic intervention, the patient’s upper limb 

function was largely confined to bilateral manipulations 

performed by the elbows, or using his residual hands to 
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stabilize objects against his face to facilitate fine motor 

control.  Writing, for example, was performed through neck 

movement with the residual limb stabilizing a pen against the 

head.  Eating required the stabilization of a fork handle 

between the residual limb and head to stab a portion of food, 

followed by laying the fork on the table top where it could be 

bitten off of the fork. 

PROSTHETIC MANAGEMENT 

Recognizing the value of preserving the sensory input 

provided by the residual right forearm and hand, and the 

functional value of a mobile, sensate limb segment, the 

decision was made not to enclose the distal aspect of the limb 

within the socket.  Further, recognizing the value of 

maintaining an anatomic length the prosthesis, the decision 

was made to mount the forearm, wrist and hand of the 

prosthesis in relative internal rotation.  This was assessed 

dynamically in a test socket fitting prior to the completion of 

a definitive device (Figure 3). 

 

Figure 3:  Dynamic assessment of the internally rotated 

prosthetic forearm to ensure optimal upper limb function. 

Dual-site direct control was used to control prehension 

of a pediatric hand.  EMG signals were obtained from the 

wrist flexors and extensors mounted within a costum silicone 

socket.  The prosthesis also included an internal battery with 

an adjustable friction rotation wrist (Figure 4). 

We subsequently observed that he needed increased 

wrist motion for different activities and installed a ball-in-

socket universal friction wrist (myolino wrist 2000) to further 

increase his functional envelope. This increased his capacity 

to feed himself as well as write in a more ergonomic position. 

 

 

Figure 4:  Definitvie dual-site myoelectric prosthesis 

The functional benefits associated with the prosthesis 

were immediately apparent as the child demonstrated the 

ability to grasp and lift objects from a table.  He is now able 

to write with the aide of the prosthesis, sitting erect with no 

need to lower his face to the table top.  Similar benefits have 

been observed with eating as this young man is able to grasp 

a fork and raise it to his mouth with no need to lower his face 

to the table top.  The prosthesis has broadly enabled other 

midline functions (Figure 5). 

 

Figure 5:  Definitive prosthesis fully donned, demonstrating 

the capacity for midline function. 

Future prosthetic plans include replacing the current 

terminal device to a more durable small adult hand.  The 

surgical team is not currently considering a soft-tissue release 

on the left extremity due to concerns of possible secondary 

damage to the neurovascular bundle.  We have considered the 

construction of a pass-through elbow-disarticulation style 

prosthesis on the left to facilitate bimanual function such as 

personal hygiene, riding a bike or sports activities, but this 

has not yet been formally explored. 
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CONCLUSION 

This case illustrates a novel application of prosthetic 

rehabilitation principles.  The case demonstrates a careful 

balance between providing a prosthetic enhancement to the 

affected extremity without overly compromising its native 

movement and sensory input.  While the resulting device is 

less physiologic in its appearance, it meets the predominant 

needs of the patient in allowing him to write and eat in a more 

acceptable body alignment and position. 
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ABSTRACT 

One of the most exciting developments in the field relates to the mechatronic advances which have enabled the 

creation of dexterous terminal devices, wrist rotators and powered elbows. However, their clinical impact has been 

limited by a lack of effective myoelectric control strategies. To address this challenge, we have developed a novel 

control strategy based on the Postural Control algorithm, which we call the Glide Controller. In this paper, we describe 

the first clinical fitting of the Glide system and present qualitative results on the fitting outcomes.  We also discuss the 

implications of this control strategy from a patient and clinician perspective. 

INTRODUCTION 

The disparate progression of myoelectric control algorithms and their associated multi-functional prosthetic 

hands has caused mismatched technologies to become available to people with upper limb amputation.  Several multi-

functional myoelectric prosthetic hands are available today; however users are only able to access a small subset of 

the total number of grip patterns which are possible [1].  The prosthetic hands typically come with several methods 

for accessing different grip patterns including 1) myoelectric triggers, 2) buttons on the hand, or 3) gesture control [2], 

[3], [4].  These switching mechanism can require up to three different steps to switch between the current grip and the 

desired grip. Not surprisingly, many amputees find this process cumbersome and non-intuitive [5], [6], [7].    

Moreover, using muscle triggers such as a co-contraction to control multiple grip patterns or movements is considered 

slow, cognitively demanding and unintuitive [5], [6], [7].   

An intuitive control method, called pattern recognition, is emerging, however, several hurdles remain. Many 

researchers (including ourselves) have turned to pattern recognition of multichannel myoelectric signals in order to 

develop more intuitive control of advanced prostheses including the control of grasp patterns of multi-functional hands 

[8]. Pattern recognition algorithms seek to correlate patterns of surface EMG activity with a given intended movement 

command [9], [10]. Correlation is determined by calibrating a machine learning algorithm with labelled training 

examples in the form muscle activity recorded while the user holds a static posture. Because these patterns are 

representative of 

natural behaviors 

prior to amputation, 

control of the 

prosthesis via 

pattern recognition 

is intuitive and 

potentially 

increases the 

number of 

controllable DOFs. 

The most 

significant 

challenge for 

pattern recognition 

algorithms is that 

they require highly 

consistent and 

noise-free EMG 

signals [6]. This is 

A. B.  

Figure 1: A. Exemplary Glide domain where the EMG electrodes (1-3) are mapped in a 

radially fashion.  Various hand grips are placed into wedges around the domain with a 

null state surrounding the origin (white).  B. The real-time EMG activity is present with 

the yellow vectors and the resultant vector (red) determines the hand or wrist function 

that is selected. 

 

Hand Open

Tripod

Power Close Pincer

Active Index

Pointer

1

Hand Open

Tripod

Power Close Pincer

Active Index

Pointer

1

21

MEC20



particularly true as the number of degrees of freedom (DOF) in prosthetic hands increase. Thus, it would be highly 

preferable to develop a solution that can work without any calibration or extensive subject training. 

Here we present an alternative control strategy, the Glide myoelectric control algorithm, which maps the 

electromyographic (EMG) signals to a radial mapping of prosthetic hand grips or wrist functions (Figure 1).  The 

Glide algorithm is based upon our previous work on the Postural Control algorithm in the Biomechatronics 

Development Laboratory [11]–[13].  The basis of Glide algorithm is the vector summation of EMG signals from 2-8 

EMG electrodes which is manifested as a “Glide vector” which is projected onto the Glide domain.  The domain can 

be partitioned into “wedges,” which are correlated to single hand grips or wrist functions.  A given wedge’s inner 

radius determines the onset threshold for a movement.  Once the Glide vector exceeds the onset threshold, the 

amplitude of the Glide vector is proportionally mapped to the velocity of the wedge’s associated movement until the 

vector reaches the outer radius of the wedge, which corresponds to the maximum velocity of the movement.    The 

mapping of the Glide domain is adjustable so that wedges can be placed anywhere in the domain, the inner and outer 

radius of the wedge can be independently changed, and the arc-length of each wedge can be made larger or smaller.  

These customizations allow for strong independent EMG signals to command certain functions and co-activity of 

other EMG signals to control other functions.  The customizability ensures that the system can be fit to myoelectric 

prosthetic users with a broad range of abilities.  Here we present a case study of a subject with trans-radial amputation 

who utilized the Glide algorithm with both hand and wrist function in a take-home trial. 

METHODS 

A single subject was recruited and informed consent obtained by clinicians at Handspring Clinical Service office 

in Salt Lake City, UT.  The subject presented as a recent trans-radial amputee with a long residual limb length (8.5”).  

This subject was a novice myoelectric prosthetic user and had no prior experience with a myoelectric device outside 

of clinical sessions.  The subject was originally amputated at a wrist disarticulation level but underwent a surgical 

revision for shortening to remove a neuroma and to improve the shape of the residual limb for prosthetic fitting.  In 

addition, the surgeon salvaged and relocated the flexor pollicis longus muscle closer to the surface in order to provide 

an additional myosite for surface EMG control.  The subject was fitted with a three-site Glide system where the 

electrodes were placed over the following muscles: 1) flexors digitorum, 2) extensors digitorum, and 3) flexor pollicis 

longus.  The Element electrodes (Infinite Biomedical Technologies LLC, Baltimore MA) were integrated into the 

custom self-suspending HTV silicone prosthetic socket, the FlexCell battery and the Glide control system was 

integrated into the outer prosthetic socket.  The TASKA prosthetic hand (TASKA Prosthetics, Christchurch, New 

Zealand) and wrist rotator (Motion Control, Salt Lake City, Utah) were utilized to provide the user with multiple hand 

grasps as well as wrist pronation and supination.   

The Glide algorithm was configured to include the following hand grips and wrist motions: 1) hand open, 2) hand 

close, 3) wrist pronation, and 4) wrist supination.  The gains for each of the electrodes were adjusted independently.  

EMG smoothing was enabled.  A feature called walls was also enabled which prevents activation of a different 

hand/wrist function until the signal drops below the on threshold of the active Glide domain wedge. 

After the subject enrolled in the study, the prosthetic system was fitted to the subject and tuned for best 

performance by the prosthetist.  Training on use of the system was conducted by the prosthetist.  The subject completed 

a battery of outcomes measures including 1) The McGann Feedback Form, 2) The OPUS: Satisfaction With Device 

and Services, 3) OPUS Upper Extremity Functional Status, and 4) OPUS: Health Quality of Life Index.  The subject 

went home with the Glide system for a total of 4 weeks.  Outcome measures were collected at initial fitting, two weeks 

post-delivery, and four weeks post-delivery.  The outcome measure results and qualitative comments from the subject 

and prosthetist are provided here. 

RESULTS 

Experimental Results: The outcome measures were collected during the initial fitting, two-week session, and four-

week session.  Table 1 depicts the outcome measures over those sessions.  The McGann Client Feedback Form results 

indicate an increase in prosthetic satisfaction across the four-week trial from 53% during the initial fitting to 97% 

satisfaction during the four-week session.  The OPUS results provided a mixed description of the patient’s satisfaction, 

functional status, and health quality in that not all outcome measures improved across the four-week session.  

Nonetheless, the single-subject quantitative results for the first-time use of a new technology is an encouraging step 
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forward and suggests that the Glide algorithm can be an affective tool for the control of multi-functional prosthetic 

hands. 

Table 1. – Outcome measure results across the initial fitting, 2-week session, and 4-week session 

Experimental 

Session 

McGann Client 

Feedback Form 

OPUS–Satisfaction 

with Device 

OPUS-Functional 

Status 

OPUS–Health 

Quality of Life 

Initial fitting 53% 39 46 74 

2-week session 88% 36 30 78 

4-week session 97% 38 43 73 

 

Qualitative Results: The subject owns an excavation company and has a history of operating heavy machinery.  

This type of equipment utilizes joysticks with multiple switching mechanisms to manipulate the implements of the 

equipment.  This experience was very useful for translating into prosthetic control.  He was quoted as saying, “In the 

beginning I thought it was pretty easy. And the more and more as I go with this I recognize it is capable combining 

functions to do something different.  So I’m getting better at it.”  His responses to the McGann Feedback forms 

indicated that as he became more familiar with the system his satisfaction increased.  During the take home trial period 

the subject was fit with a Glide system with three electrodes.  During one of the follow-up appointments he commented 

that he wanted to try adding a fourth electrode into the system as he stated, “I have the signals” referring to his ulnar 

deviators.  This fourth electrode will be added in the future and further data will be collected. 

DISCUSSION 

Technological Progress: The Glide system is the next logical iteration of a traditional two site myoelectric control 

system.  It has clinical implications for individuals who have had a conventional amputation surgery, but also has 

significant added benefits when combined with more contemporary amputation surgical methods such as TMR.  From 

a clinical perspective it bridges the gap between a two-site myoelectric system and a full pattern recognition system.  

Selecting among multiple movements can be simpler than using EMG triggers such as co-contraction, double and 

triple impulses.  While “joystick” control of the wrist is the most straightforward method to access different wedges 

within the Glide domain, it is also possible to use intuitive motions for control.  It also bridges this gap from a cost 

standpoint as well.  Fabrication is no more difficult or complex than a traditional two site system.  The space 

requirements for the system are also minimal within the socket.  Processing power consumption is low with no 

appreciable reductions in battery life as compared to a two-site system. 

Clinical Perspective: There were some initial challenges in the clinical fitting as this was the first clinical 

application of the Glide algorithm.  Part of the challenge was in learning how to refine and fine tune the arc lengths 

of the wedges, adjusting the gains and thresholds, enabling and disabling the walling features, and then proper 

queueing and instruction for the user.  However, the technology proved to be quite adaptable and flexible.  Initially 

the subject was sent home with only hand functions on the primary axis and the wrist functions as secondary fast rise 

actions like what a four-channel control system would be.  This was challenging for him.  Given his lack of myoelectric 

control experience he would inadvertently activate the wrist functions quite often, which proved to be frustrating to 

the participant.  In particular when the wrist would start rotating unexpectedly and get into a unnatural anatomical 

posture, his whole ability to control the prosthesis would degrade.  He expressed that this was because once the 

prosthesis was in an unnatural posture his sense of embodiment of the prosthesis completely disconnected.  

Fortunately, with an update to the control algorithm, wrist functionality was added as a primary function instead of as 

only a fast rise secondary function.  Doing so allowed for defining additional Glide domain wedges for wrist control 

which the subject was able to activate with a high level of accuracy. 

Initially when training the subject, he was queued to try and visualize moving his phantom limb as would be done 

in pattern recognition training and calibration.  This worked to some degree, however it was never really consistent.  

The resultant vector would end up moving around quite a lot and not stay in one clearly defined area.  It took some 

time to recognize that this queueing would not work and that another strategy needed to be developed.  It was 

determined that we need to help the users conceptualize that the electrodes function somewhat like a joystick.  It is 

best to put the primary functions right on the axis of the electrodes on the Glide domain.  Once the subject has good 

control of each independent axis, then they can be queued to start trying to make combinations of contractions between 

adjacent electrodes on the Glide domain.  The goal being to help the subject generate a resultant signal that is exactly 
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in the middle of the pair of electrodes on the Glide domain.  In doing so, with three electrodes six separate functions 

can be controlled.  With four electrodes, eight separate functions could be controlled.  By also allowing for fast and 

slow rise the potential exists to control double the amount of functions.  The Glide system is not limited to the number 

of regions that could be created.  Therefore, as an individual gains improved control in combining the signals, 

additional wedges can be added to the Glide domain to add additional functions.  This will allow the individual to be 

able to access specific grip patterns of multi-articulated terminal devices as well as additional wrist functions such as 

flexion and extension. 

Unlike in pattern recognition systems where the process of classification is somewhat obscured from the user and 

the prosthetists, the Glide system allows the prosthetists and the user of the technology to visually see on the Glide 

domain what the function will be without any ambiguity or uncertainty.  It also allows the prosthetist to easily adjust 

the Glide domain mapping and ensure easier selection of each function.  By increasing the arc of the wedge on the 

Glide domain and adjusting the on and maximum thresholds, the prosthetist can effectively accommodate for accuracy 

and fatigue of signals.  Clinically, it was found to be very helpful to be able to adjust this tolerance.  Past clinical 

experience with pattern recognition systems has shown that sometimes throughout the day as a user’s muscles fatigue 

their classification accuracy may diminish resulting in unwanted behavior.  The Glide domain interface allowed for 

the clinicians to adjust the wedge size and shape in order to avoid this pitfall.   

Clinical Implications: A system built on the Glide algorithm provides a novel advance to traditional myoelectric 

control.  When set up with only two electrodes it functions in the same way that a conventional two site system would.  

However, it provides a significant clinical advantage for controlling an increased number of functions and motions of 

a prosthesis when additional electrodes are added into the system.  This is accomplished without time consuming 

additional fabrication and minimal additional hardware and processing power.  Increasingly, the possible controllable 

motions of a prosthesis outnumber the inputs that a user has available thereby requiring complex switching strategies 

or signal processing algorithms in order to activate them.  The limitation on a user’s ability to benefit from these 

additional motions is correlated to the number of inputs available to them.  Future applications could see connecting 

non-EMG inputs into the Glide system in combination with EMG signals.  This could help individuals with limited 

surface EMG sites, such as higher level amputees, also benefit from this technology.   

Because the Glide system allows for more granular control, the amount of time programming was longer than for 

a conventional two site system or for a pattern recognition system.  There is a learning curve to the system, but over 

time with further fittings and documentation of outcomes a guideline of best practices will be able to be developed.  

This will be critical for widespread adoption by clinicians. 
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ABSTRACT 

The relatively recent commercialization of pattern 

recognition has occurred simultaneously with the 

proliferation of Targeted Muscle Reinnervation (TMR).  

Reports on applications of pattern recognition have generally 

been its application on proximal amputation post-TMR 

procedures or on transradial amputations in the absence of 

TMR.  This case series highlights two successful applications 

of pattern recognition to patients with high level amputations 

who had not undergone TMR.  In both cases, the users 

experience enhanced prosthetic control with reduce 

frustration and cognitive burden of prosthesis use.  Pattern 

recognition appears to be a viable control strategy in high 

level upper limb amputation without TMR procedures. 

INTRODUCTION 

Direct control systems have been the traditional standard 

for myoelectric control of upper limb prostheses.  In dual-site 

direct control a pair of surface electrodes are positioned over 

a set of antagonistic muscles with distinct EMG signals from 

these muscles providing threshold-based, proportional 

control of opposing prosthetic movements.  However, the 

muscular actions of the controlling EMG sites are often 

physiologically inappropriate and counterintuitive with 

respect to the desired prosthetic movements [1].  This is more 

pronounced at high-level amputations where the muscles of 

the upper arm and shoulder girdle are recruited to control 

hand prehension and wrist rotation.  Further, with direct 

control systems for high-level amputations the number Of 

EMG control inputs for prosthetic movements are 

insufficient, often requiring the user to generate specialized 

EMG signals to cycle between joint segments of the 

prosthesis [1]. 

In contrast to direct control, pattern recognition control 

reads EMG information from throughout the residual limb.  

Prosthetic control is provided through the recognition or 

correct classification of collective muscle patterns obtained 

from throughout the limb.  This allows for direct control of 

multiple prosthetic movement patterns. 

The commercialization of pattern recognition has 

occurred simultaneously with the proliferation of TMR, an 

innovative surgical procedure designed to increase the 

number of independent EMG sites available upon a residual 

limb.  Publications on the application of pattern recognition 

in prostheses for high-level amputation have generally been 

confined to individuals who had undergone TMR procedures 

[2-5].  This cases series will highlight two successful 

applications of pattern recognition for high-level amputations 

that have not been revised using TMR techniques.  Written 

informed consent was obtained from both case subjects. 

SHOULDER DISARTICULATION CASE 

DV presented with a right shoulder disarticulation 

amputation (Figure 1).  He was initially fit with a passive 

prosthesis to restore an aesthetically acceptable appearance 

in community activities.   

  

Figure 1:  Right Shoulder disarticulation 

A year later he was provided with a second prosthesis.  

The EMG signals on DV’s chest wall were so strong that they 

effectively drowned out the more modest EMG signals that 

could be obtained from his upper back.  As a result, the 

control strategy of this first electric prosthesis was a single-

site direct control. 

More specifically, the EMG signals derived from his 

chest wall were used to control the sequential movement of 

his elbow, wrist and hand.  EMG signals exceeding the 1st 
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level threshold provided control input to the joint under active 

control using an alternating strategy in which a brief latency 

period between contractions allowed control to switch to 

movement in the opposite direction (I.e., from an elbow 

flexion to an elbow extension command). Brief spikes 

exceeding a 2nd level threshold acted as the sequential 

switching signal between joints. 

DV wore this system regularly and became quite adept 

at its use, but frequently commented on the tedious nature of 

its control which could become frustrating in the execution of 

finer motor movements. 

Several years later, soft tissue revisions to the limb 

required the replacement of this prosthesis.  At that time 

pattern recognition was assessed as a possible means of 

enhancing prosthetic control.  During this assessment it was 

discovered that while the signals were dwarfed by the more 

powerful signals of the chest wall, discernible EMG signals 

could be obtained from the infraspinatus, supraspinatus and 

latissimus dorsi.  While these signals were inadequate to 

exceed the threshold requirements of direct control, and could 

not be adequately separated from EMG activity of the 

pectoralis major, they were sufficient to inform the nuanced 

patterns required in pattern recognition. 

A dynamic test socket was constructed with a single pair 

of anterior electrodes and 3 pairs of posterior electrodes 

located over the targeted muscle bellies (Figure 2).  Over 

several weeks of use, the DV was able to consistently 

generate distinct signals for elbow flexion and extension, 

wrist pronation and supination and hand opening and closing. 

 

Figure 2:  Dynamic test socket with 8 electrodes positioned 

over targeted muscle sites 

This control strategy was preserved in the fabrication of 

the definitive prosthesis, inclusive of an Espire Elbow, 

Motion Control wrist rotator and BeBionc hand (Figure 3).  

Passive grip selection using the contralateral hand provided 

the patient access to 8 distinct grip patterns. 

 

Figure 3:  Definitive prosthesis inclusive of pattern 

recognition control of an Espire Elbow, MC wrist rotator 

and BeBionic Hand. 

While DV continues to prefer his passive prosthesis for 

much of his community activities, he wears the more 

advanced arm regularly to accomplish basic ADLs around 

the house with a specific interest in meal preparation.  He is 

extremely pleased with the enhanced control and reduced 

frustration in operating the system. 

SHORT TRANSHUMERAL CASE 

KA presented as a legacy user of a range of upper limb 

prostheses following his short transhumeral amputation 

secondary to an IED blast sustained in combat (Figure 4).   

         

Figure 4: Short transhumeral amputation secondary to IED 

blast injuries 

At the time of KA’s presentation to our clinic, he was 

using a hybrid prosthesis with a body-powered elbow, 

passive control of pronation and supination and dual-site 

direct control of a BeBionic hand.  He presented with ample 
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EMG signal from his residual triceps, but extremely weak 

EMG from his residual bicep.  He was able to cycle between 

3 targeted grips using an “open-open” switching signal, but 

his ability to consistently close the hand was poor.  He 

expressed frustration with both his consistency of operation 

and the cognitive burden of prosthetic control. 

In response to these deficits, pattern recognition was 

explored as an alternate means of myoelectric control.  Eight 

electrodes were positioned over the anterior, medial and 

posterior aspects of the socket (Figure 5).  These produced an 

extensive EMG palate that ultimately generated discrete 

control of active pronation and supination, hand opening and 

3 discrete closing signals for his TASKA hand including 

general grasp, flexi-tool and a custom grip that allows him to 

hold his tablet while working as an environmentalist in a 

mine.  

 

Figure 5:  Placement of 4 pairs of electrodes to inform the 

patient’s pattern recognition control scheme. 

The patient’s definitive hybrid prosthesis was inclusive 

of a suction socket with a body powered hybrid elbow and 

myoelectric control of a powered wrist rotator and a heavy 

duty multiarticulate TASK hand (Figure 6).  The patient 

reports daily use of this prosthesis with specific application 

in his work setting. 

 

Figure 6:  Definitive hybrid prosthesis 

CONCLUSION 

Pattern recognition in the control of prostheses for high 

level amputations has largely been described in patients who 

have undergone TMR to expand the strength and availability 

of EMG control signals.  In this case series we describe two 

high level patients who experienced substantial 

improvements in their control of their electric prostheses with 

the introduction of pattern recognition without the benefit of 

TMR.  The ability of  pattern recognition to recognize subtle 

distinctions in EMG patterns at proximal amputation levels 

appears to be sensitive enough to provide many discrete 

signal inputs even in the absence of TMR. 
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ABSTRACT 

When fitting an infant with the first myoelectric prosthesis, finding an appropriate location and orientation for the 
myoelecrode to gain adequate signal at muscle contraction is troublesome.   

Palpating the small muscle bulge in the short residual limb at short contraction without interactive communication 
is not easy and searching the location on the arm moving the sensor while watching the myoelectric signal on the 
screen is an overloaded task.  

 Diagnostic ultrasound B-mode image is a convenient and safe technique to visualize normal and pathological 
muscle and other anatomical variety in real-time in a non-invasive manner. 

Since 2017, we are successfully using ultrasound diagnostic device (UD) for arranging the electrodes. UD is 
effective and useful at practice situation, since the dynamic visual feedback of the muscle contraction allows to easily 
and reliably locate the electrode location over the target muscle.   

Diagnostic ultrasound should also be a good visual feedback system to train or detect proper signal strength from 
limb deficiency patients. 

BACKGROUND  

Congenital upper limb deficiency (CULD) is a rare disease which impairs both function and appearance of the 
limbs. The treatment approaches vary according to the type of deficiency. To provide better evidence-based medical 
care, it is necessary to establish the standard treatment of CULD. (1) 

We established Limb Differences/Amputee Clinic since 2013. This outpatient clinic is not only for adult 
patients but also for children with congenital and acquired amputations or limb deficiencies. Our team members 
include rehabilitation physicians, occupational therapists, physical therapists, prosthetists, engineers and other 
comprehensive care members such as orthopaedic surgeons and  paediatricians   

We provide rehabilitation therapy including prosthetic interventions, such as conventional prostheses, 
myoelectric prostheses and so on. 

 Since 2017, we had started using Ultrasound diagnostic device (UD).  UD is a convenient and safe technique to 
visualize normal and pathological muscle and other anatomical variety as it is not invasive and real-time. When 
fitting an infant with the first myoelectric prosthesis, we need to find an appropriate place for the myoelecrode to get 
a proper signal when the muscle is contracted.  

The prescription of prostheses and proper fitting of a prosthesis require an adequate length of the stump. 
However with infants with short stump of transradial deficiency, we always have trouble finding an appropriate 
location and orientation for the myoelecrode to gain adequate signal at muscle contraction is troublesome.   

Palpating the small muscle bulge in the short residual limb at short contraction without interactive 
communication is not easy and searching the location on the arm moving the sensor while watching the myoelectric 
signal on the screen is an overloaded task. UD is so convenient and useful at practice situations because we can 
place an electrode on the exact muscle inside of the infant's short stump with assurance.  
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CASE PRESENTATION 

The subjects are three infants before 2-year-old of age with transradial limb deficiencies in the short residual 
limb with the first myoelectric prosthesis. (Fig.1) 

When we prescribe and fit an infant with the first myoelectric prosthesis, finding an appropriate and suitable 
place for the electrode to get a proper signal is required when the the small muscle bulge of stump is contracted.  

We use the diagnostic ultrasound system SNiBLE by Konica Minolta or finding appropriate muscle in the 
stump. Diagnostic ultrasound B-mode image is a convenient and safe technique to visualize normal and pathological 
muscle and other anatomical variety such as joint instability or laxity and muscle deficiency in real-time in a non-
invasive manner. 

finding an appropriate location and orientation for the electrode to gain adequate signal at muscle contraction is 
troublesome. It is often happening and we face the difficulty that finding the appropriate location and orientation for 
the electrode without interactive communication. This is because of the small muscle of residual limb and the thick 
subcutaneous fat. However, UD is an effective and useful device at practice situation such as the infant with a short 
stump of transradial deficiency, because we can find the place an electrode on the exact muscle in the short residual 
limb of the infant with assurance. The information and data from UD is not only reveals the presence of the muscle 
but the direction of muscle fiber as well. (Fig.2)  

When fitting a toddler or young child with a myoelectric prosthesis, it is said that finding appropriate muscle 
sites to place an electrode is generally easy.(2） However it is not so easy with an infant around age 0 to 1-year-old 
who has the short residual limb.  Finding small muscle bulge and direction of muscle fiber is nearly impossible to 
find on the infant residual limb because it is too small and difficult to see, due to no functional motion of the joint 
and thickness of  subcutaneous fat.  

Using diagnostic ultrasound B-mode image is effective technique for us to place the electrode on the infant small 
stump. All the three infant with short residual limb are easily successed the site selection, and they control with sure 
and good to operate the myoelectric. 

CONCLUSION 

The infant with a short residual limb of transradial deficiency, we always have trouble to find the ideal place for 
the electrode. It is also said that UD appeared to be more sensitive in detecting EMG and clinical observations, because 
it can visualize a large muscle area and deeper located muscles. (3) 

We had started using UD. It is so convenient and useful at practice situations because we can place an electrode 
on the exact place of the muscle inside the infant short residual limb. This is where we can place the electrode by 
diagnostic ultrasound without a doubt or hesitation if the infant cannot contract the muscle in the short residual limb  
during site selection to control myoelectric. 

Furthermore, the child can see their muscle contraction or movement by UD, we are confident that diagnostic 
ultrasound also becomes a good visual feedback system to train or detect proper signal strength from affected limb for 
young children and older who can recognize the image. 

 

This report was approved by the Ethics Committee of the Faculty of Medicine of the University of Tokyo ; 
ethical approval number: 2373. At the University of Tokyo Hospital, all patients were given an explanation 
regarding personal information protection, including the use of clinical data for research. 
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FIGURE  
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Figure 1:  Right transradial CULD short stump of 1-year old girl. 

 

Figure 2: Cross section of CULD proximal stump by UD.  Supinator muscle and other extensor muscles on 
the radial side of forearm. The UD can detect and visualise the muscle less than 2mm thickness.  

radius 
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Video Games: Client Centered Adaptations 

Intent: To provide information and resources for clients with amputations and for providers, in order to 
return to video gaming.  

 

Video games have been a part of modern society since the late 1970s and 1980s. The people who played 
the early systems are now growing older, but many continue to play. Video games have also become a 
part of modern culture with the rise of the professions of eSports, online streaming videos, as well as in 
movies and television. Billions of dollars are spent within the video game industry to develop the latest 
and greatest systems and games. However, only recently have industry leaders created adaptive devices 
for gamers with disabilities. 

  

Off the Shelf Adaptations 

Microsoft recently released an adaptive controller that works with the Xbox One system and a Windows 
based computer. This is a first in the industry, a large company taking the initiative to market and sell an 
adaptive gaming product. The device has worked well, but for some gamers with an amputation, it has 
not been the best solution. The device starts at $99 USD, but may require the gamer to buy switches and 
other control devices. A standard Xbox One controller has ten buttons, and the adaptive controller only 
has two built in programable buttons. The gamer must acquire extra switches to account for those 
buttons, and at a cost of at least $45 USD per switch, the cost can easily build up. Another issue for the 
Microsoft device, is that it only works with Microsoft systems. This can be a challenge since many 
gamers are usually very loyal to their favorite brand, such as the Sony Playstation or Nintendo Switch, 
usually purchasing every generation of the brand’s systems as they get released. Gamers may invest 
thousands of dollars buying games that only work for their system, but if they have an amputation, they 
may not be able to play their non-Microsoft system. There has been some success modifying the 
Microsoft controller onto other systems through adaptors and software, but this can have another 
increase in cost and can be more technical than some clients and/or providers wish to attempt.  

Another type of controller that is commercially available are customizable controllers such as the Scuf 
Controller by Scuf Gaming International LLC. Typically, a popular choice for “hardcore” or professional 
gamers, these controllers have customizable buttons on the back of the controllers, built-up joysticks, 
and more software options. With these customizations, some clients with unilateral amputations or digit 
amputations have found that they are able to return to gaming. These controllers can work for the Sony 
Playstation, as well as the Microsoft Xbox. However, they can be expensive starting at $150 USD, and 
can require extra purchases for further customizations.  

Non-profit organizations like Warfighter Engaged, Inc. out of New Jersey, have been building custom 
controllers and adaptations for gamers with amputations since 2012. Their focus is to get the gamer 
back into the game by adapting the environment with controller modifications and prosthesis 
enhancements.  This has been successful at getting players back into the game.  
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In-Clinic Adaptations 

Some clients are apprehensive about spending the amount of money required for some of the off the 
shelf adaptions. Therefore, with some in-clinic resources and a little ingenuity, low cost adaptions can be 
made.  

Using thermoplastic material, joysticks on the standard controller can be built. Some patients have even 
been able to put long screws into the controller’s joystick to increase their ability to reach it.  

Typically, thumbs are required to manipulate the two joysticks on most controllers, which is difficult 
with a thumb amputation. By custom fabricating a thermoplastic prosthetic thumb, which are often 
used for early prosthesis training, clients can return to gaming. It is also recommended to add friction 
material, such as Dycem, to the end of the thermoplastic prosthetic thumb to provide a better grip to 
the device and controller.   

 

Games for Therapy  

There is no denying the therapeutic benefit of many video games. The Nintendo Wii continues to be 
used in various therapy settings across the world, even though the system was discontinued in 2013. 
However, many clients are more into the newest systems. There are new games for the current systems 
that also have therapeutic benefit. Nintendo has released a new Fitness game called Ring Fit Adventure 
for their Switch system. This requires the player to perform upper and lower body exercises to progress 
through the game and storyline. Games such as the Just Dance and Dance Dance Revolution require the 
player to use balance and whole-body movement to achieve in-game goals.  

Another new frontier for therapeutic gaming is the increased availability of virtual reality (VR). VR 
systems have become more affordable, which enables them to be used in clinics. Stand-alone systems 
such as the Oculus Quest by Facebook Technologies, LLC is only $399.00 USD, but has everything 
included. No need to purchase another system. This allows clients to place themselves into an 
immersive virtual environment, and to safely attempt tasks they never thought possible. 

 

Tips for Non-Gamer Providers 

Some therapists and providers without gaming experience may be overwhelmed with new video game 
technology. However, gaming is just like other leisure pursuits, and can be analyzed just like any other 
activity. Gamers usually like to talk about their gaming systems and want people to play with them. 
Don’t be afraid to ask the client questions about how to play the game or even try it out. Older systems 
such as the original Nintendo Entertainment System and Sega Genesis have been remade and are a great 
introduction to gaming, which can then be used to better relate to gamer clients. There are also many 
online resources with step-by-step instructions on most games.  

So Game On! 
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ABSTRACT 

The literature related to upper limb prosthetic 

rehabilitation has largely focused on body structure and 

function. The constructs of activity limitation and 

participation restriction are comparatively under 

represented.  The intent of this effort was to assess the 

related constructs of activity and participation among a 

cohort of individuals using unilateral transradial prostheses 

and correlate these findings against measures of upper limb 

function, satisfaction, quality of life, prosthetic wear time 

and pain interference. 

We observed the strongest correlation of patient 

reported activity and participation to be an individual’s 

perceived bimanual upper limb function as measured by a 

custom PROMIS short form (r=0.74).  Additionally, strong 

correlations were observed between activity and 

participation values and perceptions of both quality of life 

(r=0.44) and satisfaction with life (r=.37).  The additional 

constructs of pain interference (r=.34) and reported 

prosthesis wear times (r=.32) also demonstrated weaker 

correlations with activity and participation. 

INTRODUCTION 

 

The World Health Organization’s (WHO) 

International Classification of Functioning and Health 

(ICF) facilitates a comprehensive understanding of the 

challenges faced by individuals coping with illness or 

disability. As with many other physical disabilities, upper 

limb amputation is associated with immediate and 

profound impairments within the realm of body functions 

and structures. However, the ICF model encourages 

additional consideration of both activity limitations and 

restrictions to participation [1]. 

Gallagher et al identified frequently encountered 

activity limitations for this population. These included 

getting dressed (52.9%), taking care of household 

responsibilities (52.9%), and day-to-day work/school 

activities (40.0%) [2]. 

Additionally, in consideration of restrictions to 

participation, the most frequently identified restrictions 

have been suggested in employment or job seeking 

(91.7%), family life (41.2%), leisure/cultural activities 

(41.2%), sports or physical recreation (38.5%), shopping 

(35.3%), living with dignity (35.3%) and socializing 

(23.5%) [2].  

In addition to the disability considerations identified 

within the ICF Model, Wurdeman, Stevens, and Campbell 

have reported upon the increases in individual quality of 

life and satisfaction associated with the use of lower limb 

prostheses [3]. Of particular interest to the present study is 

whether this relationship holds true for a population of 

upper limb prosthetic users as well, and what correlations 

may exist between perceived activity and participation and 

reported satisfaction and quality of life.  

In 2004, the National Institutes of Health (NIH) 

launched the Patient Reported Outcomes Measurement 

Information System® (PROMIS®) “Roadmap Initiative” 

[4]. This effort sought to leverage modern psychometric 

techniques to improve the measurement of symptoms and 

health outcomes by generating and refining item banks 

across a range of health-related constructs. The initiative 

ultimately created numerous patient-reported outcome 

measures covering a wide range of both symptoms and 

functionalities as well as establishing a standardized 

scoring framework that could be used across illnesses, 

chronic health conditions, and the general population [4].     

Among these instruments are a small series of short 

forms addressing an individual’s perceived ability to 

perform their usual social roles and activities, appropriately 

entitled the PROMIS® Ability to Participate in Social 

Roles and Activities (PROMIS-APSRA).  This construct 

aligns well with the considerations of activity limitation 

and participation restriction proposed by the ICF and has 

been assessed and published across a range of illnesses and 

disabilities. 

Also within the available PROMIS measures is the 

PROMIS Physical Function Upper Extremity measure or 

PROMIS®-UE.  This is a measure of an individual’s 
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perceived ability to complete tasks that require the use of 

one’s upper limb. The PROMIS®-UE utilizes item-

response theory to generate a probability-algorithm to 

measure both the response to an individual question, as 

well as the concurrent relationship between said item and 

domain specific items This provides a more advanced and 

holistic view of an individual’s physical function both in 

terms of the response to an individual item and the 

relationship of the item to the entire measure.  

In the case of the customizable PROMIS®-UE test 

bank, items can be selected to provide a psychometrically 

sound representation of an individual’s overall perceived 

function level, rather than simply a measure of an 

individual’s ability to perform a given isolated task. Item-

response theory algorithms reduce the required number of 

items that must be administered while maintaining test 

validity, thus reducing the time burden for both the 

clinician and test taker. 

The purpose of this paper is to report upon the ability 

of individuals using upper limb prostheses to participate in 

social roles and activities and those factors that may be 

closely correlated to this construct. Examined factors 

include upper extremity function, hours of wear time, 

quality of life, and post amputation satisfaction with life. A 

relationship between an individual’s APSRA and upper 

extremity function and was hypothesized. Participation and 

activity was further hypothesized to be related to quality of 

life and post amputation satisfaction with life. Finally, 

hours of prosthesis wear time was hypothesized to be 

related to APSRA. 

 

METHOD 

Study design 

 

During routine patient care, patient outcomes were 

collected from patients receiving maintenance or 

replacement of an upper limb prosthesis. The present data 

represents a multi-site review of all outcomes collected 

from May 2017 through December 2018. 

 

Participants  

 

Of particular interest to the present study were individuals 

age 18 and older, with unilateral transradial amputations, 

who were actively using any type of prosthesis.  

 

Procedure 

To assess upper limb function in the sampled cohort a 

custom 9-item short form from the PROMIS®-UE v2.0 

item bank consisting of bimanual activities was 

administered (PROMIS-9 UE).  Patients were asked to 

report the level of difficulty associated with each item 

using a Likert scale ranging from 1 (unable to do) to 5 

(without any difficulty).  Items included such tasks as 

opening and closing a zipper, cutting food using utensils 

and lifting or passing heavy items.  

Bimanual activities were intentionally chosen to 

attempt to isolate those activities where prostheses would 

be more likely to influence upper limb function. Raw 

scores were converted to t-scores using the 

healthmeasures.net scoring service such that a score of 50 

corresponds the average scores of the United States 

population. 

Additional survey items included the 4-item short 

form of the PROMIS-APSRA.  This construct aligns well 

with the considerations of activity limitation and 

participation restriction proposed by the ICF. Using the 

Prosthesis Evaluation Questionnaire-Well Being [5], 

patients rated their satisfaction with life (SAT) and quality 

of life (QOL) over the prior 4 weeks.  Scored range from 1 

to 10, with higher scores indicating higher levels of well-

being. 

Patients were additionally asked about their prosthesis 

wear times: number of days per week or month and number 

of hours per day. 

 

Analysis   

 

Data were initially reduced with only individuals that 

met inclusion/exclusion criteria included. The resulting 

data were then assessed using Pearson Product-Moment 

correlations and group means. Of interest were the 

relationships among the variables. Therefore separate 

Pearson correlation coefficients were calculated for 

PROMIS-9 UE t-scores, PROMIS-APSRA t-scores, QOL, 

SAT and reported daily prosthesis wear times. Correlations 

were calculated at the 95th percentile, after 1000 repeated 

bootstrap iterations. Standard Cohen [6] effect sizes were 

used to assess the Pearson correlation coefficient effect 

size.  

 

Figure 1:  Data reduction flow chart resulting in 52 

participants 
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RESULTS 

Participants 

 

Data were extracted from 67 patients that completed 

the outcomes assessments while visiting participating 

clinics. This number was further reduced to 52 users of TR 

prostheses (Figure 1). Demographic data is presented in 

Table 1.  

 

Table 1:  Patient demographics 

Age (years) 48.9 ± 15.8 

Gender 38 men; 14 women 

Height (cm):   177.3 ± 9.9 

Weight (kg):   85.7 ± 26.5 

Time since amputation  44 ± 20.1 months 

Reported prosthesis use hours/day:  11.0 ± 5.0 

days/week:  5.7 ± 2.3 

 

Results 

 

There was a large, significant, and positive correlation 

between the PROMIS-APSRA and the PROMIS-9 UE 

(r=0.738, Table 2).  A large but lesser correlation was also 

observed between the PROMIS-APSRA and QOL 

(r=0.443) There were significant medium positive 

correlations between the PROMIS-APSRA and SAT 

(r=0.369), Pain interference (r=0.340), and  reported daily 

prosthesis utilization rates (r=0.323).  

 

Table 2: Correlation Coefficients 

Variable PROMIS-APSRA 

PROMIS-9 UE .738** 

QOL .443** 

SAT .369* 

Pain Interference .340* 

Px Hours/Day .323* 

* Correlation is significant at the p < 0.05 level. 

** Correlation is significant at the p < 0.01 level. 

Discussion 

 

The purpose of the present study was to assess 

correlates to reported participation in social roles and 

activities among individuals using a unilateral TR 

prosthesis. We observed percieved activity and 

participation values to correlate with reported bimanual 

upper limb capacity, reported quality of life and 

satisfaction with life, reduced reported interference from 

pain and increased prosthetic wear time. 

We note that the strongest correlate to higher reported 

activity and participation scores was greater perceived 

bimanual capacity.  Given the bimanual nature of the tasks 

in the PROMIS-9 UE and the inclusion criteria of an 

individual’s active use of a prosthesis, we can reasonably 

assume that these scores represent the abilities of the 

sampled individuals to engage in bimanual activities with 

their respective prostheses. 

Patients who exhibited the lowest level of perceived 

difficulty performing a range of bimanual tasks were found 

to have the highest PROMIS-APSRA scores. Further, 

PROMIS-9 UE scores correlated to PROMIS-APSRA 

scores much more strongly than to such variables as pain 

interference or reported prosthetic wear time.  

Accordingly, it would appear that the ability to perform a 

desired task when needed may be more closely related to 

activity and participation than either pain or prosthetic 

wear time. 

The present paper suggests that the role of the clinical 

team is not limited to fitting an ideal prosthetic device but 

ultimately to ensuring that this device and the associated 

training facilitates the individual’s ability to perform 

bimanual tasks when required.  

The associations observed in the present study 

represent a starting point in connecting the goals of the 

clinical and rehabilitative teams, recognizing that upper 

extremity physical function is strongly connected to social 

function.  Further, social function appears to be strongly 

connected to perceived quality of life, and moderately 

connected reported satisfaction with life. However, future 

studies are needed to further solidify these findings and 

better understand the influencing factors of these 

connections.   

 

Limitations 

 

The previous results notwithstanding, it is important to 

note a limitations of data collected at multiple sites. It 

introduces a potential for human error as data was collected 

by multiple clinicians. However, steps were taken to 

alleviate this error potential as clinicians completed 

training sessions as part of broader, ongoing clinical 

outcomes data collection training. 

Further, we note that our observations were exclusive 

to users of unilateral transradial prostheses.  The extent to 

which these observations may translate to individuals with 

more proximal amputation levels is not clear from the 

current data set.  Additional, no analyses of prostheses type 

on the observed variables was performed. 
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Conclusion 

 

Among the sampled cohort, among users of unilateral 

transradial prostheses, the strongest predictor of an 

individual’s reported ability to participate in their social 

roles and activities was their perception of their upper limb 

physical function across a range of bimanual tasks.  Not 

surprisingly, activity and participation scores were also 

strongly correlated with both the QOL and SAT scores 

reported by the participants.  While the additional 

constructs of prosthetic wear time and pain interference 

demonstrated moderate correlations with activity and 

participation scores, these correlations were much weaker 

than those observed with an individual’s perceived 

capacity to accomplish bimanual tasks.  
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ABSTRACT 

Despite the promising functions of a multi-function hand, it is challenging to learn to use a hand that has up to 36 
grip patterns. If it requires too much cognitive load to learn to operate a prosthetic hand, the user may eventually stop 
using it. Measurement of cognitive load while learning to use a bionic hand will help the therapist to adjust the training 
pace and help the user to achieve success. 

An innovative, non-obtrusive method for measuring cognitive load is by tracking eye gaze. Gaze measures 
provide pupil diameters that indicate subjective task difficulty and mental effort. Three subjects wore a pair of Tobii 
eye-tracking glasses during control training and performed eight activities. Eye-tracking data were imported in Tobii 
Pro Lab software for extracting pupil diameter during the activities. Pupil diameter (normal range: 2-4mm during 
normal light) was used to indicate the amount of cognitive load. 

Pupil diameters were below 4mm in 9 out of 23 training activities. Pupil diameters were above 4mm in all three 
subjects when they used precision pinch to perform the activities “stack 4 1-inch wooden blocks” and “pick up small 
objects”. Subject 3 had pupil diameters over 4mm in all training activities.  Pupil diameters were largest when the 
subjects were adjusting the grip and when they had difficulties in initiating the grip. 

It seems appropriate to introduce no more than four grips during the first control training session. Further study 
is required to determine if pupil diameters will decrease over time when adequate prosthetic training is given. 

BACKGROUND 

In recent years, prosthetic technology has advanced significantly and many new hands with increased dexterity 
and functionality have been introduced to the commercial market. Clinicians want to offer the most useful device for 
their clients, however, it is challenging to learn how to operate a hand that has up to 36 grips. The cognitive load 
required to learn to use these hands and switch between the multiple grip patterns is unknown.  

During training, most occupational therapists introduce features of these hands gradually so as not to overwhelm 
the client. As the client masters the basic grips, additional grips may be added. It is assumed that if the cognitive load 
is too high, the user may stop using the multi-function hand or may not take full advantage of its advanced features. 
Measurement of cognitive load while learning to use a bionic hand will help the therapist to adjust the training pace 
and help the user to achieve success. An innovative, non-obtrusive method for measuring cognitive load is by tracking 
eye gaze. Gaze measures provide pupil diameters that indicate subjective task difficulty and mental effort. [1] 

 Previous studies have demonstrated that there is a connection between the need for visual feedback and learning 
to operate a myoelectric prosthesis [2], but few have looked at cognitive load in the learning/training process. 
Therapists have no objective data to help determine if a person is experiencing excessive cognitive load or when they 
are ready to progress to learning more advanced functions of the hand.   

AIM 

The aim of this project was to analyze cognitive load at various time intervals during the learning process in using 
a multi-function hand. 
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METHOD 

After receiving ethics board  approval and informed consent, three prosthetic users were assessed while 
learning to use multi-function hands. In cases where they had experience using a myoelectric hand, they were 
assessed using that hand as well. They went through basic skills training of learning to open and close the hand, and 
switch between two to three basic grips and use them to pick up and manipulate various objects. All three users had 
prior experience in using myoelectric control. Table 1 shows demographic information. 

Table 1: Subject demographics 

Subject 1 Subject 2 Subject 3 
Age 68 47 33 
Level of amputation transradial transradial transhumeral 
Time since amputation 12 years 6 years 10 years 

Previous prosthetic hand(s) MC Pro-Control, 
Bebionic 

iLimb Ultra (2 years of 
no use) 

iLimb Ultra (3 years of no 
use) 

Control of previous hand Two site One site Two site (weak muscles) 
Prosthetic hand assessed iLimb Quantum iLimb Ultra iLimb Quantum 
Control used Two-site Two-site Coapt pattern recognition 

Subjects wore Tobii Pro2 eye-tracking glasses before beginning initial training with the prosthetic hand. When 
the subject was comfortable with the use of the hand, a SHAP assessment was completed in a seated position with 
the table set to the appropriate height to allow the elbow to rest at 90 degrees on the table surface.     

The glasses data were imported in the Tobii Pro Lab version 1.130. The data was first inspected to remove 
unexpected pupil changes due to sudden head movements. Then the recordings were extracted according to the 
activities being performed. Measurements of pupil diameter for each activity were extracted from the time when the 
therapist just finished her instruction and before the subjects initiated the grip until the activity was completed and the 
hand returned to its resting position. The normal range of pupil diameter was set at 2-4mm (during normal light) to 
indicate an acceptable amount of cognitive load. [3]  

RESULTS 

Larger pupil diameters were found in all three subjects when they used precision pinch to perform  the activities 
”stack 4 1-inch wooden blocks” and “pick up small objects” (Table 2). Subject 3 had pupil diameters over 4mm in all 
the activities.  From Fig.1, it shows that pupil diameters were largest when the subjects were adjusting the grip and 
when they had difficulties in initiating the grip. 

Table 2: Pupil diameters during training 

Pupil dilation (in mm) 
Subject 1 Subject 2 Subject 3 

Pre-activity baseline 
(no stimuli) 

R:2.52-3.21 
(M=2.96, SD=0.13) 

R:2.05-2.67 
(M=2.45, SD=0.09) 

R:2.68-3.86 
(M=3.75, SD=0.15) 

Activity 
Pick up ball 
Grip: spherical (whole hand) 

R:2.42-3.63 
(M=2.89, SD=0.11) 

R:2.34-2.99 
(M=2.56, SD=0.09) 

R:3.01-5.88 
(M=4.06, SD=0.44) 

Pick up drinking glass 
Grip: whole hand 

R:2.22-3.48 
(M=2.99, SD=0.20) 

R:2.07-5.17 
(M=2.58, SD=0.12 

R:2.36-4.99 
(M=3.88, SD=0.36) 
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Stack 4 1-inch wooden blocks 
Grip: precision pinch 
 

R:2.39-5.87 
(M=2.95, SD=0.14) 

R:2.07-5.15 
(M=2.6, SD=0.12) 

R:2.61-4.90 
(M=4.20, SD=0.27) 

Pick up small objects 
(paperclip, nail, plastic button) 
Grip: precision pinch 

R:2.44-4.29 
(M=3.00, SD=0.14) 

R:1.86-4.74 
(M=2.52, SD=0.11) 

R:3.05-5.27 
(M=4.32, SD=0.38) 

Open plastic storage bag  
Grip: precision pinch 
 

R:2.44-3.37 
(M=2.86, SD=0.18) 

Not performed R:3.31-4.37 
(M=4.02, SD=0.17) 

Hold playing cards 
Grip: lateral/key 
 

R:2.33-3.42 
(M=2.88, SD=0.17) 

R:188-3.02 
(M=2.48, SD=0.09) 

R:2.54-4.67 
(M=3.61, SD=0.43) 

Hold knife to cut playdough 
Grip: Lateral and between 
fingers 

R:2.26-3.55 
(M=2.90, SD=0.15) 

R=2.02-2.85 
(M=2.48, SD=0.13) 

R:2.82-5.83 
(M=3.6, SD=0.36) 

Hold fork to hold playdough  
Grip: lateral/key 
 

R:2.46-5.83 
(M=2.88, SD=0.24) 

R:2.02-3.07 
(M=2.37, SD=0.16) 

R:2.53-4.59 
(M=3.12, SD=0.30) 

R: range, M= mean, SD =standard deviation, numbers in bold=over 4mm 

 
Subject 1: Hold fork while cutting playdough (lateral grip) 

 

Subject 2: Stack 4 1-inch wooden blocks (precision pinch) 
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Subject 3: Pick up small objects (precision pinch) 

Fig.1: Changes in Pupil Diameter over time 

DISCUSSION AND CONCLUSION 

Based on the pupil diameters from the four grips analysed here, it seems appropriate to introduce not more than 
four grips during the first control training. It is unknown whether pupil diameters will decrease over time when 
adequate prosthetic training is given. As we can see from the results, it is cognitively demanding to learn to use a 
multi-function hand, especially during initiating a new grip. Further research with more prosthesis users over time and 
other multi-function hands is needed to confirm the study findings. 
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ABSTRACT 

 

The stated goals of multiple degree of freedom 

(DOF) prosthetic hands are to improve function and create 

more natural movements for the prosthetic user. This cross-

sectional observational study tested 75 persons with unilateral 

transradial or wrist disarticulation amputation using 

standardized measures. Three subtypes of prostheses were 

compared: body-powered, myoelectric single-DOF terminal 

device, and myoelectric multi-DOF terminal device. In most 

categories there was no significant difference in performance 

with the multi-DOF devices. Body-powered users had better 

scores in two measures of dexterity compared to myo multi-

DOF users. Myo single-DOF users performed better than 

body-powered users in one test of everyday activities. 

 

INTRODUCTION 

 

Multiple degree of freedom (DOF), or multi-

articulating prosthetic hands are arguably the most advanced 

prosthetic terminal devices. The benefit of these devices 

includes the more lifelike hand appearance[1] and the ability 

to assume multiple different hand positions and grasp 

patterns[2] which, in theory, can enhance performance in a 

variety of activities. Device manufacturers also report that 

individual finger motion allows more natural and coordinated 

movements and greater precision control over delicate tasks. 

However, there is limited research examining 

functional performance of persons using these devices. The 

purpose of this presentation is to compare dexterity and 

activity performance of users of multi-DOF myoelectric, 

single-DOF myoelectric and body-powered devices.  

 

METHODS 

 

 A cross-sectional, observational study was 

conducted. The VA Central Institutional Review Board 

(IRB), Regional Command-Central IRB and the Human 

Research Protection Office (HRPO) reviewed and  approved 

this study. All study participants gave voluntary informed 

consent. 

This report is a sub analysis of a larger study of 

prosthesis users. Exclusion criteria included inability to wear 

a prosthesis for 3 hours, and any health condition that would 

limit participation in the study activities. The analysis 

presented here is limited to participants with unilateral 

amputation at the transradial or wrist disarticulation level. 

Data was collected at one of five sites by either 

occupational or physical therapists. Demographics, directed 

history, prosthesis evaluation and physical examinations were 

obtained and performed. A prosthetist evaluated photographs 

of the prosthesis to confirm device type. Standardized 

measures of performance were taken, including Jebsen-

Taylor Hand Function (JTHF)[3], Nine Hole Peg (NHP)[4], 

Box and Block[5], Southampton Hand Assessment Procedure 

(SHAP)[6], Activities Measure for Upper Limb Amputation 

(AM-ULA)[7], Brief Activities Measure for Upper Limb 

Amputation (BAM-ULA)[8], and Timed Measure of Activity 

Performance  (T-MAP)[9]. 

Prosthesis type was classified as: body-powered, 

myoelectric single-DOF terminal device, and myoelectric 

multi-DOF terminal device. Kruskal-Wallis tests were used to 

compare outcomes by prosthesis type. Dunn’s post-hoc tests 

were used to identify differences between categories of 

prosthesis type for all outcomes. 

 

RESULTS 

 

Seventy-five persons with unilateral transradial or 

wrist disarticulation amputation were included in this 

analysis. Table 1 provides demographics and prosthesis type. 

The participants were 97% male with mean age of 57. Trauma 

caused most limb loss. Table 2 describes the measures. 

Kruskall-Wallis results are shown in Table 3.  There 

were significant differences by group in JTHF small objects 

and heavy can items, NHP and BAM-ULA scores. 

Statistically significant post hoc comparisons are shown in 

Table 4. Users of body-powered devices had better scores of 

the JTHF small object tests and NHP as compared to myo 

multi-DOF users.  BAM-ULA scores were better for myo 

single-DOF users as compared to body powered users.  

 

SUMMARY & CONCLUSIONS 

 

Despite the reported benefits of multiple degree of 

freedom prosthetic hands, we found no differences in fine 
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motor or everyday activities between those using myoelectric 

multi-DOF terminal devices and myoelectric single-DOF 

devices. We did find that users of body powered prostheses 

had better dexterity scores on 2/10 of tests. In a test of ability 

to complete everyday tasks, persons using single-DOF 

myoelectric prostheses performed better than persons using 

body powered devices.  

Prior studies have compared the performance of 

persons using body-powered and myoelectric prostheses. 

Hebert et al. studied a single person with transhumeral 

amputation performing a box and blocks test with a body-

powered prosthesis, then 13 months after targeted muscle 

reinnervation and training with a myoelectric prosthesis. He 

was able to move 49 blocks with a body-powered prosthesis 

but only 20 blocks with the myoelectric prosthesis. Motion 

analysis showed less compensatory trunk movements with the 

myoelectric device and more natural elbow movement.[10] 

Meredith compared the Ottobock Electric Hand, 

Ottobock Griefer, Hosmer Senergetic Prehensor and body-

powered hook in NHP, Box and Blocks and JTHF tests. They 

evaluated three subjects with transradial amputations, two of 

whom used a body-powered hook daily and one who used a 

myoelectric hand. The subjects were trained with Greifer and 

Synergetic Prehensor prior to testing. In NHP, all three were 

fastest with Synergetic Prehensor. In the other two tests, the 

fastest times were distributed between the different 

devices.[11] 

When considering why persons using body-powered 

prostheses performed better on the NHP and JTHF small 

items, it may be that multi-DOF terminal devices are  complex 

to use and thus slower to control in fine motor movements, 

particularly given the need to change grasp patterns and to 

select the most appropriate grasp for specific tasks. 

Our study found that persons using myoelectric 

single-DOF prostheses had higher scores than body powered 

users on the BAM-ULA, indicating that they were able to 

complete more activities as compared to body powered users.  

Given our findings, we compared scores of individual tasks 

of the BAM-ULA using Fisher’s exact tests to determine if 

there were specific items that were driving BAM-ULA sub-

group differences. We found that scores differed in two items: 

remove cap from water bottle and drink and lift one-gallon 

jug.  It is likely that body powered users had difficulty 

regulating grip force in grasping the water bottle, and that they 

lacked the grip strength and/or could not position their 

terminal devices to lift the one-gallon jug.  

These findings should be considered preliminary due 

to small sample sizes for groups. Additionally, we did not 

control for training or years of experience. Subjects were 

tested using their own prostheses, and some of the tasks tested 

were not activities that the users routinely performed with 

their prosthesis (such as brushing hair). Future study 

involving larger sample sizes are needed to confirm or refute 

these finding and to evaluate differences by prosthesis make 

and model. 

Table 1: Demographics and Prosthesis Characteristics of Participants 

 Body powered 

(N=45) 

Myo single-DOF 

(N=12) 

Myo multi-DOF 

(N=18) 

All  

(N=75) 

  Mn (sd) Mn (sd) Mn (sd) Mn (sd) 

Age 62.8 (16.2) 45.8 (16.1) 48.4 (14.3) 56.6 (17.3) 

Years since amputation 30.9 (20.5) 14.8 (12.9) 16.5 (15.9) 24.2 (19.7) 

 N (%) N (%) N (%) N (%) 

Gender       

   Male 45 (100.0) 11 (91.7) 17 (94.4) 73 (97.3) 

   Female 0 (0.0) 1 (8.3) 1 (5.6) 2 (2.7) 

Etiology of amputation*^      

   Congenital 2 (12.5) 0 (0.0) 1 (16.7) 3 (13.0) 

   Combat 20 (51.3) 4 (50.0) 3 (21.4) 27 (44.3) 

   Accident 16 (41.0) 6 (75.0) 8 (57.1) 30 (49.2) 

   Burn 2 (5.1) 1 (12.5) 1 (7.1) 4 (6.6) 

   Cancer 2 (5.1) 0 (0.0) 2 (14.3) 4 (6.6) 

   Diabetes 1 (2.6) 0 (0.0) 0 (0.0) 1 (1.6) 

   Infection 7 (18.0) 0 (0.0) 1 (7.1) 8 (13.1) 

*Etiology of amputation:  respondents could indicate multiple etiologies 

^ Etiology of amputation was not collected for all participants 
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Table 2: Description of Performance Measures 

 Construct Item Content Rating Criteria 
Interpret

ation 

Jebsen-Taylor Hand 

Function (JTHF) 

Dexterity  7 separate tests of fine motor activities: 

writing, page turning, small objects, eating, 

placing checkers,   light cans, heavy cans 

Performance speed; 

items / per second 

(modified scoring) 

Higher 

scores are 

better 

Nine Hole Peg Dexterity Accurately place and remove 9 plastic 

pegs into a pegboard 

Timed Measure; 

item/s second 

(modified scoring) 

Higher 

scores are 

better 

Box and Block Dexterity Number of wooden blocks transported in 

60 seconds 

Performance speed; 

Total number of 

blocks transported 

Higher 

scores are 

better 

Southampton Hand 

Assessment 

Procedure (SHAP) 

Dexterity/ 

Index of 

Function 

26 unilateral timed tasks of hand function: 

12 abstract tasks and 14 activities of daily 

(such as zipping, pouring, buttoning). 

Performance speed Higher 

scores are 

better 

AM-ULA Activity 

performance 

18-everyday tasks: brush/comb hair, don t-

shirt, doff t-shirt,  button shirt, zip jacket, 

don socks, tie shoes, drink from a cup, use 

fork, use spoon, pour 12 oz can, write, use 

scissors, turn doorknob, hammer nail, fold 

towel, use phone, reach overhead 

Each item is rated on: 

task completion: 

speed, movement 

quality, skillfulness of 

prosthesis use  and 

independence.   

Higher 

scores are 

better 

BAM-ULA Activity 

performance 

10 everyday tasks: tuck in shirt, lift 20 lbs, 

open and drink from water bottle, remove 

wallet from back pocket, replace wallet, 

lift gallon jug, open and pour jug, 

brush/comb hair, use a fork, open door 

with round knob 

Ability to complete 

each task (yes/no). 

Total score is the 

number of completed 

activities  

Higher 

scores are 

better 

T-MAP Activity 

performance 

5 everyday activities: drink from a cup, 

wash face, food preparation, eating, 

dressing 

Timed Measure: sum 

of time to complete 

each activity 

Lower 

scores are 

better 

 

 

Table 3: Functional Outcomes by Device Type 
 Body powered 

(N=45) 

Myo single-DOF 

(N=12) 

Myo multi-DOF 

(N=18) 

Kruskal 

Wallis 

 Mn (sd) Mn (sd) Mn (sd) p 

Dexterity     

JTHF     

  Writing 0.49 (0.30) 0.41 (0.26) 0.52 (0.30) 0.4274 

  Page turning 0.13 (0.09) 0.14 (0.10) 0.12 (0.07) 0.8182 

  Small objects 0.11 (0.07) 0.11 (0.11) 0.07 (0.09) 0.0288 

  Eating 0.18 (0.12) 0.17 (0.14) 0.14 (0.09) 0.4160 

  Checkers 0.08 (0.06) 0.08 (0.09) 0.12 (0.08) 0.0957 

  Light cans 0.20 (0.13) 0.22 (0.11) 0.28 (0.15) 0.2295 

  Heavy cans 0.20 (0.17) 0.26 (0.12) 0.25 (0.14) 0.0481 

Box and Blocks 19.00 (8.73) 14.27 (7.88) 15.28 (6.19) 0.0645 

Nine Hole Peg 0.06 (0.05) 0.06 (0.06) 0.01 (0.01) 0.0008 

SHAP IOF 42.4 (18.4) 39.3 (23.1) 40.2 (15.0) 0.8828 

Activity Measures        

AM-ULA 14.9 (5.3) 14.9 (7.7) 16.4 (6.5) 0.5800 

BAM-ULA 6.6 (2.1) 9.2 (1.0) 8.0 (1.6) 0.0023 

T-MAP (mins) 5.0 (1.8) 3.9 (0.6) 3.9 (0.9) 0.0810 
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Table 4. Statistically Significant Group Differences: Results of Dunn’s Test  

  
Body powered vs. myo 

single-DOF 

Body powered vs. myo 

multi-DOF 

Myo single-DOF vs multi-

DOF 

JTHF Small objects No difference Body powered is better No difference 

JTHF Heavy cans No difference No difference No difference 

Nine Hole Peg  No difference Body powered is better No difference 

BAM-ULA Myo single-DOF is better No difference No difference 
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ABSTRACT 

 

A comparison of functionality of the voluntary opening (VO) terminal device and the voluntary closing (VC) 

terminal device was performed using body-powered prostheses simulator on 52 non-amputee adults. We compared 

The Southampton Hand Assessment Procedure (SHAP) score and time required to complete SHAP’s 26 tasks. The 

results show that the VC terminal device is easier to operate than the VO terminal device, when strong gripping force 

and quick reaction time is required. 

 

BACKGROUND 

 

Voluntary opening (VO) terminal device is often selected for body-powered prosthesis. Yet, there are tasks where 

voluntary closing (VC) terminal device are known to be more useable by experience. There are studies comparing the 

pinch force and cable efficiency of the hands and hooks of VO/VC terminal deices1.2). However, these research do not 

compare the actual ease of use of the VO and VC terminal device in daily living activities. There is also a report which 

discusses the VOC type, that is capable of switching between VO and VC, is most efficient3), although the actual 

situation is not clear and further research is need. We believe the necessity to distinguish the characteristics of the VO 

and VC for selecting the best terminal device for the amputee's daily activities when prescribing body-powered 

prosthesis. This research evaluates and compares the VO and VC terminal device with a body-powered prosthesis 

simulator donned on the left arm by non-amputee subjects. 

 

OBJECT AND METHOD 

 

This study was approved by the Ethics Committee of the Faculty of Medicine of the University of Tokyo. The 

participants were non-amputee adults (n=52, 26 males and 26 females), average age was 30.6 years, all right-handed 

(Edinburgh dominant hand test was more than 50 points). Written consent was obtained from all participants. The 

Southampton Hand Assessment Procedure (SHAP) was performed with VOC terminal device (infinite Equilux) 

attached to the body-powered prosthesis simulator, and with the participants’ left sound hand. SHAP is an upper limb 

function test developed in the UK, in 2002. It consists of 2 tests: a12-item test for daily movements with different 
shapes (e.g. spheres and cylinders) and weights, and a 14-item two-handed motion test. SHAP is an assessment tool 
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that evaluates the time required to perform each task and automatically calculates the score using its own formula by 

inputting it into the SHAP Web program. In addition to the total score, scores for each of the six hand movement 

patterns (Tip, Lateral, Tripod, Spherical, Power, and Extension) are calculated as functionality profiles. The lowest 

possible score is 0, while the highest is 100 + α, and the cut-off score of a normal person is 95.  

All subjects had no experience using body-powered prosthesis simulator or SHAP. The subjects were divided 

into two groups: the VO group which performed the test with the VO terminal device and the VC group with the VC 

terminal device. The two groups were randomized by stratification equally so that there was no difference in the 

number, age, and gender. The SHAP scores and the time required to perform each task was compared between the 

two groups. In addition, cable efficiencies were measured when using the body-powered prosthesis simulator with 

each setting. The SHAP scores, task perform time, and Edinburgh dominant test score were compared by Wilcoxon 

signed rank test. Statistical analysis was performed using JMP® Pro 14.2.0 (SAS Institute Japan) and p <0.05 was 

considered significant. 

 

RESULT 

 

VO group was 26 people, 13 males and 13 females (average age: 30.3 years, average Edinburgh dominant test 

points: 97.1) and VC group was 26 people, 13 males and 13 females (average age: 30.9 years, average Edinburgh 

dominant test points: 95.2). There were no differences between the two groups in average score of the Edinburgh 

dominant hand test (p=0.23). 

The cable efficiency was 48.8% for the VO and 50.6% for the VC. The average score of SHAP with the 

participants’ left hand was 97.2 points (ranging from 93 to 103 points), and there was no difference between the two 

groups (VO group average 97.3 points, VC group average 97.2 points | p=0.75). Table 1 shows the total score of 

SHAP and the scores of the six hand movement patterns. There was no significant difference between the two groups 

in the SHAP total score (p=0.20). However, for the extension, the score was significantly higher in the VC group: 

average of 36.8 points in the VO group and average of 42.9 points in the VC group (p =0.005). For all six movement 

patterns, the VO group’s average score did not exceed that of the VC group. 

Table 2 shows the time required to perform each SHAP task. When comparing the time, the VC group was 

significantly faster than the VO group in the three tasks: Heavy Power (VO group 9.7 seconds, VC group 8.4 seconds, 

p=0.049), Heavy Extension (VO group 8.9 seconds, VC group 7.1 seconds | p=0.04), and Cutting (VO group 158.9 

seconds, VC group 89.6 seconds | p<0.005). In addition, in 19 of the 26 tasks, the average time required to perform 

the task were shorter in the VC group than of the VO group, including those with no significant difference. 

 

DISCUSSION 

 

The SHAP task with Power and Extension task is conducted handling light and heavy object of the same shape. 

In both Power and Extension task, there was no significant difference in the handling light objects. However there 

was significant difference in handling heavy objects, and was faster in the VC group. The cutting task involves holding 

a knife in the terminal device and pressing into the clay, which also requires a strong grip. The significant difference 

between the groups suggests that the VC type body-powered prosthesis is particularly useful for tasks required to 

generate high grip strength. 

Regarding the time required to accomplish each task, the VC type was faster to grasp the object. The initial 

opening movement of the hook before grasping the object in the VO type makes it slower to accomplish the task. 

The experimental results of VC type with higher score and shorter time than VO type for tasks that require strong 

gripping force or that require quick operation indicate that VC terminal device can be prescribed when the amputee is 

focused on these tasks in daily life, recreation, and occupation. 
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There are limitations to this study. The participants of this study are non-amputees, and it was the first time for 

all the participants to operate the body-powered prosthesis. Future studies should make efforts to measure the amputees 

who use the body-powered prostheses for daily use. 

 

CONCLUSION 

 

The aim of this study was to understand which prosthetic tool is more appropriate based on movement types and 

the needs of patients and prescribe a prosthesis that is easier to use the VC type moves significantly faster according 

to patient’s lifestyle. 

 

 

Table１: SHAP scores  

 

*：p<0.05  **：p<0.005 

 

Table 2 : Time spend on each SHAP task  

 

*：p<0.05  **：p<0.005 
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ABSTRACT 

Pattern recognition control uses EMG from the entire residual limb to more intuitively control prosthetic 
devices.  However, this requires a more intimate socket fit to maintain contact with these additional sensors. When 
users complain of issues with control, it can be difficult to diagnose if the issue is a need for additional practice and 
training or if there are issues related to the prosthetic fit that need to be addressed.  Pattern recognition does allow 
the recalibration of the system by the user in any location.  By analysing the data logging of calibration data in a 
pattern recognition system, it is possible to better identify the cause and potential solution in a remote setting.  

INTRODUCTION 

With pattern recognition (PR), multiple EMG channels can be used as input with all of the information used to 
calculate which “pattern” is being recreated. Since muscle signals do not need to be targeted and isolated, more 
information can be extracted from the user, potentially increasing the ability to control a multi-degree-of-freedom 
system [1].   The user needs to show the system each movement (calibrate the controller), which can be done by 
following prompts on a computer interface or following along with the prosthesis while it is moved through the 
different available movements.  EMG is recorded by the controller and the classifier is then calculated. 

For this PR to be successful, the EMG channels must maintain good contact with the residual limb. When fitting 
a user in the office or a therapy environment, the EMG quality can be monitored as the user begins to perform 
functional tasks in different planes of movement and adjustment to fit made as needed. However, different 
environments temperatures and weight gain/loss can all affect signal quality.   

When the user lives nearby it can be easy to have them come in for regular rechecks and adjustments; however, 
when a user lives far away, it can be difficult to troubleshoot the issue and identify if the issue with control is related 
to EMG quality or if the issue might be related to the need for additional training and/or a review of the patterns of 
movement associated each degree-of-freedom.   

As part of a study related to pattern recognition control of a transradial prosthetic system, users from across the 
country were recruited for home trials. During the home trial subjects were instructed to send home logs each week.  
However, there were instances of poor control noted and it was not logistically possible to bring in subjects for 
return rechecks. Since, during pattern recognition calibration EMG data are recorded and used to create the 
classifier, this property of the controller was used to collect data that could be used in a diagnostic manner for 
evaluation of fit and function.  A protocol was developed to record information in various positions to allow repairs 
and adjustment to take place without an in person visit.  This technique was also used to verify fit prior to beginning 
home trials. 

METHODS 

Eight individuals with a unilateral transradial amputation were fit with a Coapt pattern recognition system [2] 
passive wrist, and i-limb TMR revolution [3].  The study (including the ability to collect and record EMG data) was 
approved by the Northwestern University IRB.  During the calibration process of pattern recognition control, data 
were recorded to be used to generate a classifier as the prosthesis moved through the various movements.  The 
system would first collect EMG of the users’ arm at rest (to align with “no movement” of the prosthesis). The 
prosthesis would then cycle through all of the enabled grasp patterns, opening and closing of each grasp 2 times.   
For this study, all calibration data was recorded and stored on the embedded controller for later post-processing. 

Users were provided OT prior to participating in an 8-week home trial to evaluate their pattern recognition 
control of the multiarticulating hand. They were trained to calibrate their prosthesis whenever they felt their control 
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had degraded. They checked in weekly using a home log system. Logged issues or calls to the prosthetist/OT over 
this 8-week window often needed to be followed up and these issues were often difficult to diagnose.  In a clinical 
setting, users would be brought in for a recheck to evaluate fit and function.  Since this was not always possible due 
to distance, alternative options were explored.   

Since EMG was recorded for later evaluation during the calibration, a fitting evaluation protocol was designed 
to use this recording for diagnostics. All subjects had a minimum of 3 grasp patterns enabled.  This allowed for the 
collection of 13 (no movement plus 4 cycles * 3 grasp patterns) 3-second data blocks.  Users were prompted to 
perform specific movements in various positions during the data recording phases of calibration. The order of 
movements requested was recorded so that the data collected could be mapped to arm position/contraction type. 
Table 1 shows the protocol developed and used in most cases. For these diagnostic trials, when collecting movement 
and maximum voluntary contraction (MVC) data, subjects were instructed to move the arm around in space when 
the device was moving. When conducted remotely, this prompting occurred via phone call/skype to assist with 
timing.  Six participants used the evaluation protocol developed to diagnose fit and training issues. Some subjects 
also performed the protocol in lab as a “check out” of fit prior to starting the home trials. 

Table 1: List of prompted movements for evaluation of EMG quality 

Arm supported: Regular calibration with the arm supported (resting on a table) 
Arm down at side: Regular calibration with the arm relaxed down at the side (hanging) 
Arm in front of body: Regular calibration with the arm in front (as if shaking hands) 
Arm sweeps and MVC (Maximum Voluntary Contractions) 
During the data collection blocks, the subject was prompted as follows: 

1. Arm down at side and contract all forearm muscles at MVC 
2. Arm in front and contract all forearm muscles at MVC 
3. Arm out to side and contract all forearm muscles at MVC 
4. Forearm relaxed and sweep arm from down at side to up to cabinet level and back 

down, diagonally 
5. Forearm relaxed and sweep arm side to side at cabinet level  
6. Forearm relaxed and push in on socket and wiggle 
7. Forearm relaxed and pull slightly on socket 

 Subject prompted to doff and re-don system and repeat the following: 
Arm in front of body 
Arm down at side 

 

Data were downloaded from the embedded controller for further processing. In most cases this occurred when 
the arm was sent back by mail (cheaper than flying the user back for an in-person visit) or by downloading to a 
study computer sent to them. A custom Matlab script was written to import the files and create graphs of the 8 
channels of EMG. Data were plotted with each movement concatenated in order (i.e., no movement followed by 
open/close/open/close of each configured grip) with the channels shown 1-8 from top to bottom.  The 
date/timestamp of the data was included in the title for reference and custom titles could be applied. Some of the 
issues (mechanical and therapy related) that were possible to diagnose: 
• No issues with EMG (i.e., clean) EMG during normal use but intermittent EMG saturation either at different 

positions or during MVCs: Electrode lift off from contraction or position. Or an intermittent loose wire 
• Constant EMG saturation or noise: Broken wire or loose wire 
• EMG saturation during muscle contractions: EMG gain too high or user contracting too hard No EMG noted at 

all (flatline): broken wire or electrode shorted  
• Clean EMG collected but hand did not move properly during calibration: hand requires repairs 
• EMG improperly timed contractions of regular training (contraction only in small part of each window): subject 

needs more training 
• EMG barely detectible for all movements: EMG gain too low, EMG location not ideal, or contractions too light 
• Clean EMG but user has poor control after recalibration: user needs more training/alternative imaging for 

different grasp patterns 
• EMG after redonning very different than first 2 trials: user needs more practice with repeating proper donning or 

recreating grasp patterns 
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RESULTS 

The protocol was used throughout the study to confirm socket fit and EMG quality when subjects were in the 
lab for testing/fitting and also when subjects experienced control issues at home.  Figure 1 shows an example of 
early fitting with the pattern recognition system.  The subject had reasonable control; however, upon reviewing the 
calibration data it was noted that the EMG on Channels 2, 4, 5 and 6 was significant smaller than that of the other 
channels for all movement classes; therefore, the gains were increased prior to beginning the trial. 

  
Figure 1: Gain imbalance: EMG gain on Channels 2, 

3, 4, and 6 were subsequently increased 
Figure 2: EMG analysis after arm sent in for 

adjustment.  Noise seen on Channel 2 and loose wire 
located inside socket 

 

 
a 
 

 
b 

 
c 

 
d 

Figure 3: Remote troubleshooting with one subject.  The 4 images show the data collection for a) arm resting, b) 
arm at side, c) arm in front, and d) channel locations in the socket.  The 8 EMG channels are shown 1-8 from top to 
bottom in a-c.  The thin vertical lines delineate where the EMG from the various movements (4 different hand 
grasp patterns) have been concatenated.  Each vertical band represents 3seconds of data. 
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Figure 2 shows one example of the evaluation protocol used for remote troubleshooting.  The subject had 
complained of poor control and was prompted through the diagnostic protocol prior to sending his arm in for review.  
Upon inspection of the data, channel 2 showed consistent noise across all movements and positions.  This EMG 
contact was assessed and it was found that the wire connection inside the socket at the ring terminal to the EMG 
dome had broken during use.  Though this failure would likely have been found with a thorough inspection of the 
device, the evaluation protocol made diagnosis and repair much quicker. 

A more complex example can be found in Figure 3. This subject had previously undergone a revision surgery 
and was experiencing continued volume loss during the home trial. It was identified during planned follow up that 
he was having issues with control in some positions.  The EMG from the evaluation protocol was compared to the 
locations of the electrode channels within the socket.  The 4 images show the data collection for a) arm resting, b) 
arm at side, c) arm in front, and d) channel locations in the socket.  When the arm was resting, it appeared that the 
soft-tissue was pulling away from the anterior channel (channel 4) and then pulling away from the posterior 
channels when the arm was extended (channels 3, 7, 8). Spacers were added to increase the depth of compression of 
the electrode domes on these 4 channels and the prosthesis was returned to the user. He reported improved control 
after return of the device and the EMG quality was verified at his next scheduled in person visit. 

Other cases were noted where, upon completion of the evaluation protocol, the EMG quality was good.  In these 
cases, the subjects would continue to work with the Occupational Therapist either in person or remotely to identify 
phantom movements that would create EMG unique to each grasp pattern.    

DISCUSSION 

Pattern recognition control has become more common in upper limb prosthetic fittings; however, the increase 
number of EMG channels associated with these systems can make troubleshooting fit and function difficult.  It is 
possible to visually review the EMG when the user is present but if issues arise a way of assessing the issue 
remotely is useful.   

When EMG calibration data is recorded onto the prosthesis, this feature can be used to collect data to assess 
EMG and fit.  This protocol was used on six individuals participating in home trials and was useful to diagnose loss 
of contact and broken wires, which were repairable without an in-person visit.  In this study we needed to ship the 
prosthesis back to physically collect the data from the arm (or ship a laptop to the user), but if the data were 
downloaded remotely to a secure server it would be possible to identify problems with training or other issues that 
don’t require repair to be completely resolved remotely.  Additionally, the ability to remotely download the data 
would have allowed subjects to repeat the series of diagnostic training sessions to confirm that the repairs/socket 
modifications resolved the issue. 

This evaluation protocol was also useful for confirming fit prior to the home trial by prompting the user to 
control the device in various planes of movement and as a baseline before home trial in case issues would arise later. 
This paper presents work done for a research study, but a similar evaluation protocol would be useful in the clinical 
environment to assist the prosthetist and occupational therapist to determine when it is necessary for a user to 
schedule follow up care.  
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ABSTRACT 

This study aimed to evaluate trends in the prosthesis 
provision and training experience of individuals with upper 
limb absence and whether these trends were associated with 
any demographic factor. Furthermore, we evaluated whether 
the rehabilitation experience was associated with quality of 
life, health markers and other measures of rehabilitation 
success. Results of this study indicate demographic 
differences in upper limb prosthetic rehabilitation as well as 
trends in the effect of the prosthetic rehabilitation experience 
on patient outcomes. 

INTRODUCTION 

The loss of one hand can significantly affect the level of 
autonomy and the capability of performing daily living, 
working and social activities. [1] Degree of independence is 
one of the three indicators of Functioning, Disability and 
Health in the WHO International Classification [2] with 
maintenance of independence in activities of daily life being 
a key objective of post-amputation occupational therapy. [3] 
While determining the parameters which demonstrate 
“successful use” of an upper limb prosthesis is a complex 
topic, considering the myriad functions of the intact hand and 
the highly individual goals of potential users, [4] [5] degree 
of independence is a parameter in many functional 
performance measures. [6] This study aimed to identify 
demographic trends in individuals with upper limb absence 
associated with prosthesis use, rehabilitation and daily life. 
The results presented here indicate a strong association 
between gender and the prosthetic rehabilitation experience. 

METHODS 

Subjects 

The study was recruited via email to the Amputee 
Coalition members database and displayed on the Amputee 
Coalition social media platforms. It is therefore assumed that 
the responses are majority North American in origin although 
respondent location or origin information was not recorded. 
Eligible participants were individuals over the age of 18 with 
unilateral or bilateral, acquired or congenital upper limb 
absence at any level. Subjects were eligible to participate in 
the study only once. Of a total n=309 individual responses, 
n=9 subjects did not complete the eligibility questions and 
were therefore not enrolled in the study. A further n=9 who 

were eligible to participate did not complete the study and 
were withdrawn due to incompleteness of the responses. A 
total of n=292 responses were included in the analysis.  

Data Collection and Analysis 

The study was a non-interventional, retrospective, cross-
section design conducted with the approval of the NEIRB 
(#:120190122) consisting of a self-drafted online 
questionnaire and two validated outcome measures; Quick-
Disability of the Shoulder Arm and Hand (QuickDASH), [7] 
and the EuroQol standardised measure of health status (EQ-
5D-5L) [8]. Questions were grouped into categories as 
follows: personal demographics; prosthesis fitting and 
training history; current prosthesis use, activities and 
satisfaction; employment and activity trends. To evaluate 
differences in proportions, Pearson’s Chi-squared 
significance test or the 2-sample significance test for equality 
of proportions were applied at a significance level 
alpha=0.05. Whenever needed, a continuity correction was 
applied for better approximations. All statistical analyses 
were conducted using R (version 3.6.2) software. [9] 

RESULTS 

Gender Demographics 

A notable result of the study is the gender balance of 
respondents. It is generally accepted that the upper limb 
absence population trends to a male majority, [10] with 
females estimated to make up 20-30% of the total population. 
[10] [11] Conversely, in our study, female respondents were 
in the majority at 50.17% of the total population (46.49% 
male, 1.67% transgender or non-binary, 1.67% preferring not 
to answer). Acquired limb loss is understood to be more 
prevalent amongst males than females; [10] however, the 
prevalence of congenital limb deficiency (in the US) appears 
to be relatively equally distributed. [12]  

In our study, 37.78% (n=57) of female respondents 
indicated their limb absence was congenital. Conversely only 
11.85% (n=16) of male respondents indicated their limb 
absence was congenital. Although notable, this difference 
was not found to be statistically significant (p=0.06493). 
Congenital limb absence was indicated by 24.83% of the total 
respondent population.  

Golden Period/First Fitting 
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The “golden period” in prosthetic rehabilitation is the 
concept that the earlier the prosthesis can be provided to a 
patient to use in training and therapy, the higher will be the 
rate of acceptance of the device and likelihood that the patient 
will become adept at using it as a helpful tool, [13] or be a 
“successful user”. [5]  The “golden period” is understood to 
be within 30 days of amputation [5] and was first introduced 
by Malone et al, 1984. [14] Despite this, it is known that 
achieving prosthetic fitment within 30 days of an upper limb 
amputation is challenging and is not achieved in many cases.  

This was reflected in our study, in which only n=13 
(4.51%) of respondents had their first prosthetic fitting within 
30 days of their amputation. The most common duration 
between amputation and first prosthetic fitting was indicated 
to be ~6 months (n=59, 20.49%).  In our study, those who 
indicated they were currently using a prosthesis were more 
likely to have had their prosthetic fitting at a time within six 
months of amputation (p=0.0008457). 

 

 
Figure 1: Time of First Fitting in relation to Gender 

Females (n=38, 26.21%) were significantly less likely 
than males (n=71, 52.98%) to have received their first 
prosthetic fitting at a time within six months of amputation 
(p=4.646e-06). In fact, a greater frequency of females (n=24, 
16.55%) than males (n=15, 11.1%) reported they had never 
been fit with a prosthesis, although a statistically significant 
difference (p=0.1973) was not found.  

 
Reasons for Delay 

Adjusting for those who perceived no delay in their 
prosthesis fitting (n=115. 40.49%), wound healing (n=72, 
25.35%) and insurance coverage issues (n=64, 22.54%) were 
the most frequently indicated factors which had contributed 
to delay a prosthesis fitting. Interestingly, “no perceived 
delay” (40.49%) does not correlate with delay as reported by 
fitting period, if delay is considered as any fitting out-with the 
“golden window” (4.51%). Males were significantly more 
likely to report that “Physical readiness” (p=0.033) and 
“Wound healing” (p<0.001) caused a delay in their prosthetic 
fitting than females. Females were more likely to have their 
prosthetic fitting delayed by therapist availability issues than 
males (p=0.013).  

 

 
Figure 2: Reasons for fitting delay in relation to Gender 

Training Received 

In a systematic review, most included papers agreed that 
rehabilitation is vital to functional integration of upper-limb 
prostheses. [15]  Despite the widespread agreement in the 
field there is a disparity between prosthesis provision and 
training. In our study only n=41 (14.24%) respondents 
reported they had never been fit with a prosthesis. However, 
n=102 (35.42%) of the total population reported they had 
never received training to use an upper-limb prosthesis, at a 
similar frequency to that reported by Ostlie et. al., 2012; 
30.6% [16] and 31.1% [17]. In our study, those who had 
received prosthetic training were more likely to be currently 
using a prosthesis than those who had received no prosthetic 
training (p=4.053e-08).  

 
Prosthesis Use  

In our study, n=167 (58.80%) of respondents indicated 
they were currently using an upper limb prosthesis. A total of 
n=117, 41.20%, respondents indicated they were not 
currently using an upper limb prosthesis. In our study, 
although the frequency of males currently using any 
prosthetic device (n=85, 65.39%) was greater than the 
frequency of females currently using any prosthetic device, 
(n=76, 53.15%) this was not found to be statistically 
significant (p= 0.058).  

There was a statistically significant difference in the 
types of prostheses currently used by male and females 
(p=0.000473). Evaluation of Pearson’s standardised residuals 
indicate that the body-powered and passive functional 
prosthesis types had most influence on differences in gender. 
Body-powered prostheses are understood to be the most 
prevalently used type of device in the US. [18] It is believed 
that females have different requirements over their prostheses 
than males.[19] One study showed females to be more likely 
to use cosmetic devices and less likely to be users of actuated 
devices, as compared to males. [19]  
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Figure 3: Current usage of types of prosthetic device used in 
relation to gender 

Our study showed that the body-powered device was the 
most frequently used type of device by male respondents 
(n=42, 50.00%). In comparison female respondents used all 
device types relatively equally, body-powered (n=18, 
24.66%), electric multi-grip and single grip combined (n=30, 
41.10%); passive prostheses (n=19, 26.03%). Females used 
passive prostheses (n=19, 26.03%) at a greater frequency than 
males (n=4, 4.76%).  Electric multi-grip and single-grip 
devices were used at an approximately equal frequency by 
both groups; females (n=30, 41.10%); males (n=32, 38.10%).  

Differences in the rate of prosthesis use between males 
and females may be explained by a difference in the types of 
activities the prosthesis is required to be used for. This was 
not reflected in our study, in which there were no significant 
differences between males and females in terms of activities 
the prosthesis is used for. 

 

 
Figure 4: Activities prosthesis is used for in relation to Gender 

Prosthesis Non-Use 

Of the n=117 respondents who indicated they did not 
currently use a prosthesis, body-powered prostheses were 
the most frequently rejected type of device over-all (n=45, 
38.46%) with electric multi-grip hands the least frequently 
rejected (n=14, 11.97%) over-all. There were no 
significant differences found in rejection rates by gender, 
which appear to approximately follow prescription rates. 

 

 
Figure 5: Usage of types of prostheses before deciding not to use 
one in relation to gender 

Reasons for Non-Use of Prostheses 

Some papers suggest that the higher rejection rate relates 
to a predisposition towards the aesthetics of the prosthesis in 
the female population, [12] inferring that prostheses do not 
provide aesthetic needs in females. In a further study, Biddiss 
& Chau reported that the type of prosthesis fitted (i.e. body-
powered or myoelectric) did not appear to affect long-term 
use, but that passive devices were associated with higher 
rejection rates, [20] suggesting that insufficient functionality 
is also a key factor in cases of rejection.  

In our study, reasons for not currently using a prosthesis 
were reported equally between genders in nine out of ten 
parameters. A significant difference was found for only one 
indicator, in that males were more likely than females (p= 
0.014) to indicate they did not use a prosthesis because of 
insurance coverage issues.  

 
Figure 6: Reasons for rejecting prostheses in relation to Gender 

In our study, the most frequently indicated reason for 
currently not using a prosthesis was functional. The reason 
“Prosthesis did not do what I need to do” was indicated by 
n=62 (52.99%) of our population not currently using 
prostheses.  
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55

MEC20



The results of this study show that only 4.58% of 
respondents received a prosthesis within the “golden period” 
of 30 days from the time of amputation. Our study suggests 
that fitting within 6 months equates to a “better outcome” or 
greater likelihood of current prosthesis use, which supports 
current rehabilitation practices. Known challenges in the 
early fitting process were well represented in our study, with 
wound healing and insurance coverage issues being the most 
frequently reported. Interestingly, the most common response 
to this question was that “no delay to fitting” was perceived 
by the individual, which may be a result of expectation 
management by experienced clinical teams. 

 Our study revealed a statistically significant likelihood 
for those who had received prosthesis training to be currently 
using a prosthesis. This finding further cements the link 
between a thorough rehabilitation and training programme 
and a “better outcome” or greater likelihood of current 
prosthesis use. Further research is indicated to understand and 
alleviate specific barriers to fitting and training access. 

Significant differences between genders were reported in 
the time to first fitting as well as perceived causes of fitting 
delay, however these barriers to treatment did not correlate to 
a significant difference in use of prostheses in daily life. 
These gender-associated differences in rehabilitation 
experience were surprising outcomes warranting further 
investigation. A further key observation in this study 
concerns the most common reason for rejection by both 
genders, “Prosthesis did not do what I need to do.” This 
finding may be linked to barriers to treatment including fitting 
delays and receipt of quality training, as well as a comment 
on the current availability of appropriate solutions for the 
entire upper limb absence population.  

This study sets the stage for further investigation as it 
relates to the continuity of care of individuals with upper limb 
absence. The importance of the quality and expertise of 
prosthetic and rehabilitation providers cannot be overstated, 
meanwhile, routine collection of objective and subjective 
outcomes is essential for establishing evidence-based care 
pathways and solution development. Furthermore evidence-
based decision making enhances both the ability of 
individuals with upper limb difference to make informed 
decisions relating to their prosthetic experience and 
rehabilitation care and hence informs third party 
reimbursement policy. 

Acknowledgements 

The authors would like to acknowledge Melanie Miller, 
Senior Research Specialist, Amputee Coalition, and Dr. Peter 
Paul Heym PhD, Sum of Squares, for their invaluable support 
in the design and analysis of this study. 

 
[1] F. Cordella et al., “Literature Review on Needs of Upper Limb 

Prosthesis Users,” Front. Neurosci., vol. 10, May 2016, doi: 
10.3389/fnins.2016.00209. 

[2] W. H. Organization, International Classification of Functioning, 
Disability and Health: ICF. World Health Organization, 2001. 

[3] J. Klarich and I. Brueckner, “Amputee Rehabilitation and 
Preprosthetic Care,” Phys. Med. Rehabil. Clin. N. Am., vol. 25, no. 
1, pp. 75–91, Feb. 2014, doi: 10.1016/j.pmr.2013.09.005. 

[4] C. L. McDonald, C. L. Bennett, D. K. Rosner, and K. M. Steele, 
“Perceptions of ability among adults with upper limb absence: 
impacts of learning, identity, and community,” Disabil. Rehabil., pp. 
1–10, Apr. 2019, doi: 10.1080/09638288.2019.1592243. 

[5] J. M. Cancio, A. J. Ikeda, S. L. Barnicott, W. L. Childers, J. F. 
Alderete, and B. J. Goff, “Upper Extremity Amputation and 
Prosthetics Care Across the Active Duty Military and Veteran 
Populations,” Phys. Med. Rehabil. Clin. N. Am., vol. 30, no. 1, pp. 
73–87, Feb. 2019, doi: 10.1016/j.pmr.2018.08.011. 

[6] D. Yang, Y. Gu, N. V. Thakor, and H. Liu, “Improving the 
functionality, robustness, and adaptability of myoelectric control for 
dexterous motion restoration,” Exp. Brain Res., vol. 237, no. 2, pp. 
291–311, Feb. 2019, doi: 10.1007/s00221-018-5441-x. 

[7] L. Resnik and M. Borgia, “Reliability, Validity, and Responsiveness 
of the QuickDASH in Patients With Upper Limb Amputation,” Arch. 
Phys. Med. Rehabil., vol. 96, no. 9, pp. 1676–1683, Sep. 2015, doi: 
10.1016/j.apmr.2015.03.023. 

[8] EuroQol Research Foundation. EQ-5D-5L User Guide, 2019. 
Available from: https://euroqol.org/publications/user-guides. 

[9] R: A Language and Environment for Statistical Computing, R Core 
Team, R Foundation for Statistical Computing, Vienna, Austria, 
2019, https://www.R-project.org/ 

[10] K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, 
and R. Brookmeyer, “Estimating the Prevalence of Limb Loss in the 
United States: 2005 to 2050,” Arch. Phys. Med. Rehabil., vol. 89, no. 
3, pp. 422–429, Mar. 2008, doi: 10.1016/j.apmr.2007.11.005. 

[11] K. A. Raichle et al., “Prosthesis use in persons with lower- and 
upper-limb amputation,” J. Rehabil. Res. Dev., vol. 45, no. 7, pp. 
961–972, 2008. 

[12] L. Resnik, S. Klinger, A. Gill, and S. Ekerholm Biester, “Feminine 
identity and functional benefits are key factors in women’s decision 
making about upper limb prostheses: a case series,” Disabil. Rehabil. 
Assist. Technol., vol. 14, no. 2, pp. 194–208, Feb. 2019, doi: 
10.1080/17483107.2018.1467973. 

[13] A. Hess, “Atlas of Amputations and Limb Deficiencies, Fourth 
Edition , Chapter 11, pages 139-158.” [Online]. Available: 
https://digital.aaos.org/AALD-04/149. [Accessed: 13-Apr-2018]. 

[14] L. M. Smurr, K. Gulick, K. Yancosek, and O. Ganz, “Managing the 
Upper Extremity Amputee: A Protocol for Success,” J. Hand Ther., 
vol. 21, no. 2, pp. 160–176, Apr. 2008, doi: 
10.1197/j.jht.2007.09.006. 

[15] S. L. Carey, D. J. Lura, M. J. Highsmith, CP, and FAAOP, 
“Differences in myoelectric and body-powered upper-limb 
prostheses: Systematic literature review,” J. Rehabil. Res. Dev., vol. 
52, no. 3, pp. 247–262, 2015, doi: 10.1682/JRRD.2014.08.0192. 

[16] K. Østlie, I. M. Lesjø, R. J. Franklin, B. Garfelt, O. H. Skjeldal, and 
P. Magnus, “Prosthesis use in adult acquired major upper-limb 
amputees: patterns of wear, prosthetic skills and the actual use of 
prostheses in activities of daily life,” Disabil. Rehabil. Assist. 
Technol., vol. 7, no. 6, pp. 479–493, Nov. 2012, doi: 
10.3109/17483107.2011.653296. 

[17] K. Østlie, I. M. Lesjø, R. J. Franklin, B. Garfelt, O. H. Skjeldal, and 
P. Magnus, “Prosthesis rejection in acquired major upper-limb 
amputees: a population-based survey,” Disabil. Rehabil. Assist. 
Technol., vol. 7, no. 4, pp. 294–303, Jul. 2012, doi: 
10.3109/17483107.2011.635405. 

[18] T. Passero, “Devising the Prosthetic Prescription and Typical Examples,” 
Phys. Med. Rehabil. Clin. N. Am., vol. 25, no. 1, pp. 117–132, Feb. 2014, doi: 
10.1016/j.pmr.2013.09.009. 

[19] P. J. Kyberd and W. Hill, “Survey of upper limb prosthesis users in Sweden, 
the United Kingdom and Canada,” Prosthet. Orthot. Int., vol. 35, no. 2, pp. 
234–241, Jun. 2011, doi: 10.1177/0309364611409099. 

[20] E. Biddiss and T. Chau, “The roles of predisposing characteristics, established 
need, and enabling resources on upper extremity prosthesis use and 
abandonment,” Disabil. Rehabil. Assist. Technol., vol. 2, no. 2, pp. 71–84, Jan. 
2007, doi: 10.1080/17483100601138959. 

 

56

MEC20



LONG-TERM FUNCTIONAL IMPROVEMENT WITH DEXTEROUS 

PROSTHETIC LIMB 

 

Erin E. Sutton1, Luke E. Osborn1, Courtney W. Moran1, Michelle J. Nordstrom2, Paul F. 
Pasquina2, Robert S. Armiger1 

1Johns Hopkins University Applied Physics Laboratory, 2Walter Reed National Military Medical 
Center 

ABSTRACT 

Advanced myoelectric prosthetic devices aim to restore functional capability after upper limb loss. However, 
studies of their functional impact have been mostly limited to short-term clinical studies which rely on assessments of 

simple manual tasks. Here we show that a longer term study can elucidate functional improvement and quantify how 
and when a prosthesis is used. A participant with transhumeral amputation and an osseo-integrated interface 
participated first in a ten-day study of functional capability with a highly prosthesis, the Modular Prosthetic Limb 

(MPL). A few months later, he took the MPL home and used it daily for 12 months. He returned to the laboratory for 
functional assessments every two months. We measured improved scores in Assessment of Capability with 
Myoelectric Control, Box and Blocks Test, and NASA Task Load Index over the course of the long-term phase. Only 

slight improvement was documented over the short-term clinic-based phase, which suggests that longer studies may 
be required to assess capability with highly dexterous prosthetic limbs. Additionally, the loads experienced by the 

limb in the home environment were much greater than during the laboratory visits, which suggests that the functional 
assessments do not capture the full spectrum of loads placed on a prosthesis during activities of daily living. Through 
the combination of functional outcome measures, on-board data logging, and long-term studies in the home 

environment, we are developing the capability to assess upper limb rehabilitation progress and device appropriateness.

INTRODUCTION  

For people with upper limb loss, use of a prosthesis has 

been correlated with higher quality of life and rates of 
employment, but prosthesis abandonment persists. In recent 

studies, rejection rates range from 18% in the general US 
population [1] to 40% in the Veteran population [2]. Lack of 
function is the most widely reported cause of abandonment 

[1]–[3].  

Myoelectric prostheses aim to restore functional 
capability, and commercially available terminal devices 
range from a powered hook to a multi-finger multi-grip 

prosthetic hand like the bebionic (Otto Bock, Berlin), capable 
of 14 selectable grips. The Modular Prosthetic Limb (MPL) 
is a research prototype with 17 independent actuators and 

infinitely configurable grips [4], [5]. Advanced devices like 
the MPL further extend the dexterous capability of upper 

limb prostheses. To match a given user’s needs to a prosthesis 
in terms of dexterity, robustness, and usability, clinicians rely 
on functional outcome measures. However, these outcome 

measures have documented limitations  [6], and even high 
quality measures neglect performance of domestic, everyday 
tasks. In contrast, long-term studies of prosthesis use in the 

home could elucidate how and when a prosthesis is used in 
activities of daily living and show functional progress. To 

date, this kind of study is rare and generally limited in 

duration to a few weeks or months [7]–[9]. Additionally, the 

time to train and master control of high degree of freedom 
prosthetic limbs is unknown. 

We aimed to evaluate the functional capability of the 
MPL through a 12-month study. We collected continuous 

sensor data from over 100 sensors within the MPL including 
torque data from the device attachment site during daily use, 

and we intermittently assessed the user’s functional progress 
with in-clinic outcome measures. Our results provide insight 
into the value of long-term evaluation of advanced upper limb 

prosthetic limbs. 

METHODS 

Our participant was a 63-year old male who underwent 

transhumeral amputation in 2007 secondary to cancer. The 
participant received targeted muscle reinnervation in 2012 

and an osseo-integrated (OI) implant in 2015. Prior to starting 
the study, the participant had approximately 80 hours of 
experience with the MPL in a user-feedback and 

demonstration capacity. He provided informed consent, and 
all research activities were approved by the Institutional 
Review Board at Walter Reed National Military Medical 

Center.  
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We analysed the participant’s data from two research 
efforts. First, he completed a ten day clinic-based study of the 

MPL with 11 other prosthesis users in May 2017. The study 
consisted of 12 laboratory training sessions of one to two 
hours each. Assessments of the MPL against his conventional 

prosthesis were conducted at the study’s initiation, midpoint, 
and exit. The assessments were the Assessment of Capability 

with Myoelectric Control (ACMC) [10] and the Box and 
Blocks Test (BBT) [11]. The NASA Task Load Index 
(NASA-TLX) [12], a survey measure of mental load during 

a task, was performed after the ACMC and BBT. The second 
effort was the 12-month home study. During this phase, the 
participant was encouraged to wear the MPL for at least three 

hours a day during his activities of daily living. We evaluated 
his functional progress in clinical sessions every two months, 

and the same outcomes measures (ACMC, BBT, and NASA-
TLX) were scored. 

We also continuously monitored the loads on the OI 
interface throughout the home use phase of the study. Sensors 

mounted on the MPL measured the rotational torque (torsion) 
along the long axis of the humerus . Additional sensors 
measured the bending torque on the elbow joint about the 

elbow flexion/extension axis . We compared the loads on the 
arm in the clinical and home environments.  

RESULTS 

In the last session of the short-term, clinical phase of the 
study, the participant expressed that he had greater control of 

the MPL than at the start of the study, but that knew he could 
get better with more practice. This sentiment is reflected in 
the ACMC and BBT scores, which showed only slight 

improvement over the short term (Figure 1). The participant’s 
prediction of his long-term improvement was correct. After 
approximately 100 days of home use, both the ACMC and 

BBT scores improved. Furthermore, the NASA-TLX results 
indicated that the mental load experienced by participant 

during the ACMC and BBT measures decreased over time.  

 

 

 

Figure 1. Clinical outcome measure scores. a) ACMC 
and BBT with the MPL during the short-term clinical 

study were relatively static. b) ACMC and BBT scores 

increased over the long-term, with the best scores 
recorded at the exit assessment. c) The NASA-TLX 

survey was administered after the ACMC and BBT. 
Lower scores on this measure indicate that lower mental 

load is required to complete a task. 
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Next, we compared the loads experienced during the 
clinical sessions of the 12-month home use study with the 

data recorded while the participant used the prosthesis at 
home. We recorded approximately 4.4 hours of wear a day 
during the take-home phase of the study and a total of 850 

hours of data. We compared the elbow torque and OI torsion 
experienced by the limb during home use and during the six 

clinical sessions. Both elbow torque and OI torsion were 
much higher in the home environment than the clinical 
environment (Figure 2), which indicates that higher loads 

were placed on the MPL during the unstructured tasks of 
daily living than during the clinical functional assessments. 

 

 

DISCUSSION 

Our results suggest that a long-term study can capture 

functional progression with an advanced prosthesis even 
when progression is not evident over the short term. In the 
earlier study of 11 participants that compared the MPL with 

the participants’ conventional prostheses, the MPL was found 
to out-perform the conventional prostheses, but gains in 

functional improvement over the two- to four-week study 
were unexpectedly low for some users. After that study, we 
expected that with increased wear time, a user’s functional 

performance with the MPL would improve, and the longer 
term progress documented here supports this hypothesis. 
Additionally, the varied tasks demanded by the home 

environment could have contributed to increased capability 
over time. The participant reported frequent travel, daily meal 

preparation, and highly dexterous tasks like playing the 
piano. These tasks were demanding from a control 
perspective and likely contributed to the improvement in 

functional outcome scores. Furthermore, the increased 
functionality might have been a motivating factor to the 
participant’s acceptance of the MPL, since his hours of 

continuous usage, the times he used the MPL without doffing, 
increased throughout the study. 

The loads experienced by the limb during activities of 
daily living were much greater than during clinical 

assessments. This result has implications for the design 
requirements of new prostheses. Although we did not 

temporally map the higher torque loads to specific activities, 
the participant reported stressing activities like clearing his 
garden with power tools which could account for the higher 

torque. The high torsional values we recorded are consistent 
with data from intact limbs during advanced activities of 
daily living [13]. The frequent loads (50 N-m and 5 N-m for 

bending torque and torsion, respectively) are similar to loads 
previously reported from single session studies of OI 

transhumeral amputees [14]. Prosthesis  users with OI 
implants have expressed concern about overloading the OI 
implant [14], and more data from active users like our 

participant could ease those concerns. Further studies could 
help shape the requirements for the safe use of an OI implant. 

Through the combination of functional outcome 
measures, on-board data logging, and long-term studies in the 

home environment, we are developing the capability to assess 
upper limb rehabilitation progress and device 
appropriateness. In particular, our on-going work includes 

passive data collection methods such as wrist accelerometers 
and joint sensor data to monitor user performance.  
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Figure 2. Histograms comparing loads on the 
MPL. For both graphs, the y-axis units are is the 

probability that a given data capture would be at a given 

torque. That is, higher probabilities correspond to more 
commonly measured torques. a)  The torsion experienced 

at the OI interface was higher in the home environment 
(blue) than the clinical environment (orange). b) The 

elbow torque during all clinical sessions varied greatly 

from the torque recorded during home use of the MPL. 
The maximum torque magnitude in the clinical setting 

was 65 N-m compared to 135 N-m at home.  

a 

b 
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ABSTRACT 

A myoelectric video game controller was developed 

which maps two-site upper-limb prosthesis control signals to 

mouse/keyboard commands via wireless Bluetooth. This 

Myo-Electric Gaming Interface (MEGI) is targeted for 

exercising and training clinically relevant control signal 

properties and strategies. 

This study evaluated the effects of video game training 

on myoelectric control signal properties over a six-week 

period. A racing game was used to training proportional two-

site myoelectric control using a differential control strategy 

and co-contractions. Signal amplitude maxima and 

distribution of control speeds were observed across the 

training of three pilot able-bodied subjects. 

BACKGROUND 

Myoelectric training is an important part of a new patient 

learning to control a prosthetic limb [1]. Upper limb 

prosthetic fittings are often not successful and eventually 

rejected because the prosthesis does not provide the 

functionality that the user expects [2]. Although this can be 

related to a number of different factors, it is often associated 

with the lack of adequate training. Myoelectric prosthetic 

users must develop control skills by exercising their remnant 

muscles. Without proper training, users often cannot reliably 

provide suitable myoelectric signals and can fatigue quickly, 

thus further negatively affecting their prosthetic 

performance. Many, if not most, upper limb amputees receive 

insufficient training on the use of their new prosthesis which 

may be due to healthcare funding, but also is likely due to the 

lack of appropriate training tools [2]. 

Dawson, et al. [1] provide a review of current 

commercial and research training technologies as well as 

their benefits and shortcomings. The technologies have been 

passable as the standard for training but have room for 

improvement, as they are too simplistic, not motivating, 

expensive, manufacturer specific, and cannot leave the clinic 

to allow for independent use by the amputee within their 

home. Requiring the device to be used in the clinic incurs 

substantial costs associated with the clinicians’ time during 

the training process as well as the time and inconvenience for 

the patient to travel to and from the clinicians’ office. 

 

Figure 1: Myo-Electric Gaming Interface (MEGI) system. 

The development of a new myoelectric training system 

strives to improve compliance of prosthetic upper-limb 

devices, and to build a more accessible and engaging 

approach to myoelectric signal training. Better patient 

outcomes will stem from prosthetic users being able to have 

more comprehensive and clinically relevant myoelectric 

training that is rewarding and entertaining.  

The MEGI system is a myoelectric controller which 

leverages existing video game software, which are curated to 

elicit clinically relevant exercises [3]. 

MEGI promotes the use of proportional myoelectric 

control signals. In the prosthesis the amplitude of the signal 

controls speed, with larger signals creating faster movements. 

Good proportional control contributes to more efficiently 

controlling the prosthesis (especially for grasping and 

manipulation) and adjusting the grip strength of terminal 

devices [3]. MEGI trains proportional control by mapping 

myo-signal amplitude to video game controls like joysticks, 

where the myo-signal amplitude is mapped to how hard the 

joystick would be pressed in the game. In the case of racing 

games (Figures 1, 2) a lower signal is mapped to steering the 

vehicle gently and as the signal amplitude increases so does 

the degree of turning the steering wheel in the video game. 

Directional control is one of the most common control inputs 

in video games and, so mapping this directional control from 

the myo-signals encourages users to constantly work these 

muscles through a range of contraction intensities.   
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Figure 2: Representative training regimen racetrack courses, observed from a birds-eye view. TOP: Key of elicited differential 

myoelectric signal based on turn steering direction for right-handed wrist flexion/extension. MIDDLE: Representative courses 

containing balance of left/right turns. BOTTOM: Course difficulty with respect to road width, frequency of turns, and degree of 

turns. 

Modern prostheses are made up of multiple devices; in 

upper-limb prosthetics one can have powered elbow, wrist, 

and hand prostheses. To control multiple devices with two-

site myo, switching events are used, which require precise co-

contraction or other pulse events. These signals are not 

typically used repeatedly, but when needed, they require 

precision and acute timing. Generation of co-contraction 

signals is one area that users of two-site myoelectric control 

often struggle with most. MEGI maps co-contraction events 

to binary button presses that are used periodically in game, 

but not repeatedly to the point of fatigue. In the racing game 

used in the study, co-contraction was mapped to using an in-

game item for a speed boost or to fire a weapon. 

Bimanual coordination is encouraged with the MEGI 

system mapping additional video game controls to a one-

handed joystick peripheral used in the contralateral hand. In 

the racing game (Figure 1), this peripheral controls the gas 

pedal and brake. 

METHODOLOGY 

Subjects underwent informed consent and were 

instructed upon use of the MEGI device. Three able-bodied 

participants (2 male, 1 female, age 22±2), with limited 

previous experience with myo-control, completed the six-

week study.  Participants utilized two-site surface 

electromyography and differential control with wrist flexor 

and extensor muscles. All participants utilized dominant right 

arms for the MEGI system and their left hand for the joystick 

peripheral. Trials were conducted in a lab setting with 

investigators recording data. 

Regimen 

A commercial car racing game, Sonic Racing, for PC 

was used as the platform for training. The training regimen 

involved completing 3 racetrack courses per session and 3 

sessions per week. Over the 6 weeks of testing, subjects 

completed a total of 54 courses. Subjects completed trainings 

every other weekday and rested on off days and weekends. 

Eight different courses were selected which had a 

balanced level of left and right turns, corresponding to the 

eliciting of equal flexion and extension signals (Figure 2). 

Easy levels were used the first week of training, with more 

difficult levels introduced each week.  

Data 

The MEGI system recorded myoelectric signals with 

LTI “DC” electrodes acquired with a 10-bit analog-to-digital 

converter (ADC) onboard.  The rectified myoelectric signal 

data was sampled at 30 Hz and included the differential signal 

(flexion minus extension) and deadband, as well as the raw 

signal of each channel. Lap times were recorded for each of 

3 laps of each of the 3 courses in a training session. 
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Figure 3: Myoelectric signal amplitude properties for representative subject (MTAB03). 

 

RESULTS 

The track and myo signal data collected during the 

training were analysed across the six weeks of training. Game 

performance was quantified across each track for the group. 

Signal characteristics such as maximum amplitude, peak 

flexion/extension, separation via flex/extend ratio during 

peak, and distribution of speeds were quantified for the 

dataset. 

Previous studies have demonstrated that in video game 

training, participants can improve at the game itself while 

translation to improved prosthesis use can be less transferable 

[4,5]. This study focused on quantitative changes to the myo 

signals themselves and not prosthesis or functional testing.  

Game Performance 

In-game performance was quantified by measuring the 

lap time of every trial. Across the three subjects and eight 

courses, lap times decreased on average over the six test 

periods (Table 1). 

Table 1: Average video game racetrack completion times 

for all subjects (n = 3). 

 

Amplitude 

The flexion and extension signal amplitudes were 

tracked over time (Figure 3). Peak flexion and extension 

signals were calculated. As a measure of signal separation, 

the ratio of flexion to extension was calculated for each peak 

value. Flexion ratio was the peak value over the 

corresponding extension value, and vice versa. Generally, 

overall amplitude did not change outside of a 95% confidence 

interval. 

Distribution 

The range of myo signal amplitude elicited by a person 

can be correlated to the distribution of speeds that a prosthesis 

can be actuated.  Similar research has evaluated prosthesis 

control performance by measuring the distribution of speeds 

across degrees of freedom in a prosthesis [6]. 

The distribution of myo signal amplitude was evaluated 

across the six test periods (Figure 4). For the differential 

signal, kurtosis (Eq. 1) was calculated to quantify the 

distribution at the tails, corresponding to the higher end of the 

flexion and extension ranges. 

EQ 1. 

 

The hypothesis was that the myo-training would promote 

muscle growth and an increase in the range of the signals 

available. This could be quantified with a measure of 

kurtosis, indicating whether there is more signal distributed 

at the higher (flexion and extension) values, compared to the 

centre of the distribution. A lower kurtosis value correlates to 

a flatter distribution across the full range of amplitude.
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Figure 4: Distributions of myo signal amplitudes across the six weeks of training for one representative subject (MTAB03).  

Amplitude binned by analog-to-digital counts from a 10-bit DAC. Extension in blue, flexion in yellow. 

Globally kurtosis values (Figure 5) are all greater than a 

value of 3, which indicate a leptokurtotic distribution which 

is defined as having fewer extreme values than a normal 

distribution. Across subjects, the trends in kurtosis over time 

seem inconsistent. Subject MTAB01 saw a nearly monotonic 

increase of kurtosis over time, while MTAB03 saw a 

decrease. Subject MTAB02 had a decrease in kurtosis after 

the first week, and then oscillated about a steady value for the 

remaining periods. 

 
Figure 5: Kurtosis values over time for three subjects. 

DISCUSSION 

The signal amplitude and distribution data insofar are 

inconclusive. The distribution of electromyographic 

amplitude can be further evaluated in terms of uniformity and 

skewness. More signal distribution at higher amplitudes may 

not necessarily be indicative of good control. While a wide 

range of signal would correspond to more proportional 

control, some distribution at moderate values could be 

indicative of efficient control of the prosthesis. LTI is 

considering different measures of the myo-training separate 

from the game training itself. Standalone myo-signal tests 

and tracking tasks are under development, along with a suite 

of functional outcome tests. 

Future Work 

More work needs to be done to separate the learning 

effects and improvement of gameplay, and to quantify how 

that affects myoelectric control. 

LTI is conducting the full study with research 

participants with upper-limb absence, over the course of 

multiple six-week periods, in order to evaluate changes in the 

target population and over longer terms of time. 
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ABSTRACT 

The use of outcome measures are often a policy-

driven requirement when assessing the efficacy of 

clinical care in several patient populations including 

prosthesis users. A recent review of upper extremity 

instruments described the PROMIS measures as a 

“potential improvement to current practice”[1]. Thus, 

the PROMIS-9 UE was developed from the PROMIS 

UE item bank to assess psychometric performance 

among individuals with UE amputation. Performance 

testing was achieved by evaluating structural and 

known-groups validity, reliability and differential item 

functioning (DIF) among participants. To be 

structurally valid, the assumptions of 

unidimensionality (one dominant factor obtained), 

local independence (i.e. all LD χ2<10), monotonicity 

(scalable coefficient for the full scale equates to 0.57) 

and good model fit (p-values>0.006 for all items) were 

confirmed. The graded response model results, for the 

item difficulty parameter, revealed that the nine items 

were covering low to moderate levels of physical 

function. Known-groups analysis demonstrated that 

prosthesis users had significantly higher levels of 

physical function compared to non-user (p=0.039). 

Lastly, the PROMIS-9 UE had adequate item response 

theory (IRT) reliability, 0.9, and no age DIF were 

found. Although there is a need for more challenging 

questions, the PROMIS-9 UE psychometrically 

performed well supporting its continued utilization for 

individuals with low to moderate levels of physical 

functioning.  

INTRODUCTION  

Prominently utilized upper extremity (UE) 

physical function instruments, that predate the 

establishment of the PROMIS physical function UE 

item bank, report having limitations such as ceiling 

effects, non-unidimensional factor structure, or 

lengthiness [2], [3]. To overcome these limitations, the 

PROMIS group developed fixed length short forms 

and computer adaptive test from validated item banks 

across several domains including pain, anxiety and 

physical function. The PROMIS v2.0 UE physical 

function item bank allows [4] content experts to create 

a customized short form by selecting items clinically 

relevant to their targeted population and subsequently 

test its performance in a clinical setting. A recent study 

found that the PROMIS UE item bank had good 

psychometric properties such as adequate structural 

validity, sufficient differential item function and good 

reliability among individuals with upper limb 

complaints [5]. To build on this body of evidence, it 

was hypothesized that a customized 9-item measure, 

PROMIS-9 UE, chosen from the PROMIS v2.0 UE 

item bank, will also perform well within a specified 

population of individuals with upper extremity 

amputation. 

METHOD 

Study design 

Patients with UE amputation across the United States 

completed the PROMIS-9 UE measure and 

demographic data during a routine visit with their 

prosthetist. Retrospective chart review of cross-

sectional data was used to determine the psychometric 

performance of the PROMIS-9 UE. 

Subjects 

A database containing 269 patients were reviewed. To 

be included in the analysis, individuals had to be 18 

years and older, have received an upper extremity 

amputation and have completed a PROMIS-9 UE 

questionnaire.   

Statistical Analysis 

All statistical analyses were performed using 

IRTPRO (version 4.1) and R (version 3.6.1). Patients’ 

demographic data were described using sample means, 

standard deviations and percent proportions.  
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The structural validity of the PROMIS-9 UE was 

assessed by evaluating three IRT assumptions before 

fitting a graded response model. These assumptions 

include: 1) unidimensionality, 2) local independence 

and 3) monotonicity [6]. Unidimensionality is define 

as the instrument ability to measure one domain, for 

this current study, physical function. Exploratory 

factor analysis was used to determine if the PROMIS-

9 UE had one factor or a dominant first factor. Local 

independence dictates that there should be no 

association between items, after controlling for the 

measured trait. This was verified using IRTPRO’s 

local dependence chi-square statistics (LD χ2). If any 

LD χ2 value exceeded 10 then local independence was 

violated [7]. Lastly, monotonicity occurred when the 

probability of selecting a higher response category 

increases with the levels of the measured trait. The R-

package Mokken (version 2.8.11) was used to verify 

whether monotonicity was held for the PROMIS-9 UE 

instrument.  If all three assumptions were met, results 

obtained from the logistic graded response model with 

S-χ2 can be interpreted. From the model, p-values less 

than 0.006 are suggestive of poor model fit and a wide 

range for the item difficulty parameter is suggestive of 

good coverage.  

Known-groups Analysis  

Known-groups analysis was used to assess 

differences in physical functioning T-scores for 

prosthesis users versus non-prosthesis users. This was 

carried out using an independent samples t-test. T-

scores were obtained from HealthMeasures.net 

scoring service.  

DIF and Reliability 

      When the influence of age, gender or education 

status impacts an individual’s response to an item 

category, then DIF has occurred. Items flagged for 

DIF can add noise to the instrument and some studies 

recommended that non-relevant items with significant 

DIF be excluded. DIF was assess using IRTPRO 

(version 4.1). Reliability evaluates the instrument’s 

capabilities to precisely measure the domain of 

physical function. Traditional Cronbach’s alpha gives 

the reliability for the entire instrument while the 

IRTPRO reliability gives the precision for individual 

values of T-score within the scale. 

RESULTS 

After removing patients with incomplete 

PROMIS-9 UE data, a convenience sample of 239 

individuals was retained in the final analysis. Over 

70% of the population were male, 45% were 

transradial and 63 % were prosthesis users at the time 

of the survey (table 1). 

Table 1: Patients' Characteristics  

 Count (n) % 

Total Sample  239 100 

Gender, male 170 71 

Education, college degree  143 60 

Employed, yes 106 44 

Acquired amputation, yes 171 72 

Amputation Level   

Transhumeral/elbow 40 17 

Transradial/wrist 107 45 

Prosthesis user, yes 150 63 

        Mean SD 

Age of participants (yrs) 48 16 

Use of prosthesis (hrs/day) 9 5.3 

PROMIS-9 UE T-scores 29.6 9.8 

Structural validity 

Unidimensionality analysis revealed that physical 

function was a dominant factor for the PROMIS-9 UE. 

None of the items violated the assumption of local 

independence as all LDχ2 values had a magnitude less 

than 10. Also, the assumption of monotonicity was 

met because the scalability coefficient for the full scale 

(0.565) exceeded the minimum value of 0.5. Model 

results indicated that none of the items were poorly 

fitted (p >0.006).  The item difficulty level of the scale 

ranged from -1.44 to 1.34 suggesting low to moderate 

coverage for physical function 

Known Group Validity 

As expected, prosthesis users had significantly 

higher t-scores than non-prosthesis users (p=0.039). 

 

Figure 1: Prosthesis users had significantly higher 

physical functioning scores when compared to non-

users. 
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Reliability 

The average IRT reliability estimate for T-scores 

values found for the middle (28-70) of the scale was 

0.9 indicating adequate reliability. Figure 2 showed 

that as the information increased the reliability 

simultaneously increased. Similarly, the traditional 

Cronbach’s alpha analysis revealed adequate 

reliability value of 0.93 for the entire scale. 

 

Figure 2: Information plotted across range of T-

scores. The T-score range of 29-70 has the greatest 

level of precision. The reliability reference line of 0.95 

correspond to an information magnitude of 10. 

DISCUSSION 

The purpose of this study was to examine the 

psychometric performance of the PROMIS-9 UE 

among individuals with UE amputation and this was 

achieved. Study results demonstrated no significant 

violation of validity, reliability and differential item 

functioning.   

Hung et al. concluded that the PROMIS v1.2 UE 

item bank for physical function was structurally valid 

for individuals among upper limb complaint and 

further noted that more challenging questions are 

needed to capture higher functioning individuals. 

Similarly, our graded response model reported strong 

performance among UE amputees and also reaffirm 

the need for the addition of more difficult questions to 

the existing item bank. For example, if more 

challenging questions are added to the bank, then the 

two of the four items in the PROMIS-9 UE with 

similar range of item difficulty could be replaced with 

more challenging ones. Yet, the need for refinement 

does not preclude the administration of this instrument 

at baseline assessment and perhaps follow up visits for 

patients’ with low to moderate levels of functionality. 

This study is not without limitation. Future study 

should consider the performance of the PROMIS-9 UE 

with longitudinal data. This will demonstrate how well 

the instrument can track changes in patients’ 

functional status. Lastly, future study should consider 

the impact of device type on the increase or decrease 

of patients’ physical functioning T-Scores. 

In conclusion, although challenging questions are 

needed to provide coverage for individuals with high 

actively levels, the PROMIS-9 UE is psychometrically 

sound and can be administer to patients with low to 

moderate physical function activity level. 
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 ABSTRACT 

        Bilateral upper limb loss (BiULL) is perhaps the greatest challenge for upper limb prosthetic care, now more than 

ever, as we witness the increase of sepsis as a major cause of multiple limb loss.  This small-n survey has recruited 28 

individuals with BiULL, 27 of whom are prosthesis wearers.  12 of the 28 lost four limbs to sepsis; 17 of the 27 prosthesis 

wearers use body-powered hooks, six use electric hooks, and four use electric hands as their dominant terminal device.  

Secondary prosthetic use is also included, when the secondary prosthetic set was used for 10% or more of total activities.  
        The survey used person-to-person interviews to compile detailed data about how tasks are performed, how many tasks 

are performed, etc. A detailed picture is painted from this data, including the functionality and independence achieved by 

many in this population, and the needs expressed for improvements in their devices of choice, and the care they receive. For 

example, the indications for improvements needed emphasized greater dependability, and greater grip security.  Ratings of 

prosthetic features illuminated shortcomings in training especially. 

  The information should be useful for clinical guidance, but also to help guide the development of future prosthetic 

devices, as well as set an example for how a small-scale study can collect useful data about the use of prosthetic devices, 

without a large grant or large institutional sponsorship.

A. BACKGROUND 

      The bilateral upper limb loss (BiULL) individual 

presents perhaps the greatest challenge in UL 
rehabilitation.  Since there is a dearth of information in 

the literature about the actual needs of this small but 

important population, this small study hopes to 

contribute relevant knowledge towards both the clinical 

and development needs that exist. It is also expected that 

wearers with BiULL use their prostheses in the same 

ways as wearers with unilateral limb loss (LL), i.e., what 

is needed by the small group in this study is also going to 

be needed by the larger population with unilateral LL.   

     From previous experience with similar surveys[1,2] 

the in-depth information available from personal 

interviews with prosthesis users has been used 

successfully to focus on prosthetic needs. A large 

segment of the entire population of BiULL individuals 

may be nearly impossible to recruit, but gathering in-

depth information from the 28 subjects in this small 

study provides a wealth of information (about the details 

of prosthetic use) that would be more difficult with a 

large-n study.  

 

Methods: The data collected in this survey seeks to 

document all the ways that BiULL persons use their 

variety of prosthetic devices, and the ways they are still 

limited by those devices.  Direct interviews with all 

subjects, either in person or by telephone, allows the 

open-ended discussion necessary to collect the breadth of 

information sought.   

The simple assumptions, upon which the study is based 

include: 

- No research grant, thus no delays for proposal 

writing and funding. 

- No oversight by a large institution, thus less staff to 

coordinate, less “red tape”, etc.  

- The authors each have 30+ years’ experience in the 

prosthetic field, working as therapist, prosthetic 

coordinator, and engineer/manager. The first author 

has conducted earlier surveys with published results. 

- Data is collected directly from subjects within the 

population with BiULL, who are directly recruited. 

- This project hopefully can set an example others 

could follow. The highest priority is to gather data 

from consumers – a priority recognized by the limb 

loss community as well, in the 2018 Amputee 

Coalition study[3] which cited the great need for 

outcomes reflecting the actual needs and priorities of 

the limb loss population.    

Recruitment:  Many (approximately half of the 28 

subjects) were recruited at the Fifth Skills for Life 

(SFL5) Workshop, attended by over 70 persons with 

BiULL, held in Houston, TX, in October 2018.   

Institutional Review Board (IRB): The protocols and 

informed consent form were reviewed by a certified 

private IRB (Ethical and Independent Review Services, 

Corte Madera, CA), and the study was judged to be 

exempt from IRB oversight, citing no risk to subjects. 

Subjects were not compensated. 
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RESULTS: 

      

     

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Average daily usage reported by the subjects, in 

the three nearly equal ranges.   Again, BP usage is on 

average very high, and only approached by Electric Hooks 

in the middle range. 

 

Figure 2 – Cause of limb loss, showing the 

significance of disease-caused limb loss (sepsis, 

in all cases, also causing LE loss).[4] 

Figure 3 – Summing the total tasks performed in each of five categories, shows the dominant side 

consistently is the most heavily used - 77% on average . Data includes all TDs, all loss levels. On average 

85 different tasks are performed, some many times each day, so total tasks are underestimated. 
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Other survey results included the subjects’ ratings of 

prostheses in specific features, which can help to explain 

some of the results presented in Figure 4 and 5, e.g., 

electric hooks were rated higher in grip security, which 

was a very high priority for all the surveyed group.  

“Improvements Desired” was solicited from subjects, 

and produced a high amount of data, listing 15 specific 

shortcomings of present devices, mostly centered on the 

terminal devices.  The clear areas of most need could be 

generalized as: Durability (four distinct areas were 

cited), and Grip Security (including hand and hooks, 

electric and BP).  “Impact of Training” was also graded.  

Electric prostheses graded their training a D+;  BP 

prostheses graded training a C.  In addition to the 

prosthetic devices used by subjects, ‘Other Assistive 

Devices’ (in 10 categories), were very important to 

nearly all subjects, and are used in many diverse 

activities, including: household activities, driving, 

bathing, eating, computer/phone functions, and sports.

Conclusions from the data 1.  Functional capabilities of the surveyed group are on 

average very high – and notably, for all the 

Figure 4 – The total number of tasks tallied in each of the categories, including the average of all five.  In this case the 

electric TDs tasks (both hook and hand) are slightly higher, but the difference is not statistically significant.  

 

Figure 5 – Comparison of BP Hooks (n=16) vs. Electric Hooks(n=9).  Data is average of five activities (for total tasks 

multiply by five) and includes both primary and secondary prostheses, if used. Charts are i to iv, left to right: 

i. Tasks reported- Total tasks (repetitions of tasks not included) (ElecHooks +22% higher). 

ii. Average rating, 4=A, 3=B, 2=C, 1=D, 0=F  (ElecHooks +5% higher). 

iii. Average percent of 2-handed tasks (ElecHooks +13% higher). 

iv. Average percent of tasks using prehension (ElecHooks +8% higher). 
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prosthetic choices: e.g., BP Hooks, Electric Hooks, 

and Electric Hands.  The majority have chosen 

body-powered hook TDs, but for subjects whose 

experience is within the last 20 years, the group is 

nearly equally divided between electric and body-

powered devices.  

2. The functional needs expressed, considering all 

devices, are led by better dependability and better 

grip security. Other needs included better range of 

motion, water resistance, comfort, and lower weight. 

Generalizing, the surveyed group appreciates what 

they have accomplished, but they know 

improvements could give them better function- as 

long as the dependability, versatility, and 

affordability they value are not sacrificed. Choosing 

the right device for the individual need not be 

haphazard. Careful evaluation and trial fitting could 

give patients and caregivers better choices. [5,6]  

3. Prosthetic use by this group shows: very high use of 

the dominant side prosthesis over the non-dominant 

side (75% vs. 25%), as well as very high use of 

passive function, over prehension functions (65% vs. 

35%).  

4. Other contributions to function:  

a. Additional assistive devices, of a wide 

variety from a home-made zipper holder to 

driving rings, and clothes pins (13 different 

categories are enumerated). 

b. Consumer electronics (phones, tablets, 

computers, etc.) and Automotive 

electronics aid this group immensely.  

 

Indications for additional study about the BiULL 

population. 

1. The priority for improvements in dependability and 

grip security were high in this survey of 28 persons 

with BiLL.   

Larger studies (or focused small studies) could 

verify these conclusions, and could also be more 

specific in comparing types of hooks and hands, 

control options, or the impacts of important 

variables such as expert prosthetic care and the 

center-of-excellence approach, early fitting and 

training, mental health services and other 

technologies.   

2. Training clearly is an area of great potential- but 

exactly how to improve training must be studied 

seriously. A few possibilities include (but are not 

limited to): 

a. Telehealth shows potential for leveraging the 

impact of expert therapists to provide wider 

access to skilled therapy, custom training for 

clients, and training for therapists in specific 

skills.[7] 

b. Internet links such as You Tube video of skilled 

users, are widely accessed consumers, and could 

supplement training for therapists also.  

3. Focused evaluation studies of specific prosthetic 

TDs would help consumers to understand the pros 

and cons of new (or old) devices, before making 

expensive choices.  Cost-benefit analysis is difficult 

in prosthetics, but could be developed as a benefit to 

consumers, and prescribers as well.    
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ABSTRACT 

Real-world monitoring offers an objective way of 

exploring the everyday wear and use of upper-limb 

prostheses. To inform future developments in this field, a 

systematic literature review was undertaken, highlighting 

studies that monitored the activity of prosthesis-users during 

daily-living. Nine papers relating to the upper-limb were 

identified, and sixty relating to the lower-limb. Here we 

concentrate on the ways in which technologies have been 

utilised to assess the use of upper-limb prosthesis, whilst also 

drawing on the findings of the broader review to highlight 

potential uses of these measures, alongside the benefits and 

disadvantages of different approaches. 

INTRODUCTION 

If the benefits associated with wearing a prosthesis are 

outweighed by the drawbacks, then a person may choose not 

to wear or use it [1,2]. Additional complexity, weight and cost 

associated with prosthetic prehensile function is only of 

sufficient value if it is used in everyday life. Clearly, these 

issues around wear and use are context (e.g. time/setting) 

specific and may vary person to person. However, until 

recently, the primary methods of determining how upper-

limb prostheses were worn and used on a day-to-day basis 

was through self-report and examination of the prosthesis 

(e.g. a worn-out cosmetic glove or mechanism). Over the past 

5-6 years, researchers have begun to use technology (e.g. 

sensors on, or in the prosthesis) to objectively assess upper-

limb prosthesis wear and use once the person leaves the 

clinic. 

Although monitoring of real-world wear and use is a 

relatively new approach to upper-limb assessment, the first 

papers reporting activity monitoring in people with lower-

limb absence were published in the 1990’s. By understanding 

how researchers have used real world monitoring to assess 

lower-limb prosthesis users, as well as the relative merits of 

the different approaches, it may be possible to guide the 

development of appropriate approaches to the evaluation of 

upper-limb outcome measures. 

Here we present the results of a literature review which 

explored the ways in which technology has been used to 

monitor everyday prosthesis use. The findings of studies 

using real world monitoring techniques in upper limb 

applications will be presented, together with potential lessons 

to be learnt from the lower-limb field. Finally, conclusions 

will be drawn as to future work. 

METHODOLOGY 

Five databases (MedLine, Web of Science, Scopus, 

CINAHL and EMBASE) were systematically searched to 

identify all papers published up to 1st November 2019. The 

search employed three groups of keywords as detailed in 

Figure 1. 

  

Figure 1: Search terms employed to identify all studies 

that monitored the activity of prosthesis-users during 

daily-living. 

Only papers which reported first-hand on sensor-based 

monitoring of people with prostheses in a community setting 

(i.e. outside the lab or clinic) were included in the final 

review. For all included papers, reference lists and forward 

citation reports from each database were consulted in order to 

identify additional relevant articles that were not found in the 

automatic search. 

RESULTS 

The search returned 2793 papers across the 5 databases. 

After removing duplicates, 1716 were screened by title and 

Real-world activity: 

"daily living" OR "free living" OR "daily life" OR "real world" OR 

activit* OR mobility OR "prosthetic use" OR "home use" OR "real 

life" OR "daily use" 

Population of interest: 

"artificial limb" OR "artificial leg" OR "artificial arm" OR 

(prosthe* OR amput* AND (limb OR leg OR arm OR hand OR 
wrist OR elbow OR foot OR ankle OR knee OR transradial OR 

trans-radial OR transhumeral OR trans-humeral OR transtibial OR 

trans-tibial OR transfemoral OR trans-femoral)) 

Sensor for monitoring activity: 

actimetry OR sensor OR monitor* OR "inertial measurement unit" 

OR IMU OR acceleromet* OR gyroscope OR magnetometer OR 

"global positioning system" OR GPS OR "step count" OR 

pedometer OR "cadence" OR "steps/" OR "steps per" 

AND 

AND 
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abstract; of these, five papers relating to the upper-limb were 

identified as relevant [3-7]. Analysis of references and 

citations highlighted four additional upper-limb papers [8-11] 

(Total = nine papers). For comparison, 60 papers relating to 

the lower-limb were identified.  

With respect to monitoring upper-limb use, four research 

areas were identified:  

(1) Use of wrist-worn accelerometers to measure 

aspects of symmetry in upper limb activity and 

prosthesis wear time [3-6] 

(2) Use of head-mounted video cameras to generate 

grasp taxonomies [7,8] 

(3) Use of on-board sensing to evaluate choice of grasp 

[9] 

(4) Use of on-board sensing to evaluate the use of a 

sensory feedback system and the number of grasp 

events [10,11] 

It is worth noting that during the review process, five 

other studies were identified, however these were excluded 

from the main review because they assessed upper-limb 

activity without clarifying whether a prosthesis was worn at 

the time [12,13], or because they were only undertaken as lab-

based studies [14-16]. Any future community-based 

applications of these methods would be of interest. 

When considering all 69 papers (upper- and lower-limb), 

there has been a large amount of growth in publications over 

the past 10 years (Figure 2). Most studies recorded data for 

between one and two weeks (Table 1). Studies lasting for less 

than a week were generally those concentrating on the 

development of devices and algorithms, whilst studies lasting 

for more than one month were mostly intervention-based. 

Studies that compared activity monitoring to clinical scores 

or that compared populations typically used a 7-day protocol. 

Only three studies lasted for longer than three months. 

 

  

Figure 2: Number of publications per year (grouped into 

2-year bins). 9 upper- and 60 lower-limb publications 

were published during this period. 

 

Table 1: Recording period for studies split by the main 

focus of the manuscript. 

DISCUSSION 

Although only 9 studies addressed the everyday 

assessment of upper-limb activity using activity monitoring 

methods, within the lower-limb field, these methods were 

observed to have increased in popularity over the past 10 

years. Results suggest that upper-limb monitoring within 

prosthetics is approximately 10 years behind the lower-limb 

field, and as such we anticipate an increase in the use of real-

world monitoring in the coming years.  

A substantial proportion of the lower-limb studies 

focused on comparing prosthetic components such as 

different designs of foot spring. By introducing activity 

monitoring techniques into the upper-limb field, it will be 

possible to objectively compare how different types of 

prosthetic hand design, control methods, or socket designs 

impact on everyday wear and use. Other key uses of these 

methods in the lower-limb field included lifestyle 

interventions and to allow comparisons between populations. 

Additionally, several studies looked at comparing activity 

level against various clinical scores (for example K-levels). It 

would be interesting to use real world monitoring techniques 

in the upper-limb to evaluate the effects of user training 

methods. 

The upper-limb papers identified in this review reported 

data on either the movements of the arm(s) (using 

accelerometers), or the number/types of grasps used in daily 

life (using video cameras or on-board processors). Neither of 

these measures on their own provide a complete 

understanding of both when the prosthesis is worn and how 

much it is used. For a person with an upper-limb prosthesis 

there are many aspects of use to consider, including: Is the 

arm used? Are the arm movements similar to those of an 

anatomical arm or do they reflect compensatory movements? 

Are the active capabilities of the hand, such as grasping, being 

used and if so, to what extent? Although the field is in its 

infancy, many of these issues are beginning to be explored by 

different groups and hence there is great potential to combine 

techniques. For example, by combining accelerometry for the 

detection of arm movements with recordings of grip choice 

and frequency of use, comparisons could be made with 

Recording 

period 

Number of studies in each cateory 

Algorithms Clinical 

Scores 

Interventions Populations 

<7 days 6 1 1 1 

7-14 days 5 13 15 6 

15-30 days 1 2 5 1 

31-90 days 0 2 5 1 

>90 days 0 2 1 0 
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studies of upper limb activity in anatomically intact 

populations, between users of different types of prosthesis, or 

with people with different upper-limb impairments. Further 

by comparing measures such as ‘system on-time’ against 

prosthesis wear time it is possible to understand the value of 

advanced systems such as sensory feedback [9,10]. 

Prosthesis wear time is a key outcome with respect to the 

upper-limb, as if the user does not find the prosthesis to be of 

sufficient value, then it will not be worn. Consequently, 

reporting of prosthesis wear time is much more common in 

these studies than those relating to the lower-limb, where 

non-wear may be less of a choice with movement requiring 

crutches or a wheelchair when the prosthesis is not worn, thus 

greatly reducing functionality. Although algorithms for the 

automatic detection of upper limb prosthesis wear/non-wear 

have been developed [5,6], further validation is needed before 

these can be widely accepted. 

This review suggests we are still some way off properly 

understanding real world behaviours of prosthesis users and 

the factors which influence them, however, many 

opportunities for development have also been highlighted. 

With growing numbers of low-cost 3D printed prosthetic 

hands becoming available, and the high cost of some 

advanced technologies, these objective methods of 

assessment offer the potential for significantly improving our 

understanding of the value, or otherwise of prostheses to 

users. As with all ‘real world’ monitoring technologies, 

ethical issues will also need to be addressed and there are 

several interesting discussions on these issues, which become 

more complex with increasing invasiveness of prosthetic 

technologies [17]. Such approaches would be helped by the 

development of agreed standards on which data should be 

recorded and how these should be represented, which in turn 

may assist with evidence-based commissioning and 

prescription of upper-limb prostheses.  
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ABSTRACT 

Despite the fundamental importance of reachable 

workspace in upper-limb prosthetics, to date there have been 

no studies on this aspect. We have developed a methodology 

to quantify the reduction in the reachable volume of body-

powered prosthesis users due to harness setup, and to record 

the range-of-motion of the prehensor at a series of locations 

within the workspace. For this proof-of-concept study ten 

anatomically intact participants were assessed using a 

prosthesis simulator. Data was collected using a 3D motion 

capture system and an electronic goniometer. The 

harness/cable reduced the reachable workspace by 15-62% 

with participants struggling to reach across the body and 

above the head. Across all arm postures assessed, participants 

were only able to achieve full prehensor range-of-motion in 

9%. The methodologies could be useful in guiding the setup 

of body powered prostheses and in the evaluation of future 

designs of both body-powered and myoelectric prostheses. 

INTRODUCTION 

Reachable workspace is a key measure within the fields of 

upper-limb rehabilitation [1], [2] and robotics [3], with 

reduced workspace being shown to have a negative 

correlation with quality of life [4]. For upper-limb prosthesis 

users, the reachable workspace may be reduced due to a 

reduction in the degrees of freedom available in each of the 

joints (e.g. a prosthetic socket restricting full flexion of the 

elbow).  

For a user of a body-powered prosthesis, the cable routing 

of the control harness can cause further restrictions, 

sometimes preventing the user from reaching certain parts of 

the workspace. Additionally, the ability of the user to fully 

exploit the ‘Mechanical aperture RoM’ of the prehensor may 

also be affected by the harness setup. Increasing the length of 

the cable during setup to increase the size of the reachable 

workspace, could negatively impact on the achievable 

aperture Range of Motion (RoM) so that the user cannot fully 

close a voluntary closing (VC) terminal device in some arm 

postures. Conversely, decreasing the length during setup, to 

ensure full closure is always possible, could prevent the user 

from fully opening the device in some arm postures, and from 

reaching certain parts of the workspace.  

To reflect the need to find a compromise, various clinical 

guidelines have been developed; however, these vary and are 

somewhat vaguely worded. Further, whether any of the 

resulting setups are optimal in any formal sense is not known. 

Many prosthetists will rely on their own experience when 

setting up the harness system, and it is not known what the 

most common setups are. 

The extent of the workspace limitations and the 

implications on function have not been explored. Until we 

have methods to quantify these limitations, design and setup 

decisions will be difficult to justify. Therefore, the aims of 

this proof-of-concept study were to develop suitable methods 

with which to quantify the limitations on both reachable 

workspace and the ability to fully exploit the ‘Mechanical 

aperture RoM’ of the prehensor within this space. 

METHODOLOGY 

Ten healthy anatomically intact adults were recruited. 

Ethical approval for the study was granted by the University 

of Salford Health Research Ethics committee (REF: 

HSR1819-050) and informed consent was gained from all 

participants. Participants were assessed using a TRS body-

powered prosthesis simulator, consisting of a right-handed 

wrist brace, a figure-of-9 (P-loop) harness, and a TRS 

Voluntary Closing GRIP3 prehensor. Motion data from body-

worn and prosthesis-mounted reflective markers were 

captured at 100Hz using a 13 Oqus camera system (Qualisys, 

Gothenburg, Sweden), and an electronic goniometer (SG75, 

Biometrics Ltd) was attached across the mobile ‘thumb’ of 

the prehensor to measure prehensor aperture (opening and 

closing).  

To assess the impact of the harness on the reachable 

workspace, participants attempted a series of arm sweeps 

around the body under two conditions: unharnessed and 

harnessed. To capture the reachable workspace, participants 

were asked to sweep their hand through 9 arcs with the elbow 

fully extended (note that the contralateral (left) shoulder 

remained in a neutral position throughout). These arcs were 

parallel to the frontal, sagittal, and transverse planes as shown 

in Figure 1. 

The next part of the experiment was to evaluate the extent 

to which the participant could open and close the prehensor 

within their reachable workspace. Whilst holding the 

prehensor in a range of pre-specified locations around the 

body, participants were asked to open and close it as far as 

possible by only abducting and adducting the contralateral 

(left) shoulder. 
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3D marker co-ordinates from the prosthetic ‘finger’, right 

shoulder, and a cluster of three markers on the sternum were 

exported from Qualisys, and data processing and analysis was 

undertaken using Matlab (Mathworks Ltd). This included: 

• Filtering of 3D co-ordinates and goniometer data. 

• Rotation of 3D co-ordinates from the lab frame into a 

co-ordinate frame based on the sternum. 

• Reachable Workspace: Calculation of the convex hull 

surrounding the 3D co-ordinates from the ‘finger’ 

marker and the sternum origin marker using the 

Matlab alpha shape function. 

• Reachable Workspace: Removal of the surface of the 

convex hull behind the person’s back which joined the 

extremes of the arc sweeps. This was replaced by a 

surface joining these perimeter points to the sternum 

(Figure 2). The removed space corresponds to an area 

of the volume which the participant was unable to 

reach, thus overestimating the reachable volume. 

• Reachable Workspace: Volume calculated. 

• Control Over Prehensor Aperture: Grouping of hand 

positions into segments around the body. 

• Control Over Prehensor Aperture: Mean Achievable 

aperture Range of Motion calculated for each 

segment. 

• Control Over Prehensor Aperture: Results presented 

according to 8 segments around the body, 5 segments 

up/down the body, and 3 segments radially away from 

the body. All segments centered on the right shoulder. 

 

RESULTS 

Across all ten subjects, the harnessed reachable volume 

was approximately 70% of the unharnessed volume. At best 

there was a 15% reduction in the reachable volume when 

wearing the harness, and at worst a 62% reduction. Figure 3 

shows example data from a participant with a large reduction 

in their reachable workspace (unharnessed volume = 1.25 m3, 

harnessed volume = 0.49 m3) as viewed from the front. When 

the control harness was connected, this participant struggled 

to reach their arm above the horizontal and across the body to 

the left-hand side. 

All participants found it harder to open the prehensor in 

postures where the arm was crossed over to the left side of the 

body or when the arm was higher than the sternum as the 

harness was too tight to achieve full opening. Some 

participants also struggled to close the prehensor when the 

arm was on the right-hand side of the body as the harness 

became too slack. For most participants, as the arm moved 

down the body, the achievable aperture RoM increased. 

However, for some the increased slack in the system meant 

that the cable length increased to a level where they struggled 

to close the prehensor in the lower segments. When 

participants operated the prehensor near to their chest, very 

few were able to open the prehensor beyond 50% aperture. 

As they extended their arm away from the body, the 

achievable aperture RoM generally increased.  

Participants were only able to achieve the full ‘Mechanical 

aperture RoM’ in 9% of postures assessed. In 38% the 

achievable aperture RoM was <=50% of the ‘Mechanical 

aperture RoM’; in ~2/3 of these the participant struggled to 

open the prehensor and in the other ~1/3 they struggled to 

close the prehensor. 

 

  

Figure 1: To calculate the reachable volume, the arm was 

swept through 9 predefined arcs in the frontal, 

transverse, and sagittal planes. These data were later 

combined to generate a 3D point cloud of fingertip 

positions. 

 

Figure 2: A convex hull surrounding all the ‘finger’ 

marker locations and the sternum marker was generated. 

The area connecting the extremes of the movement arcs 

behind the person’s back was removed and replaced by a 

surface joining these extremes to the sternum to avoid 

overestimation of the workspace volume. 

  

Figure 3: 3D reachable volume as viewed from the front. 

The combined volume shown in both grey and red is the 

unharnessed reachable volume, and the smaller red sub-

volume is the harnessed reachable volume. 
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DISCUSSION 

This study has introduced novel methods for evaluating 

reachable workspace and user control over prehensor aperture 

for a body-powered prosthesis. Clearly, an ‘ideal’ prosthesis 

would offer the user the ability to position and orient the 

prehensor at will within his/her unrestricted workspace, and 

to fully exploit the ‘Mechanical aperture RoM’ anywhere 

within this volume. The methods introduced here provide an 

objective approach to evaluating how far a given design is 

from this ideal.  

Participants encountered major restrictions to both their 

reachable workspace and their ability to fully exploit the 

‘Mechanical aperture RoM’ with their arm in different 

postures throughout the workspace. This is perhaps 

unsurprising and already recognized as an issue by clinicians 

who recommend a few different approaches to setting the 

cable length [5]-[7]. It is worth noting that the setup 

procedure used in this study (which was non-standard due to 

pilot work highlighting the infeasibility of employing 

standard approaches) resulted in a longer cable setups than 

the traditional approaches, and as such, these traditional 

approaches could result in an even greater reduction in 

reachable workspace and a greater number of positions where 

the user achieves <=50% of the full ‘Mechanical aperture 

RoM’. These methods could be used to objectively evaluate 

alternative setups. 

This proof-of-concept study offered a novel approach to the 

quantification of a body-powered prosthesis user’s reachable 

workspace and their ability to exploit the ‘mechanical 

aperture RoM’ of the prehensor within that workspace. To 

interpret the results of our study and similar future studies 

there is a need to better understand the implications of a 

reduced reachable workspace and aperture control limitations 

for the user’s daily life. The emerging field of real-world 

monitoring of prosthesis use [8], [9] may offer useful 

approaches which could be exploited here. 
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ABSTRACT 

We propose action control, a novel approach for myoelectric independent digit control based on multi-label 

classification. At each time step, the decoder classifies movement for each controllable degree-of-freedom (DOF) into 

one of three categories: open, close or stall (i.e., no movement). The user employs continuous feedback information 

to estimate and minimise the mismatch between target and current digit positions. We implemented the proposed 

action controller and evaluated its real-time performance with 3 transradial amputee—two bilateral, one unilateral—, 

whilst they controlled a six-dimensional computer interface with surface electromyography (EMG) signals. We 

benchmarked the performance of the algorithm against the state-of-the-art in myoelectric digit control, that is, position 

control using multi-output regression. We found that action control consistently and substantially outperformed 

position control. Furthermore, all participants rated action higher than position control in a series of questions in a 

post-experimental survey and expressed and overall preference for the former. The proposed algorithm warrants 

further investigation in the future by transferring the control space from a computer display onto a real prosthesis and 

evaluating performance during activities of daily living.  

INTRODUCTION 

The holy grail of upper-limb myoelectric prostheses is individual control of digits in a continuous space [1]. 

Several teams have previously attempted to use regression algorithms to map electromyography (EMG) features onto 

digit positions/velocities offline [2-5]. Only a few studies, however, have demonstrated real-time digit position control 

in amputees [6-8]. Furthermore, the feasibility of using this paradigm to enable the user to perform object manipulation 

and activities of daily living in an unconstrained environment yet remains to be demonstrated.  

We propose action control, a novel approach for individual digit control with EMG signals. In the heart of the 

control algorithm lies a multi-label classifier, which decodes movement intent for each controllable degree-of-freedom 

(DOF) into one of three classes: open, close or stall (i.e., no movement). We implement our proposed algorithm in 

real-time and evaluate its performance with three transradial (i.e., below-elbow) amputee participants using a six-

dimensional control interface. We show that action control can systematically and substantially outperform the state-

of-the-art for myoelectric digit control, which is based on position control via multi-output regression. 

METHODS 

Participant recruitment 

We recruited three transradial amputee volunteers. Two of the participants had bilateral and one had unilateral 

amputation. Participant 2 performed two experimental sessions with alternate sides, thus the total number of sessions 

was 𝑛 = 4. Experimental procedures were in accordance with the Declaration of Helsinki and approved by the local 

ethics committee at Newcastle University. Participants gave written informed consent prior to the experiments.  

EMG recording system 

We recorded surface EMG activity with 16 Delsys® Trigno™ sensors placed around the forearm in two rows of 

eight equidistant electrodes. Prior to sensor placement, we cleansed participants’ skin using 70% isopropyl alcohol 

swabs. We visually inspected the quality of all EMG channels and used adhesive tape to secure sensor positions. The 

EMG sampling rate was fixed at 2 kHz.  
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Signal pre-processing and feature extraction 

We processed EMG data using a sliding window with overlap. The length of the window was set to 128 ms and 

the overlap to 50%. Two features were extracted from each EMG channel, namely, waveform length and log-variance. 

Prosthetic hand 

We used the Robo-limb™ hand to demonstrate target postures to participants. The hand is similar to the Össur®           

i-Limb® Ultra hand and comprises six motors controlling thumb rotation and flexion/extension of all digits. The hand 

was powered by an external power supply unit (7.4 V/7 A) and operated by a laptop computer via a CAN bus 

connection.  

Training data collection 

We instructed participants to perform imaginary movements with their phantom limb, which were instructed on 

the prosthesis. The following single-digit and grip exercises were included: thumb opposition/reposition; thumb, 

index, middle, ring and little finger flexion/extension; cylindrical and lateral grip opening/closing. Participants 

performed 12 repetitions for each exercise and myoelectric data were recorded and stored on disk. 

Control schemes and decoder training 

During the interval between training data collection and real-time control, two types of decoders were trained: 1) 

a multi-output regression mapping EMG features onto digit positions (position control); and 2) a multi-label classifier 

decoding EMG features onto one of three classes: open, close or stall (i.e., no movement) (action control). In both 

cases, the target vector was six-dimensional, that is, the number of controllable DOFs.  

Real-time control task 

Participants were instructed to use their muscles to control a six-dimensional bar interface on a computer display. 

Prior to the start of the trial, the target posture was demonstrated on the prosthesis. Upon completion, a cue sound 

initiated the start of the preparation phase of the trial and six pairs of bars appeared on the screen. For each DOF, a 

fixed red bar indicated the target position and a blue bar showed the position that was controlled by the participant. 

Participants were given 5 s to match the blue bars to the red ones as closely as possible. A second cue sound initiated 

the start of the evaluation phase of the trial, which lasted for 1 s. Ten target postures were included, which comprised 

both single-digit and full-hand grip patterns: thumb opposition; thumb, index, middle, ring and little finger flexion; 

cylindrical, lateral and tripod grips; and index pointer. Note that not all exercises were included in the training set. 

Participants performed 10 blocks of trials for each control condition. Every target posture was included exactly once 

within each block in a pseudo-randomised order. 

Evaluation 

At the end of each trial, participants received a score characterising their performance during the evaluation part 

of the trial. The score was based on the median absolute error between the target and controlled positions and was 

normalised between 0% and 100%.   

Post-experimental questionnaire 

At the end of the experimental session, participants were asked to rate the two control schemes, namely, position 

and action control, based on the following three questions: 1) the interface was easy; 2) the interface was intuitive; 3) 

I found it easy to adapt to the interface. Ratings ranged from 1 (strongly disagree) to 5 (strongly agree) and half scores 

(e.g., 3.5) were also allowed. Participants were finally asked to indicate their overall preference. Participant 2 answered 

the questionnaire twice, once after each session, and respective scores were averaged. 

Statistical analysis 

For each participant, the target presentation order was the same for the two conditions (i.e., paired measurements). 

To compare performance between the two algorithms, we used two-sided Wilcoxon signed-rank tests with Holm-

Bonferroni correction to account for multiple comparisons. The condition order was counter-balanced across 

participants. 
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RESULTS 

The performance results from the real-time control experiment are presented in Figure 1. The scores achieved by 

each participant with the two conditions (i.e., position and action control) are summarised using box plots. For all four 

sessions, action control (i.e., multi-label classification) significantly outperformed position control (i.e., multi-output 

regression). The differences in median performance were as follows: P1, 𝑀𝐷 = 20.14, 𝑝 < 10−2; P2R, 𝑀𝐷 = 52.63, 

𝑝 < 10−13; P2L, 𝑀𝐷 = 47.23, 𝑝 < 10−10; P3, 𝑀𝐷 = 62.32, 𝑝 < 10−13. 

The outcomes of the post-experimental questionnaire are presented in Table 1. All participants rated action higher 

than position control in all three questions. Furthermore, all three participants expressed an overall preference for 

action control. 

DISCUSSION 

We have introduced a novel paradigm for myoelectric digit control. At each time step, the algorithm decodes 

movement for each controllable DOF in one of three categories: open, close or stall. To reach a desired position, the 

user has to utilise the available feedback information—in our experiment visual from the computer display—to 

estimate the mismatch (i.e., error) between the target and current position(s) and take appropriate action(s) to minimise 

it. The controller can be viewed as an extreme, discretised case of velocity control; the velocity has a fixed value and 

is, thus, only parametrised by its direction. Using this approach, we can employ a multi-label classifier as the decoder, 

rather than a multi-output regression algorithm. One caveat of regression-based approaches is that noise in the input 

 

Figure 1: Performance comparison between position (i.e., multi-output regression) and action (i.e., multi-label 

classification) control. The performance score characterised the match between target and controlled positions 

during the evaluation phase of the trial. Higher values indicate better performance.  Solid lines, medians; solid 

boxes, interquartile ranges; whiskers, overall ranges of non-outlier data; diamonds, outliers; double asterisk, 𝑝 <
0.01; triple asterisk, 𝑝 < 0.001. 

 

 Table 1: Post-experimental questionnaire 

Range: 1 (strongly disagree) to 5 (strongly agree); PC, position control; AC, action control 

Participant 

Question 

Interface was easy 
Interface was 

intuitive 

I found it easy to 

adapt to the interface Overall 

preference 
PC AC PC AC PC AC 

P1 2 4 1 4 3 5 AC 

P2 2 3.5 3 4 2.5 3.5 AC 

P3 3 4.5 2 4.5 2 4 AC 
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(i.e., EMG) space is propagated to the output, hence resulting in unstable control. To address this issue, it is common 

to smooth the output using a low-pass filter. Nevertheless, a large amount of smoothing is typically required to achieve 

a satisfactory outcome, which translates into a noticeable control delay. Classification, on the other hand, does not 

suffer from this limitation due to its discrete nature. Thus, by replacing the regression algorithm by a classifier we can 

achieve more stable digit control. Action control has an additional advantage. As opposed to position control, whereby 

a user has to hold a muscle contraction to retain a specific posture, with action control the user can completely relax 

once the target posture has been reached. This can result in more effortless control for the user. 

We have previously shown that position and action control can yield comparable performance in a robotic hand 

tele-operation task with a data glove [9]. Here, we have provided a real-time myoelectric implementation of the two 

algorithms and have shown that action control can systematically outperform position control, which is considered as 

the state-of-the-art for prosthetic digit control. Moreover, all participants rated action higher than position control in a 

series of questions and expressed an overall preference for the former. As a future direction, we will compare the 

performance of the two algorithms using additional metrics. Finally, we will further evaluate action control by 

transferring the control space from a computer interface onto a real prosthesis. 

 

CONCLUSION 

We have proposed and evaluated a novel paradigm for myoelectric individual digit control based on multi-label 

classification. We have shown that it can systematically outperform the state-of-the-art position control approach 

based on multi-output regression. In the future, we shall further validate the algorithm by transferring the control space 

from a computer interface onto a real prosthesis.  
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ABSTRACT 

To restore limb functionality, control of a prosthetic hand 

should ideally be (I) proportional, i.e. produce speeds which 

varies in conjunction with changes in the latent intensity of 

muscle contractions, and (II) simultaneous, i.e. allow for both 

combined and independent steering of relevant kinematic 

degrees of freedom (DoFs). These desiderata are not 

straightforwardly attainable with classificatory pattern 

recognition applied to surface electromyography (sEMG), 

which only allows for the detection of a finite set of 

categorically encoded gestures. To alleviate such limitations, 

we here introduce a related approach for myocontrol which 

maps sEMG envelopes directly to multiple, continuously 

encoded DoFs, providing proportionality and simultaneity 

implicitly. The proposed method, termed myoelectric 

representation learning (MRL), is constituted by a deep 

learning topology and a domain-informed model training 

scheme. As with conventional pattern recognition, MRL 

operates on sEMG exclusively and is calibrated without 

ground truth limb kinetics, allowing for deployment with 

amputee users. We demonstrate the practical viability of 

MRL by implementing a virtual control interface driven by a 

setup consisting of 8 surface electrodes and capable of 

decoding 2 kinematic DoFs in real-time. Experiments with 10 

healthy subjects, in which the interface was used to conduct 

tests yielding 5 numeric performance metrics, were 

performed to quantify the quality of myoelectric control 

afforded by MRL. Comparisons with the performance 

obtained from of a Linear Discriminant Analysis benchmark 

method on an identical test revealed that MRL outperforms 

the former in all computed measures of control efficacy. 

INTRODUCTION 

Pattern recognition applied to surface electromyography 

(sEMG) has for a time been considered a key component in 

the endeavour to make intuitively controlled, multiarticulate 

upper limb prostheses available to transradial amputees [1].  

Despite countless reports of successful application of several 

variations of the technology in lab environments, widespread 

clinical adoption remains elusive [2]. Due to the notable level 

of reliability and stability required for practical viability, the 

few commercial implementations existing currently [3] make 

use of linear classification algorithms applied to a robust set 

of handcrafted signal features [4]. Within this gesture 

detection framework, speed of motion is typically modulated 

separately from classification by use of the mean average 

value of sEMG aggregated across all available channels [5]. 

Albeit functional and robust, this type of approach does not 

allow for true simultaneity, here defined as the ability to 

separately control multiple kinematic degrees of freedom 

(DoF) with mutually independent speeds. 

This paper introduces an alternative method for intuitive, 

proportional, and simultaneous myoelectric control which 

functions via supervised machine learning and is constituted 

by (I) a computationally lightweight artificial neural network 

(ANN) and (II) an appertaining calibration strategy. Due to 

its reliance on kinematically influenced signal representations 

arising throughout the ANN model during use, the method is 

termed Myoelectric Representation Learning (MRL). 

METHODS 

10 able-bodied subjects (age range 26-49 years, 5 male 

and 5 female) participated in the current study, which 

consisted of two phases: acquisition of calibration data 

followed by evaluation of myocontrol efficacy. The study 

was approved by the Regional Ethical Review Board in Lund, 

Sweden and all subjects gave their written consent. Data 

acquisition and processing were performed with custom code 

written for and executed in Python 3.6. All hyperparameters 

were selected ad-hoc prior to the start of experiments via 

empirical work on subjects not part of the current study 

Data Acquisition 

sEMG signals were acquired with a Myo armband 

(Thalmic labs, Canada) consisting of 8 equiangularly spaced 

dry surface electrodes. At the start of each experiment 

session, the armband was placed enclosing the dominant 

forearm of the subject at a level approximately 1/3 of the 

distance from the humeroradial joint to the radiocarpal joint. 

sEMG signals were sampled at a rate of 200 Hz and were 

transferred at identical rate to a host desktop computer (on 

which all signal processing was performed) in real-time via 

Bluetooth. The subject was seated comfortably in a chair, 

approximately 1 m from the computer screen, with elbow 

resting on a table; the angle and position of the elbow could 

be varied freely by the subject at all times. 

83

MEC20



 

 2  
 

Table 1. The recorded calibration movements and their 

corresponding categorical target encodings.  

Movement 

Class 
Description 

Ternary 

Encoding 𝒚 

0 Rest [0, 0] 

1 Wrist flexion [-1, 0] 

2 Wrist extension [1, 0] 

3 Flexion of the digits [0, -1] 

4 Extension of the digits [0, 1] 

5 Wrist flexion and Flexion 

of the digits 

[-1, -1] 

6 Wrist flexion and 

extension of the digits 

[-1, 1] 

7 Wrist extension and 

flexion of the digits 

[1, -1] 

8 Wrist extension and 

extension of the digits 

[1, 1] 

 

The current study entailed the decoding of two DoFs: (I) 

wrist flexion/extension and (II) flexion/extension of all digits 

simultaneously. Movement instruction stimuli were encoded 

with a ternary scheme, where each DoF could assume the 

values -1 (DoF active in one direction), 0 (DoF inactive), or 

1 (DoF active in the opposite direction). All of the resulting 

32=9 combinations possible in this framework (shown in table 

1) were recorded. Prior to calibration data acquisition, 

subjects were instructed to perform each of the 8 nonrest 

movements classes with maximal voluntary contraction 

(MVC) for 5 seconds. This step served to familiarize the 

subject with the movement combinations under consideration 

and was furthermore used to compute an MVC magnitude 

value specific to each subject and movement by summing the 

mean absolute value over all 8 sEMG channels. 

Calibration data was recorded by an acquisition program 

which prompted the subject to perform all nonrest 

movements for 3 repetitions, each lasting for a duration of 5 

s and separated by 3 s of rest. To aid the subject in applying 

a sustainable and consistent level of contraction across 

movements, the mean absolute value of the sEMG signal, 

summed over all channels of a sliding window of length 0.5 

s, was mapped to the height of a bar shown in real-time on the 

computer screen together with a threshold set to equal 50% 

of the movement-specific MVC magnitude computed earlier; 

subjects were instructed to keep the activity level as close to 

the threshold as possible. Once the program concluded, 

recorded sEMG was, together with the concurrent movement 

instruction stimuli information, saved and subsequently used 

for calibration of two different myoelectric control methods 

(an example of such calibration data is provided in fig. 1). 

 

Figure 1. sEMG calibration data acquired from a single 

subject. (1) Wrist flexion. (2) Wrist extension. (3) Flexion 

of the digits. (4) Extension of the digits (5) Wrist flexion 

and flexion of the digits. (6) Wrist flexion and extension of 

the digits. (7) Wrist extension and flexion of the digits. (8) 

Wrist extension and extension of the digits. 

Myoelectric Representation Learning 

Before being applied for neural network training, the 

previously collected sEMG signals were subject to 

preprocessing in the form of an envelope extraction step 

followed by a nonlinear rescaling step. Envelope extraction 

entailed signal rectification and channel-wise lowpass digital 

filtering with a moving average filter of length 0.5 s (100 

samples), yielding a nonnegative and unbounded signal 

matrix 𝑬𝑢. Nonlinear rescaling entailed channel-wise linear 

rescaling, clipping and lastly transformation by the square 

root operator as is shown in equations 1 and 2 below. 

 𝐸𝑖,𝑡
𝑟  ←  

𝐸𝑖,𝑡
𝑢 − 𝑝𝑖

1%

𝑝𝑖
99% − 𝑝𝑖

1%
 (1) 

 

 𝐸𝑖,𝑡
𝑇𝑟  ←  √𝑚𝑎𝑥(0, 𝑚𝑖𝑛(1, 𝐸𝑖,𝑡

𝑟 )) (2) 

 

𝑝𝑖
1% and 𝑝𝑖

99% were the 1st and 99th percentile level, 

respectively, of the samples of the 𝑖th channel of 𝑬𝑢. These 

preprocessing steps (I) guaranteed that all samples in 𝑬𝑇𝑟 , 

which were to be used for optimization, were constrained to 

the interval [0, 1] and (II) limited the impact of outlier sEMG 

samples on the resulting training data. The square root 

operator was included to bias resolution towards high levels 

of muscle contraction (i.e. 𝐸𝑖,𝑡
𝑟  close to 1). When the system 

later operated in real-time inference mode, input sEMG was 

identically processed using online filtering and the statistics 

𝒑1% and 𝒑99% obtained from the calibration data.
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Figure 2. The regression neural network topology central to the presented approach.  

 

The MRL topology, presented schematically in fig. 2, 

was composed of an encoder subnetwork, shared between the 

DoFs, and two separate decoder subnetworks, each specific 

to a DoF. The encoder network consisted of 5 fully connected 

blocks, each in turn consisting of a fully connected layer [6], 

a leaky ReLU activation [7], and layer normalization[8]. The 

number of output nodes for each encoder block was set to 

128, 64, 32, 16, and 8, respectively, resulting in a code size of 

8. Each decoder network operating on the generated signal 

representation consisted of one fully connected block of the 

same type, utilizing 128 hidden units, terminating in a fully 

connected layer with 1 linear output node, representing the 

inferred level of activity for one of the decodable DoFs. 

Model training was performed via gradient descent with 

batch size of 4096 for 5000 iterations by the Adam algorithm 

[9] with η = 10−4, 𝛽1 = 0.9, 𝛽2 = 0.999. The loss to be 

iteratively minimized was given by equation 3. 

 

 ℒ = ℒ𝑖 + α𝑐ℒ𝑐 (3) 

 

α𝑐 is a hyperparameter, set to equal 10−2. ℒ𝑖 is referred 

to as the inference loss and given in equation 4. 

 

ℒ𝑖 = ‖�̂� − 𝒚‖1 (4) 

 

The regressand �̂� is the 2-element vector containing the 

DoF-wise continuous kinematics inferred by the ANN and 𝒚 

is the ground truth ternary encoding of the movement 

instruction stimuli concurrent with the sEMG envelope 

regressor sample. With ℒ𝑖 minimized, the ANN produces 

output which matches the movement intent of the subject. 

ℒ𝑐 denotes the contractive loss and given in equation 5. 

ℒ𝑐 =
1

2 ∙ 8
∑ ∑ (

𝜕�̂�𝑗

𝜕𝑒𝑖

)

22

𝑗

8

𝑖

 

 

(5) 

The term 
𝜕�̂�𝑗

𝜕𝑒𝑖
 denotes the gradient of the 𝑗th output DoF 

with regards to the 𝑖th channel of the input sEMG envelope. 

With a minimized ℒ𝑐, ANN output will be sensitive to 

variations in the level of latent muscle activity (as proxied by 

the sEMG envelope), i.e. control will be proportional. 

Benchmark Pattern Recognition Control 

To verify the conjectured advantages of MRL, a benchmark 

proportional pattern recognition method for myocontrol 

based on linear discriminant analysis was implemented. All 

implementation details, including feature extraction, 

classifier architecture, and calculation of speed, were selected 

to be identical of those of Method 2 introduced by Scheme et 

al in [5]. The method is in its entirety henceforth referred to 

simply as LDA. 

Quantitative Method Evaluation 

A real-time virtual environment was implemented to 

quantify myocontrol efficacy for both MRL and LDA. To 

counteract confounding effect from acclimation, half of 

subjects were selected to evaluate MRL first whereas the 

other half were selected to evaluate LDA first (determined 

randomly). The output command of the evaluated method 

was mapped to the velocity of a cursor shown on the 

computer screen. Detection of wrist flexion/extension 

translated to cursor movements left/right, and detection of 

flexion/extension of digits translated to cursor movements 

down/up. In the test, subjects were instructed to steer the 

cursor towards a sequence of circular targets, generated at 20 
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Table 2. Summary of real-time performance metrics. 

Name (abbreviation) Description 

Completion rate (CR) The proportion of targets which 

were successfully reached. 

Completion time (CT) The average time elapsed 

between task start and 

completion 

Path Efficiency (PE) The average ratio between the 

straight-line distance from the 

starting point to the target and 

the actual distance traversed. 

Overshoot (O) The average number of 

occurrences wherein the cursor 

leaves the target prior to the end 

of the dwell time 

Throughput (T) The ratio 
𝐼𝐷

𝐶𝑇
 between index of 

difficulty (ID) and completion 

time (CT), averaged across all 

successfully reached targets. 

 

locations spanning all four quadrants with 2 radii, resulting in 

a set of 40 targets each covering either 0.6% or 2.3% of the 

total screen area. The order in which targets were presented 

was determined randomly for each subject. An index of 

difficulty 𝐼𝐷 was computed for each target as in [10]. As in 

earlier work [11], targets were considered successfully 

reached after a dwell time of 0.3 s and considered failed if not 

successfully reached within 20 s. The 5 performance metrics 

introduced by Williams and Kirsch in [10] (summarized in 

table 2) were computed for each subject and control method 

at the end of experiments.  

RESULTS 

Linear regression showed a strong relationship between 

ID and CT (𝑅2 = 0.89) for MRL across all subjects and 

targets. The corresponding value for LDA was computed as 

𝑅2 = 0.81, verifying the eligibility of the Fitts’s law test and 

by extension the validity of the throughput metric. 

Aggregated performance metric summary statistics of both 

MRL and LDA from all subjects are presented in table 3. 

CONCLUSIONS 

The proposed algorithm (MRL) was found to be superior 

to conventional pattern recognition (LDA) in the sense of 

outperforming the latter in all computed measures of real-

time efficacy of control. These results are encouraging, but 

need to be replicated with a larger subject sample size (ideally 

including amputee subjects) as well as have their stability 

over longer time spans be investigated. 

Table 3. Means and standard deviations of metrics. 

Metric MRL LDA 

CR 99.25 ± 1.60 98.00 ± 2.45 

CT 3.68 ± 1.14 5.25 ± 1.43 

PE 55.33 ± 10.83 49.93 ± 7.90 

O 0.53 ± 0.19 0.61 ± 0.26 

T 0.67 ± 0.15 0.51 ± 0.13 

 

The MRL model was successful in extracting kinematics 

pertaining to two separate DoFs, but required calibration data 

of every possible movement combination. For larger numbers 

of DoFs, the number of movement combinations grows 

geometrically, leading to infeasibly long calibration data 

acquisition phases. Notably, this drawback is not unique to 

MRL, but is shared by all contemporary pattern recognition 

frameworks aimed at multiarticulate myocontrol 
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ABSTRACT 

Various control strategies are now available for 

myoelectric devices. The selection of the most appropriate 

strategy for an individual patient and training to improve 

their skills are important components to optimize user 

function with their myoelectric prosthesis. Existing 

myoelectric training software is often limited by not 

providing enough features to allow prosthesis users to try 

the multiple options for prosthetic hands, wrists, and elbows 

and the various control strategies used to modulate or switch 

between them. To address this gap, we developed an open-

source training software for clinical and research 

applications called brachI/Oplexus that aims to provide a 

wider breadth of options and also be easy to use by non-

technical users. The software supports several input devices 

(EMG systems), output devices (robotic arms), and methods 

for mapping between them (conventional and machine 

learning controllers). A comparison was performed between 

brachI/Oplexus and two commercial myoelectric software 

programs. Results from the testing showed that 

brachI/Oplexus had similar or slightly improved EMG 

signal separation and delay when compared to the 

commercial software. Several research labs and hospitals 

are already using this software, and by releasing it open 

source, we hope to lower the barrier of entry and encourage 

other clinicians and researchers to explore this area. 

INTRODUCTION 

Training prior to provision of a definitive device plays 

an important role during the fitting process for an upper 

limb myoelectric prosthesis. Not only does it allow a person 

with amputation to improve their skills at using the 

technology, but it allows them try various options for 

prosthetic devices and control strategies. One of the main 

limitations of the existing training systems is that they 

typically only allow for training of a single prosthetic device 

with a limited set of mapping options [1]. To allow a person 

with amputation to try the full breadth of devices and 

mapping options, it is necessary to borrow training systems 

from multiple manufacturers, which can be time consuming 

and logistically difficult. In order to solve this issue, we 

previously developed our own custom training system, 

called the Myoelectric Training Tool (MTT) [2], which 

included an electromyography (EMG) acquisition system, 

control software, and a desktop robotic arm with 5 degrees 

of freedom (DoFs) including shoulder rotation, elbow 

flexion/extension, wrist rotation, wrist flexion/extension, 

and hand open/close. This system has been successfully 

used for research at the University of Alberta since 2011 

and for clinical training at the Glenrose Rehabilitation 

Hospital since 2015.  

An upgraded version of the robotic arm, called the 

Bento Arm, was developed in 2013 [3,4] with stronger 

servos that included integrated sensors for measuring 

position, velocity, temperature, voltage and load. The Bento 

Arm also was designed to have a more anatomical 

appearance and could be mounted to a desktop stand or 

worn as a prosthesis by attaching it to a socket. In 2017, we 

released a compatible sensorized, multi-articulated hand, 

called the HANDi Hand [5,6] which included flexion of all 

digits as well as thumb rotation. Initial studies employing 

these devices used software based out of Robot Operating 

system (ROS) or MATLAB’s Simulink Realtime (SLRT) 

Operating System. While these software platforms worked 

well in a research environment we found they were difficult 

to translate into clinical environments, as they could take 

several hours to install on new computers and were not easy 

to operate by researchers or clinicians coming from non-

technical backgrounds.  

In order to improve the accessibility of our software 

and its applicability to both clinical and research 

environments, we developed a new version based on lessons 

learned from our prior research and clinical deployments. 

The main objectives of the new software were that it be easy 

to install and use, and allow for mapping between a wide 

array of input devices and robots. We also decided to make 

the software open source, to facilitate use by other research 

groups and hospitals. 

Taking inspiration from the anatomical term ‘brachial 

plexus’, which is the main network of nerves that connects 

the brain and spinal cord to the arm, we named the software 

brachI/Oplexus (pronounced “brak-I-O-PLEX-us”), with the 

goal of providing an improved digital nerve center for 

connecting input devices to robotic arms. 
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Figure 1: A high level software diagram showing how brachI/Oplexus takes in signals from input devices or external 

machine learning software and then maps them to joint positions or velocities on robotic devices.  

SOFTWARE DESIGN 

The main specifications and features of the 

brachI/Oplexus software are summarized in Figure 1.  Initial 

requirements were determined by gathering feedback from 

clinical stakeholders, including clinicians, researchers, and 

persons with amputation. As part of this process, the 

developers of the software also gained valuable insight into 

possible improvements by directly observing over 50 

myoelectric training sessions with clinicians and patients 

with amputation. 

The development environment was selected based on 

criteria including timing performance, ease of use for both 

programmers and non-programmers, availability of 

libraries/interfaces, compatibility with existing 

software/hardware, and cost. Visual Studio 2015 Express 

using the C# language was chosen as it is free to use by 

researchers, students, and hobbyists and provides advanced 

tools for building graphical user interfaces and easy to use 

installer packages. Using the installer package combined 

with automatic driver installations from Windows Update, 

the entire software can be installed on a new computer and 

operational in less than 20 minutes. Initial performance 

testing in C# showed that we could achieve the desired step 

times of 200 Hz or faster for acquiring sensor data and 

sending motor commands to the Bento Arm. 

 To make brachI/Oplexus more accessible to external 

users, we released it open-source under a General Public 

License (GPL) v3 license, which allows the software to be 

freely used for both commercial and non-commercial 

purposes. As part of the open-source release, we developed 

extensive documentation explaining how to install and 

operate the software [7]. 

One of the key features of the software is the ability to 

control up to 6 DoFs simultaneously. This is especially 

useful when evaluating whether persons with transhumeral 

amputation are able to operate a multifunctional prosthesis. 

Additional DoFs that are not being evaluated for possible 

use in the definitive prosthesis, but that are useful for 

completing an engaging training task (i.e. shoulder rotation), 

can be controlled by the intact hand with the Xbox 

controller/keyboard or automated by the clinician.  

Another key feature is the ability to flexibly adjust the 

mapping while the software is running without having to 

recompile the code or change settings in configuration files. 

All the required controls for selecting an input device, 

output device, and mapping algorithm are available through 

the graphical user interface as seen in Figure 2. Any 

combination of input device signals can be used to create 

multi-device mappings, and the signal settings including the 

minimum and maximum thresholds and gains are 

adjustable. The joint limits of the Bento Arm, including 

joint positions, velocities, and load can also be modified. 

These adjustments can be used to create movement 

envelopes to adjust the difficulty of tasks, and to improve 

the safety of the robot by limiting the torque and movement 

when in the same workspace as the operator (i.e. when the 

devices are being worn as prostheses). All of these settings 

are saveable as profiles, so that they can be easily reloaded 

at a later time. We find this feature is useful when seeing 

patients over multiple sessions in order to track their EMG 

settings and provide starting points for future sessions. 
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Figure 2: A screenshot of the mapping tab in brachI/Oplexus showing the adjustable settings for the 1st Degree of Freedom. 

A data logging module was designed that can be used to 

log time series data from the input signals or feedback from 

the robots to a text file. In addition to specifying which 

signals to log, the sample rate can also be set to as fast as 

200 Hz or as slow as desired. The data logging functionality 

can be used as part of research studies to record study 

variables and also as part of clinical training for logging 

training metrics. 

The supported input devices are listed in Figure 1. 

Whenever possible existing open-source developer kits, 

libraries, and interfaces were used to connect to external 

hardware. The Microsoft Xbox controller and keyboard 

input devices are typically used for testing and 

demonstration purposes or as mentioned previously when 

controlling DoFs that are not yet available on commercial 

prostheses. Two different wireless armbands with EMG 

capabilities are supported including Thalmic Lab’s Myo 

Armband (now discontinued, but still widely used) and 

Oymotion’s gForce Pro Armband. We have found these 

armbands useful for demonstration purposes or for use with 

persons with transradial amputations. The Simulink 

Realtime interface (SLRT) is used to acquire signals from a 

Bagnoli-8 EMG Acquisition system with DE 3.1 electrodes 

(Delsys, Inc.) via a PCI 6259 data acquisition card (National 

Instruments, Inc.). The Arduino module is used to acquire 

signals from Myobock 13E200 electrodes (Ottobock, Inc.) 

via a custom designed wireless and battery-operated 

Arduino board. Both the SLRT and Arduino modules also 

allow for external buttons, FSRs, and EMG systems to be 

connected to the software. The UDP and TCP/IP network 

interfaces allow for external software to drive the arm. This 

is most commonly used for controlling the arm using 

machine learning software such as Adaptive Switching [8], 

BioPatRec [9], COAPT GEN1 (COAPT, LLC), IBT 

Research Kit (Infinite Biomedical, LLC), and Neuromotus 

(Integrum, Inc.). Several packet structures have been pre-

designed to facilitate developing communication modules 

between brachI/Oplexus and new software. Another benefit 

of these network modules is that they can also communicate 

with Linux or macOS based operating systems. 

The supported output devices include the Bento Arm 

and HANDi Hand which can be used together or separately 

in the software. For the Bento Arm, we communicate with 

the sensorized Dynamixels servos using the Dynamixel 

SDK, and for the HANDi Hand, we use an Arduino Mega to 

control its RC servos. There is also an option to directly 

control commercial myoelectric prehensors via the analog 

output on the Arduino or SLRT computer. 

Several different mapping algorithms have been 

developed for brachI/Oplexus based on common control 

strategies available in commercial myoelectric software. 

Thus far, we have implemented control strategies for first to 

smin (also known as first pass the post), differential (also 

known as greatest signal wins), and single site-2 (voluntary 

open/automatic close). These are meant to serve not only as 

possible options for clinicians/patients using the software 

for clinical training, but also in research studies to provide a 

baseline to compare conventional controllers to machine 

learning controllers. 

Also included in the software is a sequential switching 

module that allows for switching between up to 5 DoFs on 

the Bento Arm using a single pair of input signals. The 

switching can be triggered by exceeding a threshold with a 

dedicated signal or by co-contracting two signals together 

within a specified time frame. Several different feedback 

options are available to indicate to the user when they have 

switched and what DoFs they have switched to including 

visual, auditory, and vibratory feedback. 

SOFTWARE COMPARISON RESULTS 

We compared the signal processing and mapping 

algorithms in brachI/Oplexus to two commercial software 

programs. The comparison software included biosim 

v2.11.0.38 used with the i-Limb ultra revolution hand 

(Ossur, Inc.), and bebalance Version 3.5c used with the 

bebionic hand (Ottobock, Inc.). This study was approved by 

the Research Ethics Board of the University of Alberta 

(Pro00077893). 
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Table 1: EMG ratios and delays. 

 

Flexion 
agonist-to-
antagonist 

Extension 
agonist-to-
antagonist Delay (ms) 

biosim + i-Limb + 
Myobock electrodes  

4.0 ± 0.9 4.9 ± 1.4 151.7 ± 22.8 

bebalance + 
bebionic + Myobock 
electrodes  

3.2 ± 1.0 4.0 ± 0.6 150.1 ± 31.2 

brachI/Oplexus + 
Bento Arm + Delsys 
Bagnoli electrodes  

10.7 ± 5.9 12.8 ± 4.8 71.7 ± 13.2 

brachI/Oplexus + 
Bento Arm + Myo 
Armband 

6.3 ± 1.6 3.9 ± 0.6 142.6 ± 21.0 

 

To compare the EMG performance across software, the 

rectified and averaged signals of 10 wrist flexion 

movements and 10 wrist extension movements were 

recorded from an able-bodied participant for each condition 

as specified in Table 1. The agonist-to-antagonist ratios 

were calculated for each of these movements, and average 

ratios and respective standard deviations are shown in Table 

1. Larger agonist-antagonist ratios were observed with 

brachI/Oplexus with the Delsys Bagnoli electrodes, 

indicating that the signal separation might be a bit higher 

compared to the commercial myoelectric software.  

To compare the delays observed with brachI/Oplexus to 

those observed with commercial devices, an iPhone 11 high 

speed camera (240 fps) was used to identify the time 

between when wrist extension was initiated and when the 

respective robotic hand began to open, for 10 repetitions. 

The average delays and respective standard deviations are 

shown in Table 1. The Bento Arm with brachI/Oplexus 

generally exhibited smaller delays than the i-Limb and 

bebionic hands, especially when paired with the Delsys 

Bagnoli electrodes. 

Although there were some differences between 

brachI/Oplexus and the commercial software, in practise all 

of the systems behaved in a similar manner. If required, 

brachI/Oplexus also has the flexibility to mimic the 

commercial systems even more closely by adding a small 

delay to the motor commands or by using the Myobock 

electrodes with the Arduino module instead of the 

alternative EMG systems.  

FUTURE WORK & CONCLUSIONS 

Thus far, brachI/Oplexus has been used by 3 university 

research labs and 2 rehabilitation hospitals with other 

deployments ongoing. In the future we would like to add 

more input devices and output devices to the software to 

further improve its capabilities, so that it can be useful to 

even more clinicians or researchers. For example, we are in 

the process of creating a virtual reality version of the Bento 

Arm that would allow for training or research to take place 

in situations where it may not be practical to deploy 

physical robots (i.e. take-home training). 

In conclusion, brachI/Oplexus is a fully functional 

myoelectric software with support for many different kinds 

of input devices, conventional and machine learning based 

controllers, and robotic arms. The wide array of features, 

improved accessibility, and dynamic adjustability make it 

well suited for clinical training and assessment as well as 

research applications. 
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ABSTRACT 

Decoding the neurophysiological signal generated by 
voluntary arm movements is one of the major challenges in 
rehabilitation engineering. The most investigated approach 
for hand prosthesis control is the continuous pattern 
recognition of myoelectric signals. However, this is based on 
the assumption that repeated muscular contractions produce 
consistent patterns of steady-state myoelectric signals. 
Notably, it is the initial, transient, phase of such signals that 
was shown to contain a deterministic structure. Here we 
investigated if both wrist and hand intended movements 
could be decoded from the transient phase of the myoelectric 
signal. Twelve healthy individuals performed one of four 
grasps and of five wrist movements simultaneously (20 
combinations). Albeit the performance in recognizing both 
movements simultaneously was poor, the offline data 
analysis showed the feasibility of implementing a sequential 
wrist-hand embedded controller based on the transient phase.  

INTRODUCTION 

Individuals with a below-elbow amputation maintain 
part of the 18 extrinsic muscles that originally served the 
fingers and wrist. The electromyogram (EMG) recorded from 
these muscles can, in theory, be used to control a variety of 
motor functions in upper limb prostheses. Remarkably, the 
clinical state-of-the-art controller is still the two-state 
amplitude modulation controller proposed by Bottomley  
back in the ‘60s, [1]. In this controller, a single pair of 
agonist/antagonist muscles controls the opening and closing 
of the prosthetic hand. However, this scheme cannot 
differentiate between different muscular patterns pertaining 
to different hand movements, and, accordingly, cannot be 
used to control multiple grasps of a dexterous prosthesis 
intuitively. 

An alternative approach is pattern recognition, as first 
proposed by Finley and Wirta in 1967, [2]. This technique is 
based on the premise that amputees can activate repeatable 
and distinct muscular contractions for each class of desired 

motion and that the associated EMG patterns can be identified 
and used to control the prosthesis accordingly. In this 
framework, Englehart and colleagues pioneered the 
development of continuous classifiers [3]–[5] that still 
represent the state of the art. 

Remarkably, the assumption that repeated muscular 
contractions produce repeatable patterns of steady-state 
EMGs is weak. In fact, the steady-state EMG has very little 
temporal structure (it is mostly a random signal) due to the 
active modification of recruitment and firing patterns needed 
to sustain the contraction [6], [7]. For these reasons, time-
averaged, compound statistical properties have to be 
extracted from the EMG signals before classification. To 
further improve the reliability of the latter, low pass filtering 
techniques (e.g. majority voting, velocity ramp or confident-
based rejection) are usually applied to the output of the 
continuous classifiers [4], [8], [9]. 

While investigating the properties of the EMG at the 
onset of muscle contraction (the transient), Hudgins and 
colleagues observed a substantial degree of structure in the 
signals of upper arm muscles [10]. This observable structure 
was reported by others [11], and suggests a consistent orderly 
recruitment of motor units between contractions [7]. In our 
previous work, we exploited the transient EMGs generated 
during hand grasps/gestures (lateral, cylindrical, tri-digital 
grasp and hand open) to identify the intended movements 
using a simple representative classifier (i.e. the SVM). We 
demonstrated that the transients contained predictive 
information about the intended grasp, [12]. In this work, we 
investigated the possibility to extend the proposed method to 
the classification of both hand and wrist movements. We 
evaluated offline the performance of such a system in solving 
different classification problems, assessing its ability to 
operate with sequential or simultaneous wrist-hand 
movements. As the latter was not deemed sufficiently robust, 
the former was ported in a real-time system for a qualitative 
assessment. 
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MATERIAL AND METHODS 

Twelve healthy subjects (age 26 ± 2.63 years old, 7 
males, 10 right-handed) took part in the experiments after 
giving their informed consent. 

Subject were asked to sit on a chair with the elbow flexed 
at 90 degrees on a table to limit the participant’s fatigue 
during the test (Figure 1A). Eight EMG signals were sampled 
at 2 kHz (band-pass filtered at 10-900 Hz) using a signal 
amplifier (EMG-USB2+, OT Bioelettronica, Turin, Italy) and 
eight bipolar self-adhesive electrodes placed around the 
forearm (Figure 1B). In the described position, the subjects 
were asked to simultaneously perform one of the 20 possible 
combinations of two movements, involving: the hand (rest, 
lateral, tri-digital and cylindrical grasps) and the wrist (rest, 
flexion, extension, pronation and supination). 

A custom-made graphical user interface was developed 
to help the subjects during the execution of the trials driving 
the type and timing of requested movements of both hand and 
wrist (Figure 1C). The interface also allowed the participant 
to pause the procedure in the interval between two 
movements to recover from fatigue, if required. Following 
the graphical hints in the interface, the participants were 
asked to: (i) execute a simultaneous movement of hand and 
wrist, (ii) keep the contraction for 3 seconds, (iii) move back 
to the initial resting condition. Three series of the 20 
combinations were performed. Each series included five 
repetitions of each combination, for a total of (3 series × 5 
repetitions × 20 combinations) 300 movements per 
participant. The order of movements was randomized among 
series. 

The EMG signals were processed to extract the mean 
absolute value (MAV) on 100 ms windowed data, by sliding 
the observation window on a single sample basis. The 

obtained signal was then down-sampled at 20 Hz and 
processed to extract the onset of muscle contraction through 
an onset detection algorithm (ODA). The ODA was applied 
to the derivative of the MAV. Specifically, for every class, 
the median peak of each series was calculated. Then, the 
minimum peak across series was set as the threshold. 

In analogy with Kanitz et al. [12], after each detected 
onset, a different number of temporal MAV samples was 
extracted and provided to the classifier in order to establish 
which window length (WL) allowed an optimal trade-off 
between classification accuracy and delay (Figure 2). 
Specifically, WL ranged between 0 and 300 ms in steps of 
50 ms (corresponding to 1,…,7 MAV samples). Using these 
features, a linear SVM classifier was trained and cross-
validated for each subject, splitting the available data in 5 
folds, assigned to each fold based on the order of repetitions 
of each series (leave-one-repetition-out approach). The 
classifier was tested in solving three different problems (P1-
P3) with growing complexity: 

P1. Recognizing grasps or wrist movements separately 
with two dedicated classifiers (four hand and five wrist 
classes). 

P2. Recognizing grasps or wrist movements separately 
with one eight-class classifier. 

P3. Recognizing grasps or wrist movements when 
performed simultaneously (20-class classifier). 

A solution to P1 was searched to test if the results 
obtained in classifying the grasps [12] could be extended to 
wrist movements as well. Solving P2 would enable a 
sequential control of a robotic hand-wrist prosthesis. Finally, 
we also considered the more complex problem of recognizing 
hand and wrist movements performed simultaneously (P3). 

Concerning the porting of the algorithm, an online 
classifier was implemented as suggested in Kanitz et al. [12]. 

RESULTS 

The experimental recordings lasted for around one hour 
per participant, including the setup preparation. Results for all 
the addressed problems showed that the classification 
accuracy increases with WL (Figure 3). This was expected as 
the longer the WL, the more information is available to the 

Figure 1: A) Experimental Setup. Participants were sitting 
in front of a monitor with the elbow flexed at 90 °. 

B) Electrodes were uniformly distributed around the 
proximal part of the forearm. C) The Graphical User 
Interface informed the user on the next simultaneous 

movements to perform. 

 

Figure 2: Transient EMG classifier concept. Once the 
transient detection algorithm (ODA) identifies an onset 

(at tT), the transient window (WL) is recorded and 
classified. 
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classifier. However, WL longer than 150 ms (or four MAV 
samples) improved the performance only slightly. 

In general, the classification accuracy reached a plateau 
around WL = 150 ms. Specifically, the performance did not 
improve significantly (Friedman test) for WL > 150 ms for P1 
and P2, and for WL > 100 ms in the case of P3 (Figure 3). By 
comparing the different tested problems, accuracies for P3 
were generally lower (58.86 % for WL = 300 ms) than those 
obtained for P1 and P2 (93.33 % for WL = 300 ms). 
Considering P2, the inclusion of wrist movements did not 
have a critical impact on the overall performance when 
compared to P1 (93.33 % vs 89.54 %, respectively). 
Specifically, wrist movements and grasps were classified 
with an overall accuracy of 84.68 % and 79.88 % (Table 1), 
respectively. In fact, wrist movements were classified more 
accurately than grasps (Table 1). This held true also for P1 
and P3 (not shown). 

Following the results mentioned above, the optimal 
solution was considered the one from problem P2. Thus, a 
single eight-class classifier was implemented and tested 
online. The outcomes from the online implementation and 
feasibility test are preliminary and qualitative in nature. 
Following a short training, consisting of 15 repetitions for 
each of the eight classes, the participant was able to use the 
online controller (supplementary video S11). 

DISCUSSION 

To summarize, we claim that forearm EMGs patterns at 
the onset of a contraction contain predictive information 
about both upcoming hand and wrist movements. Moreover, 
this information can be used for real-time control of a wrist-
hand prosthesis. 

 
1 https://drive.google.com/open?id=1WC2aWKbbIyQHhGw
mHk0DMj1SfWQ02rIm 

The transient EMG approach uses only the data 
contained in a short window associated to the onset of muscle 
contraction, which is known to contain a deterministic 
structure [10], [11]. The advantage of this approach is that 
classification is only necessary when a transient window is 
detected by the ODA, making the entire system less prone to 
errors. In addition, when errors occur, it is comparatively 
simple for the user to abort the ongoing grasp attempt and 
start anew. Importantly, since the contraction precedes the 
actual movement, the response time of the transient classifier 
is faster than that of a conventional continuous classifier. 

Results from P1 complement the ones from our previous 
work [12] showing that the control strategy based on 
transients maintains very good performance also if applied to 
wrist movements (Figure 3). 

 Table 1: Confusion matrix for the problem 2 for grasps and wrist movements (WL = 200 ms) 

A
ct

u
al

 c
la

ss
 

  Lateral  Pinch Cylindrical Extension Flexion Pronation Supination Rest 

Lateral 142 (79.33%) 10 (5.59%) 17 (9.50%) 3 (1.68%) 0 (0%) 0 (0%) 6 (3.35%) 1 (0.56%) 

Pinch 5 (2.81%) 140 (78.68%) 5 (2.81%) 6 (3.37%) 4 (2.25%) 9 (5.06%) 9 (5.06%) 0 (0%) 

Cylindrical 13 (7.22%) 2 (1.11%) 147 (81.67%) 1 (0.56%) 1 (0.56%) 7 (3.89%) 9 (5.00%) 0 (0%) 

Extension 2 (1.11%) 2 (1.11%) 0 (0%) 150 (83.33%) 0 (0%) 6 (3.33%) 15 (8.33%) 5 (2.78%) 

Flexion  2 (1.11%) 4 (2.22%) 1 (0.56%) 0 (0%) 161 (89.44%) 5 (2.78%) 6 (3.33%) 1 (0.56%) 

Pronation 1 (0.56%) 3 (1.67%) 1 (0.56%) 8 (4.44%) 0 (0%) 146 (81.11%) 18 (10%) 3 (1.68%) 

Supination 5 (2.81%) 1 (0.56%) 1 (0.56%) 5 (2.81%) 2 (1.12%) 11 (6.18%) 151 (84.33%) 2 (1.12%) 

Rest 2 (1.11%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0.56%) 177 (98.33%) 

  Grasps Accuracy: 79.88% Wrist Accuracy: 84.68%  

   Overall Accuracy 84.59% 

    

 

Figure 3: Results for considered problems as a function of 
the window length. The statistical analysis was performed 
with the Friedman test (*:  0.05 ≥ p > 0.01; **: 0.01 ≥ p > 

0.001; ***: 0.001 ≥ p). 
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P3 represented the most challenging case, a 20-class 
classification problem involving simultaneous wrist and hand 
movements. The effort needed to acquire such a complex 
training set and the results obtained do not justify the use of a 
transient-based classifier for simultaneous hand-wrist 
control. The significant reduction in performance observed 
here with respect to P1 and P2 suggests that the information 
contained in the transients does not simply sum up 
constructively when more than a single anatomical district is 
involved in the movement. Several other groups also tried to 
investigate alternative methods for the simultaneous control 
of multiple degrees of freedom (DoF), but failed when the 
number of classes to be recognized increased above three or 
four [13], [14]. 

On the other hand, in P2 we analysed a standard eight-
class classification problem that allows non-simultaneous 
hand-wrist movements. In this case, the performance were 
sufficiently good and only slightly worse than the ones 
obtained in P1. Notably, as analysed from Liu et al. [15], 
grasps and wrist movements are almost independent during 
normal reach-to-grasp tasks. In other words, a grasp is 
executed only after the wrist is already positioned. This 
perspective makes it feasible and natural to control the DoFs 
of a wrist-hand prosthesis in sequential manner. A result of 
these considerations is a reduction of control complexity. 

This work has some limitations: (i) here we performed 
an offline analysis of the designed classifier and a qualitative 
evaluation of the online system (one subject case). It would 
be desirable to better evaluate the latter case, ideally including 
functional tests. (ii) We showed data acquired exclusively 
from healthy participants. An extension to amputee subjects 
is necessary to confirm the clinical usability of the algorithm. 
(iii) P3 would need a very extensive training phase (i.e. 15 
repetitions × 20 classes = 300 trials) that is not compatible 
with a prosthetics application. We mitigated the problem with 
the continuous classifier (i.e. 15 repetitions × 8 classes = 120 
trials), but the training phase is still quite demanding. Thus, 
the training phase part should be optimized to limit the 
number of repetitions needed to train each class. (iv) As a 
preliminary evaluation, we used a single feature: the MAV of 
the EMG. However, it is known that multiple time-domain 
features improve the accuracy of classification [16]. Future 
works will involve the introduction of new features, oriented 
particularly to an embedded real-time application. 

Finally, we generalized the approach from our earlier 
work, extending the number of classes to include wrist 
movements. At the moment, a quantitative assessment of the 
real-time performance of a transient-based EMG controller 
are ongoing with both healthy and amputee subjects. Albeit 
we excluded the possibility to simultaneously control wrist-
hand movements, we argue that a sequential control strategy 
based on the transient phase of the EMG could provide a 
natural and intuitive way to control a prosthetic device. 
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A COMPARISON OF AMPUTEE AND ABLE-BODIED INTER-SUBJECT VARIABILITY IN

MYOELECTRIC CONTROL

Evan Campbell, Jason Chang, Angkoon Phinyomark, and Erik Scheme
Institute of Biomedical Engineering, University of New Brunswick, Canada

Abstract—Despite decades of research and development of pat-
tern recognition approaches, the clinical usability of myoelectric-
controlled prostheses is still limited. One of the main issues is the
high inter-subject variability that necessitates long and frequent
user-specific training. Cross-user models present an opportunity
to improve clinical viability of myoelectric control systems by
leveraging existing data to shorten training.However, due to the
difficulty of obtaining large sets of data from amputee popula-
tions, data from intact-limbed subjects are often supplemented
when building cross-user models; which may not translate well
to clinical usability. In this preliminary study, the differences
between intact-limbed and amputee cross-user electromyography
(EMG) patterns were examined.Previously collected EMG data
from 20 intact-limbed and 10 amputee subjects for different
wrist, finger, and grasping gestures were analysed. Results using
unsupervised clustering showed that amputees were consistently
grouped into a different cluster than intact-limbed subjects and
that additional clustering into more subgroups found larger
differences between amputees than able-bodied subjects. Further-
more, a simple linear classifier was able to discriminate between
able-bodied and amputee subjects using EMG from multiple
gestures with 90% accuracy.These results suggest that using
able-bodied subject data alone may be insufficient to capture
the necessary inter-subject variance when designing cross-user
myoelectric control systems for prosthesis control.

I. INTRODUCTION

Although many applications of myoelectric control have been
proposed in the literature since the 1990s, prosthesis control
may still be considered as the predominant, and only commer-
cial, application [1]. Nevertheless, despite many laboratory-
based advances in pattern recognition-based myoelectric con-
trol (¿90% classification accuracy) [1], myoelectric-controlled
prostheses still make a relatively limited clinical and com-
mercial impact (e.g., only a quarter of patients with upper
extremity amputations chose to use a myoelectric prosthesis
[2]). This may be due to a gap between the academic state-of-
the-art in myoelectric control and industry, which has been ac-
knowledged and highlighted within the academic community
[3]–[5]. One major limitation is high inter-subject variability,
which limits the generalization of findings and necessitates
frequent user-specific training and custom calibration [6], [7].

The main assumption of pattern recognition-based myo-
electric control is that different types of muscle contractions
exhibit distinguishable and repeatable signal patterns. Al-
though distinguishable activation patterns are routinely found
within a single user, there remain large differences between
subjects. Most research studies, therefore, have adopted single-
user (or subject-dependent) classification models, i.e., every
user must train a system before his/her gestures can be
recognized [1]. Few studies have investigated cross-user (or

subject-independent) models and results have shown a marked
decrease from the state-of-the-art (from ¿90% to 40%-60%)
[8], [9]. Moreover, due to difficulties with access to persons
with upper extremity limb deficiencies, most research studies
have developed and investigated pattern recognition-based
myoelectric control systems using intact-limbed subjects. Al-
though relatively consistent algorithmic trends exist between
the intact-limbed and amputee populations, an overall decrease
in performance has typically been reported for the latter [5],
[10].

In order to facilitate the development of cross-user models,
particularly for clinical applications of myoelectric control,
more information about subject-related differences in elec-
tromyography (EMG) patterns is required. The purpose of this
preliminary study was, therefore, to examine the differences
in surface EMG patterns between intact-limbed and amputee
subjects across a large set of hand and finger gestures. Results
are explored using data visualization and cluster analysis
techniques.

II. METHODS

A. EMG Data and Pre-Processing
Surface EMG data used in this study were taken from two

NinaPro (Non-Invasive Adaptive Prosthetics) databases (3 and
7) [11], [12], which include data acquired from 20 intact-
limbed subjects and 10 trans-radial amputated subjects. All
subjects provided informed consent, and secondary consent
was obtained for use of the dataset in this study. Additional
details about the nature of the amputee subject data are shown
in Table 1.

In these data sets, subjects performed a series of motions,
including various individual-finger, hand, wrist, grasping, and
functional movements. Databases 3 and 7 contain 52 and
40 total gestures, respectively, but the 38 common motions
between the two databases were used for the present study.
Each motion lasted 5 s, interrupted by 3-s rest time, and was
repeated six times. Surface EMG data were collected using
twelve Delsys Trigno Wireless electrodes; eight electrodes
were equally spaced around the forearm (at the height of
the radio-humeral joint), two electrodes were placed on the
flexor and extensor digitorum superficialis muscles, and the
remaining two electrodes were placed on the biceps and triceps
brachii muscles. The sampling frequency was set to 2000 Hz.
The data were cleaned of 50 Hz (and its harmonics) power-
line interference using a Hampel filter. Erroneous movement
labels were corrected by applying a generalized likelihood
ratio algorithm [11].
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TABLE I: Clinical characteristics of the amputee subjects (A1 and A2 from NinaPro Database 7 and A3-A10 from NinaPro Database 3). ‘n/a’ denotes data
not available.

Subject Amputated Hand Years Since Amputation Remaining Forearm (%) Cause of Amputation

A1 Right 6 n/a Accident
A2 Right 18 n/a Cancer
A3 Left 6 70 Accident
A4 Right 5 30 Accident
A5 Right & Left 1 40 Accident
A6 Right 7 0 Accident
A7 Right 5 50 Accident
A8 Right 14 90 Accident
A9 Right 2 50 Accident
A10 Right 5 90 Cancer

III. PROCESSING AND EVALUATION

The pre-processed EMG data were segmented for feature
extraction using a window size of 200 ms and an increment of
100 ms. The commonly used Hudgins’ time domain features
[13]; mean absolute value (MAV), waveform length (WL),
zero crossing (ZC), and slope sign change (SSC), were ex-
tracted from each window. A feature vector was then created
from a series of the overlapped windows for further analyses.

Hierarchical cluster analysis (HCA) was used to create a
dendrogram that identified homogeneous myoelectric patterns
across the entire participant group (30 subjects). Briefly, HCA
builds a hierarchical tree by combining a pair of clusters that
leads to the minimum increase in total within-cluster variance
after merging (Ward’s criterion [14]), where the increase
is a weighted squared Euclidean distance between cluster
centers. Subjects in the same group have higher similarity
(on average across 38 gestures, 12 muscles, and 6 repetitions)
than the subjects in the other groups. Clusters in the data
are determined by considering the height (or the distance) of
each link in the cluster tree compared to the heights of the
lower level links in the tree. If a link has a small increase in
the height relative to the links below, it means that there are
less distinct patterns differentiating the subjects joined at that
level. Conversely, if a link height significantly differs from
the links below, it means that there are more distinct patterns
between them. This measure is referred to as the inconsistency
coefficient.

Data visualization using principal component analysis
(PCA), a commonly used feature projection method, was
performed to better understand these complex myoelectric pat-
terns. The main purpose of PCA is to summarize the important
variance information in the data into the first few principal
components (PCs), to facilitate visualization of distance and
relatedness between populations in a reduced dimension. The
identified PCs are linear combinations of the original features
that can be used to express the data in a reduced form.

Finally, classification accuracies were computed using a
linear discriminant analysis (LDA) classifier and a leave-one-
out cross-validation technique to measure the performance
of classification models in discriminating between gestures
and between subjects. For gesture recognition, six clinically
relevant motions were evaluated: wrist flexion, wrist exten-
sion, forearm pronation, forearm supination, power grip, and

pinch grip. Classical within-subject gesture recognition was
performed using leave-one-repetition-out cross-validation. For
subject recognition, overall signal patterns were used (combin-
ing features from all repetitions of motions) in a leave-one-
subject-out cross-validation approach. The goal of this task
was to evaluate whether data could be classified as being from
an able-bodied or amputee subject. This classification task was
also repeated using each individual 200ms window of EMG
data, again in a leave-one-subject-out cross-validation.

IV. RESULTS

To validate previously reported results for intact-limbed and
amputee subjects, the conventional gesture classification per-
formance was computed for each group (Fig. 1). In keeping
with previous findings, classification accuracies for the group
of 20 intact-limbed subjects were significantly higher than the
group 10 amputees (90.54% ± 3.6% > 80.58% ± 9.8%; p <
0.01).

The results of the subject cluster analysis are shown in Fig.
2. It can be seen that the difference between the height of
the links that connect the clusters (amputee and intact-limbed
groups) and the mean height of the two links directly below
is largest. In addition, the differences between the height of
the links decreased as the number of clusters increased, and
a plateau was found after six clusters were created. Thus, in
this study, the two-cluster and the six-cluster solutions were
employed.

When partitioning into two clusters (at the leftmost vertical
dotted line in Fig. 2), Cluster 1 was found to consist purely
of the amputee subjects (A1-A10) and Cluster 2, of purely
intact-limbed subjects (S1-S20). When partitioning into six
clusters (at the rightmost vertical line in Fig. 2), the previous
clusters were retained, but were further subdivided. Cluster 1
was partitioned into 4 subgroups, with 1 subject in Cluster 1A,
4 subjects in Cluster 1B, 1 subject in Cluster 1C, and 4 subjects
in Cluster 1D. The previous Cluster 2 was partitioned into 2
subgroups, with 10 subjects in Cluster 2A and 10 subjects in
Cluster 2B.

Fig. 3 shows the projection of all subjects into PCA space.
Two distinct clusters of patterns can be seen, highlighting
the differences between intact-limbed and amputee subjects.
A classification accuracy of 90% was found when using a
simple LDA classifier to classifier whether the data from
a given subject was able-bodied or amputee based on their
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Fig. 1: Figure 1: Box plot of gesture classification accuracies using an LDA
classifier with Hudgins’ time domain features for amputee and intact-limbed
subjects. * indicates significant difference (p < 0.01).

Fig. 2: Ward’s linkage dendrogram of the hierarchical clustering of the overall
myoelectric patterns representing the two-group and the six-group solutions.
Participant numbers are indicated.

overall signal patterns. Although overall signal patterns were
distinct, no differences were observable between the groups
even when classifying a single frame of EMG as being from
an able-bodied or amputee subject. A mean accuracy of 66%
(min: 46%, max: 78%, chance: 66%) was observed across all
subjects and motions classes.

V. DISCUSSION

The main purpose of this study was to determine whether
myoelectric patterns for intact-limbed and amputee subjects
could be classified into homogeneous subgroups. The HCA
approach was successful in identifying two distinct subgroups
(yielding the highest inconsistency coefficient value: 4.38)
based on overall myoelectric patterns. Although it would be
expected that there are differences between intact-limbed and
amputee subjects, it is quite surprising that an unsupervised
learning algorithm could create two subgroups that discrim-
inate myoelectric patterns of amputees and intact- limbed

Fig. 3: Scatter plot of the first three PCs representing overall myoelectric
patterns for 10 amputees (red dot) and 20 intact-limbed subjects (blue dot).
The first three PCs explained 54% of the total variance.

subjects nearly perfectly (Fig. 2 and 3). From observation
of Fig. 3, it appears as though a non-linear classifier could
achieve 100% classification using only 2-3 PCs. Campbell et
al. [10] investigated the differences between amputees and
intact-limbed subjects using 58 state-of-the-art myoelectric
features and suggested that most features in both time do-
main and frequency domain extract the same information
for both subject groups. However, the migration of several
amputee EMG features was found and can partially explain
the performance degradation in amputee subjects (Fig. 1)
(i.e., less information content is extracted using some EMG
features for amputees). These findings suggest that when
access to amputee populations is limited and able-bodied data
is supplemented, outcomes of investigations on EMG features,
dimensionality reduction, and classification algorithms should
expect performance degradation when translating back to
amputee populations. If a research study would like to develop
a cross-user or subject-independent classification model for
myoelectric-controlled prostheses, EMG data from amputee
subjects is likely necessary given the noticeable difference in
their patterns as compared to their intact-limbed counterparts
(Fig. 1 and 3).

When 3-5 clusters were formed in Fig. 2, one group consist-
ing of all the intact-limbed subjects remained consistent while
the amputee group was partitioned into subgroups. This finding
suggests that inter-subject variability in the amputee popula-
tion is higher than between able-bodied subjects. A higher
standard deviation of the classification accuracies for amputees
(Fig. 1) also supported a higher inter-subject variability in am-
putee population. When the number of clusters was increased
to six (yielding the second highest inconsistency coefficient
value: 3.11), intact-limbed subjects were also divided into
two subgroups. Some interesting characteristics of the six
subgroups of subjects were found. For the two able-bodied
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subgroups, Cluster 2A provided slightly higher feature values
compared to Cluster 2B. Cluster 1A, which contained only
subject A4, provided the highest values for amplitude-based
features (MAV and WL) among all subgroups but provided the
lowest values for the complexity and frequency information-
based features (ZC and SSC). It should be noted that the
variance of feature values for this subject was very high, which
could be due to noise or poor contraction repeatability.

Cluster 1D, which consists of 4 amputee subjects, provided
the lowest values for the amplitude-based features, but the
highest values for the complexity and frequency information-
based features. It should be noted that most subjects in this
group had prior experience in using a myoelectric prosthesis,
suggesting that learning may play a role in cross-user dif-
ferences. Cluster C1 consisted of only subject A3, the only
subject with a left amputated hand and using a cosmetic
prosthesis. Both subjects with an amputation due to cancer,
were clustered together, in Cluster 1B. No meaningful trends
were found for other clinical characteristics such as years
since amputation, the remaining forearm percentage, degree
of phantom limb sensation, and DASH (disability of the arm,
shoulder and hand) score.

Overall, these findings suggest that the adoption of data
from able-bodied subjects for the investigation of EMG fea-
tures, dimensionality reduction, and classification algorithms,
should be done with caution when focused on clinical applica-
tions for amputees. Specifically, even unsupervised clustering
methods identified two distinct groups of subjects: one with
all amputees and the other with all intact-limbed subjects.
Of the subgroups, the amputee subgroup demonstrated much
higher inter-subject variability. These results suggest that EMG
data from amputee subjects is necessary for creating cross-
user myoelectric-controlled prostheses, as their myoelectric
patterns are considerably different than their intact-limbed
counterparts.
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DIFFERENCES IN PERSPECTIVE ON INERTIAL MEASUREMENT UNIT SENSOR

INTEGRATION IN MYOELECTRIC CONTROL

Evan Campbell, Angkoon Phinyomark, and Erik Scheme
Institute of Biomedical Engineering, University of New Brunswick, Canada

ABSTRACT
Recent human computer-interaction (HCI) studies using elec-
tromyography (EMG) and inertial measurement units (IMUs)
for upper-limb gesture recognition have claimed that inertial
measurements alone result in higher classification accuracy
than EMG. In biomedical research such as in prosthesis con-
trol, however, EMG remains the gold standard for providing
gesture specific information, exceeding the performance of
IMUs alone. This study, therefore, presents a preliminary
investigation of these conflicting claims between these con-
verging research fields. Previous claims from both fields were
verified within this study using publicly available datasets.
The conflicting claims were found to stem from differences in
terminology and experimental design. Specifically, HCI studies
were found to exploit positional variation to increase sepa-
ration between similar hand gestures. Conversely, in clinical
applications such as prosthetics, position invariant gestures are
preferred. This work therefore suggests that future studies ex-
plicitly outline experimental approaches to better differentiate
between gesture recognition approaches.

INTRODUCTION
Gesture recognition using electromyography (EMG) pattern

recognition has a long history of use in biomedical and
clinical applications, such as myoelectric control of prosthetic
devices and other assistive or rehabilitative technologies. These
devices leverage residual motor function to enhance qual-
ity of life limited by neurological (stroke [1]) or physical
impairment (amputation [2]). The emerging interest in hand
gesture recognition as a general human-computer interface
(HCI) for consumer applications, such as virtual reality, has
large commercial incentives and has therefore accelerated in
recent years. The use of wrist- or forearm-worn EMG devices
combined with inertial sensors (i.e., accelerometer (ACC),
magnetometer (MAG), or gyroscope (GYR)) have demon-
strated the potential of such gesture recognition interfaces
during offline classification studies [3]. These multi-modal
devices have been validated in both biomedical and general
HCI studies; however, the conditions of gesture elicitation
differ between the two applications.

Biomedical applications of EMG pattern recognition typ-
ically require accurate recognition of physiologically appro-
priate gestures that are robust to variability of daily-living;
simply put, the gestures should be reliably decoded regardless
of limb posture and contraction intensity, among other factors
[4]. Limb posture and contraction intensity variability degrades
the usability of clinical EMG pattern recognition systems

meaningfully, as gesture recognition accuracies were found
to decrease on the order of 13% and 20% for these factors,
respectively, across several studies [5]. Interventions in the
form of training strategies [6], algorithmic solutions [7], or
multi-sensor approaches [8] have lessened this degradation and
led to more reliable use of myoelectric control. Multi-sensor
approaches using EMG and ACC measurements from many
positions have altogether removed degradation caused by static
limb positions in recorded positions by sequential use of a
position-classifier using ACC, followed by a position-specific
EMG classifier for gesture recognition [8]. No application
other than position recognition, however, has been validated
for non-mechanomyographic ACC measurements within clin-
ical EMG pattern recognition studies.

Alternatively, general HCI applications of EMG pattern
recognition desire accurate recognition of distinct gestures;
the gestures in these application are no longer required to be
invariant to daily-living variability and may selectively harness
position variability to become more distinct. Consequently,
inertial sensors have been found to outperform EMG sensors
in terms of gesture recognition accuracy [3], [9]–[11]. For in-
stance, gesture recognition using MAG achieved 93% accuracy
across 40 motion classes, whereas EMG achieved only 65%.
The different interpretation of the application and value of
inertial measurements between biomedical and HCI studies is
a current area of confusion in the field that warrants further
clarification.

This paper aims to highlight the main differences between
biomedical and HCI studies of EMG pattern recognition by
examining the differences between gesture elicitation studies.
Specifically, this study focused on the differences in the
gestures performed and the differences in the use of inertial
information. Differences in gestures are presented through
visualization of signals, whereas the differing use of inertial
information is presented through classification outcomes using
EMG and ACC feature sets.

METHODS
Datasets

Two public datasets were adopted to represent biomedical
and HCI gesture recognition studies; the Fougner [8] and
NinaPro7 [9] datasets, respectively. All subjects provided
informed consent, and secondary consent was obtained for bor-
rowed datasets. The biomedical dataset was collected using 8
bipolar Ag/AgCl electrodes (EMG) and 2 tri-axis accelerome-
ters. Twelve intact-limbed subjects performed 6 motions (wrist
flexion, wrist extension, wrist pronation, wrist supination, hand
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Fig. 1: EMG and ACC measurements (unfiltered) from the biomedical and HCI datasets. The first row contains the EMG elicited during wrist flexion (WF),
wrist pronation (WP), and a turning screw (TS) gesture. The second row contains the accelerometer readings for the same contractions, where the black lines
represent the x, y, and z components of a forearm mounted sensors and the blue lines represent measurements simultaneously taken at the biceps.

close, and pinch grip) and no motion, where each motion was
repeated 10 times in 5 different static limb positions. The HCI
dataset contained 12 bipolar Ag/AgCl electrodes and 12 tri-
axis accelerometers. Twenty intact-limbed subjects performed
40 dynamic gestures (8 finger gestures, 9 wrist gestures, and
23 grasping gestures), where each motion was repeated 6 times
with limb position unspecified. The gestures of the HCI dataset
were segmented into 3 gesture sets: HCI-A, a set matching
the biomedical dataset gestures, HCI-B, a subset containing
8 finger gestures, and HCI-C, a subset containing 23 grasp
gestures. A sample of EMG and ACC signals from both
datasets is given in Fig. 1.

Data preparation
The EMG signals from both datasets were pre-processed

by a 60 Hz or 50 Hz notch filter and 20-450 Hz bandpass
filter to remove power-line interference and motion artefacts,
respectively. The ACC signals were pre-processed using 1 Hz
low-pass filters, to remove accompanying sensor noise from
measurements. Both EMG and ACC signals of all channels
were segmented into overlapping windows using window
length and increment of 200 and 100 ms, respectively.

Features were extracted from each window to create 2 EMG
and 2 ACC feature sets. The EMG feature sets were the Hud-
gins’ time-domain (TD) feature set [12] (mean absolute value,
zero crossings, slope sign change, and waveform length), and
the time domain power spectral descriptors (TDPSD) feature
set [7]. The ACC feature sets were the median feature set
(MED) and root mean square (RMS) feature set.

Classification problems
The four feature sets of all four datasets (biomedical, HCI-

A, HCI-B, and HCI-C) were used in three classification tasks,
where applicable, to validate claims proposed by previous
studies.

1) Multi-gesture position classification: Classifiers were
trained with feature vectors from all gestures with the
class label selected as the position of the gesture. Only
the biomedical dataset was used for this analysis, as the
HCI dataset did not specify any specific limb positions.

2) Within-position gesture classification: Classifiers were
trained with feature vectors from an individual position
with the class label being the associated gesture. This
process was repeated for all positions in the case of
the biomedical dataset and only a single position was
assumed for the HCI dataset.

3) Sequential classification: Classifiers were first trained
following the multi-gesture position classification task,
where feature vectors were used to predict position. Sub-
sequently, the position was used to select the appropriate
position-specific gesture classifier, as was conducted in
the within-position gesture classification task. As the
HCI datasets did not provide labelled positions, they
were excluded from this task.

All classification tasks were performed using within-subject
leave-one-trial-out cross-validation using linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), k-
nearest neighbours (kNN, k=5), and random forest (RF, 10
trees) classifiers. Accuracies are presented as mean + standard
deviation, where the mean accuracy is the mean accuracy
across all subjects and cross-validations, and the standard
deviation is the standard deviation across subjects.

RESULTS
The multi-gesture position recognition results using ACC

MED, ACC RMS, EMG TD, and EMG TDPSD feature sets
are shown in Table I for the biomedical dataset. The within-
position gesture recognition results of the biomedical and HCI
datasets were presented in Table II. The LDA classifier was
found to have the best performance among classifiers for
all datasets in this latter classification task, again justifying
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TABLE I: Multi-gesture position recognition accuracy (mean+std of subjects)
across positions of the biomedical dataset

Classifier ACC EMG
MED RMS TD TDPSD

LDA 99.9+0.3 96.3+5.2 63.0+9.7 62.3+8.0
QDA 99.9+0.1 98.4+1.8 67.8+8.9 66.0+7.6
kNN 100.0+0.0 98.0+2.4 66.8+8.1 54.8+8.4
RF 99.5+0.6 96.3+3.2 66.8+8.4 63.0+8.5

its predominant use in myoelectric control [13]. The EMG
TD feature set was found to be best for the biomedical
dataset whereas ACC MED was found to best for all HCI
datasets. Further inspection of the performance of the EMG
TD feature set with the LDA classifier is provided through
the confusion matrices of the biomedical and HCI-A dataset
in Table III. Conversely, Table III shows a similar confusion
matrix using the best feature set determined for the HCI dataset
(ACC MED). Finally, the results of sequential classification of
gestures from multiple-positions are presented in Table IV.

DISCUSSION
This study corroborates the use of ACC as an accompanying

modality in biomedical/clinical applications to achieve posi-
tional robustness. Table I verifies that accelerometers situated
on the forearm and biceps can be used with confidence to
decode 5 upper-limb positions in the sagittal plane. Despite
encoding similar information from the ACC modality, the
MED feature set consistently encoded positional information
significantly better (p <0.05) than RMS. Table II provides an
upper-limit of accuracy that can be achieved when position
recognition is performed without fault. Use of a sequen-
tial classification framework achieved no statistical difference
between the within-position gesture recognition framework
when using ACC MED to segment position and EMG TD to
recognize gestures. Although the position recognition perfor-
mance of MED was statistically better than RMS, no statistical
improvement is apparent in the gesture recognition accuracy
of the sequential framework using these feature sets to decode

TABLE II: Within-position gesture recognition rates across positions

Dataset Classifier ACC EMG
MED RMS TD TDPSD

Bio

LDA 69.8+4.4 65.8+4.5 96.2+0.7 96.0+0.4
QDA 66.4+4.8 64.3+5.1 95.1+0.8 94.2+0.5
kNN 63.8+5.6 60.8+5.1 94.3+0.9 85.8+1.2
RF 61.2+4.9 59.2+3.3 92.9+0.7 91.6+0.9

HCI-A

LDA 97.1+1.5 96.6+1.9 89.1+3.5 91.1+2.7
QDA 93.8+3.8 89.0+5.5 82.9+5.3 68.4+7.0
kNN 94.2+2.6 94.6+2.4 82.8+4.5 70.1+4.8
RF 92.0+3.8 92.9+2.5 85.4+3.6 82.3+3.8

HCI-B

LDA 94.4+4.0 94.2+4.1 84.7+8.1 87.5+8.6
QDA 88.5+8.5 84.4+8.5 75.0+8.4 53.1+10.4
kNN 87.7+8.8 87.9+8.6 68.3+9.1 50.6+9.2
RF 84.2+6.9 84.4+7.1 78.4+7.0 73.0+8.4

HCI-C

LDA 89.1+4.4 84.5+6.6 66.5+8.5 71.9+8.5
QDA 87.9+8.1 84.1+8.9 60.9+9.6 45.9+8.8
kNN 80.6+9.1 81.7+9.2 52.0+9.8 34.1+7.1
RF 77.9+8.9 78.2+8.9 62.3+8.6 54.2+8.0

position.
This study additionally corroborates the past outcomes

of biomedical and HCI studies, where EMG is best for
biomedical applications and ACC is best for HCI gesture
recognition. Gesture recognition for biomedical applications,
such as prosthesis control, relies on class-separability provided
through EMG features (96.3%). Although ACC features pro-
vide moderate class-separability for the WS (83.9%) and WP
classes (87.2%), they provide only marginal class-separability
for other classes (mean: 55.7%). HCI gesture recognition
results found that ACC features substantially outperformed
EMG features with the same set of gestures (HCI-A), a set of
finger gestures (HCI-B), and a set of grasping gestures (HCI-
C). In contrast to past HCI experiments where 40 gestures are
used together, the use of EMG TDPSD for gesture recognition
with a subset of wrist gestures provided satisfactory accuracy
(91.1%).

Although findings were consistent with past studies, there
remains a disconnect between the use of ACC for the recogni-
tion of gestures between the biomedical and HCI frameworks.
When no positional variance was purposely included (biomed-
ical section of Table II), ACC provided no real gesture-
specific information resulting in low accuracy. The high ges-
ture recognition accuracy achieved using the HCI datasets is
most likely an outcome of stratifying gestures across different
positions to strategically reduce to improve the separability
of the gestures. This use of positional variance can be seen
in Fig. 1, where the HCI dataset shows distinct changes in
ACC signals during contractions that are uncharacteristic of
mechanomyography. This leveraging of positional variance
was inferred in [3], where gestures performed “in the air”
resulted in higher accuracy than gestures performed when in
contact with a surface.

A limitation of this study is the use of static contractions
alone in the biomedical dataset. Past studies have found that
including ramp contractions can reduce the impact of contrac-
tion intensity variability by incorporating more dynamics [14].
It is possible that there may exist repeatable ACC patterns
during the transient segment of such ramp contractions that
could be leveraged as part of future multi-modal myoelectric
control systems.

Ultimately, the consequence of different aims between
biomedical and HCI applications can result in confusion
when interpreting the outcomes of studies from both fields,
especially the when terminology used to describe the gestures
does not indicate the aim of the study. In light of this identified
deficiency, it is suggested that a full review of past studies
be conducted so as to develop a clear taxonomy and set of
terminology that could be adopted by both of these expanding
fields.
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ABSTRACT  

We present progress from an ongoing project which aims to develop a low cost home-use myoelectric training 
system for children. The training system is based on a first person game design within which children control a virtual 
limb and terminal device. Preliminary results indicate that the perceived level of control over the terminal device is 
high. However, designing a system which genuinely motivates and engages children remains a significant challenge. 

INTRODUCTION 

Children born with upper limb differences will typically reject a prosthesis unless it provides significant functional 
gain [1]. In the case of myoelectric prostheses a core factor which limits functional gain is control. The objective of 
this project is to develop a child-friendly game-based myoelectric muscle training system based on the principles of 
biofeedback. The system is designed for home-use and aims to be low cost. The assumption underlying our project is 
that myoelectric control can be implemented separately from a prosthetic device, allowing children to learn control 
before they are fit with a prosthesis. 

It is widely recognised that patients usually fail to meet the number of movement repetitions required for 
behavioural change. Rehabilitation-relevant muscle activities in the context of game-play offer a motivational and 
engaging method to increase the amount of practise performed. Games can provide the challenging, intensive, task-
specific conditions necessary to promote adaptation of behaviour [2]. In our training system players control a virtual 
limb with a simple terminal device. The objective in each level is to manipulate objects using a muscle decoding 
system based on [3]. The system does not attempt to simulate grasp but the avatar has anatomically correct dimensions 
and the game adheres to the principles of task-orientated gaming [4]. 

This work is part of an ongoing collaborative research project to co-design child prosthetics solutions [5]. As 
such, the work is not linear in nature. For the purpose of presentation, methods are split into two sections broadly 
outlining the first and second iterations of development. 

METHODS 

Ethics 

All participants gave informed written consent. Approval was granted by the local ethics committee at Newcastle 
University (Ref: 17-NAZ-056). 

Iteration One 

Children played the game using two devices. The intact-limb controlled character movement in virtual space via 
a single-hand thumb stick. The virtual limb was controlled using a Shimmer3 EMG unit on the residual limb. Inertial 
measurement unit (IMU) data controlled the orientation of the virtual limb. Electromyography signals acquired from 
flexor carpi radialis (FCR) and extensor carpi radialis (ECR) controlled the virtual terminal device. 

The game prototype uses a first person perspective. The core mechanics involve picking up and manipulating 
objects in a scene. Participants progressed through six levels. The first and second tutorial levels introduced EMG, 
IMU and combined EMG and IMU control. The three main levels of the game were themed around teaching a) delicate 
object manipulation, b) directed muscle co-contraction and c) extended manipulation of objects to reach a goal. A 
final optional level introduced a competing non-player character to limit the time available to complete tasks.  

103

MEC20



The system was tested on four children, two of whom had trans-radial limb deficiencies. After playing, children, 
and optionally their parents or guardians, answered a short questionnaire about perceived control and provided open 
feedback on the game in general. Feedback was also solicited from relevant domain experts.  

Iteration Two 

The first iteration of the game environment was built using game engine primitives. The graphics in the second 
version use purchased assets to provide a modern visual aesthetic, shown in Figure 2. Based on expert feedback, the 
game scoring systems and general time limits were updated to create a greater sense of challenge in the tasks. 

The second iteration of the game uses a Delsys Quattro sensor for experimental data acquisition and trials a 
custom microprocessor-based controller for longer-term testing, shown in Figure 2. The microprocessor controller 
uses dry electrodes and performs all the signal processing necessary to send control signals to the virtual game limb. 
All personalised settings are retained on the device and shared with the game on connection. As EMG processing only 
involves linear filters, the controller side-steps sampling issues associated with low-cost EMG systems [6]. 

 

Figure 1: Iteration one. Left: play perspective showing virtual limb and biofeedback panel. Middle: a game 
scene, player (white) competes with non-player character (green) to collect blocks in the environment. Right: 

participant playing the game in a home environment. 

 

Figure 2: Images from iteration two. Left: game scene based on purchased assets. Right: microprocessor 
game controller, signal processing and IMU unit and two dry EMG electrodes. 
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RESULTS 

Iteration One 

Results of the perceived control questionnaire are shown in Table 1. The general rating of control for the player 
avatar, the virtual limb and the virtual terminal device were positive.  

Table 1: Children’s rating of control of game environment character. 

 

 

 

 

 

 

 

In general, the open feedback focussed on proposals for creating more engaging game experiences, with the 
majority of children providing relatively specific recommendations which would make the game better for themselves. 
When probed three out of four children indicated they found the tasks in each level too tedious to consider performing 
repetitively. 

The use of gel-based snap electrodes caused a number of issues during data collection for iteration one, 
particularly when working with younger children. In most cases the time required to place electrodes, especially on 
smaller limbs caused frustration and often raised questions from parents / guardians about real world practicality.   

Iteration Two 

Preliminary tests for iteration two have focussed on comparisons of control systems. Development has aimed to 
obtain a degree of parity between the microprocessor controller and the Shimmer EMG device.  

The two controllers use different EMG sensors, acquisition rates, and desktop PC interfaces, therefore 
comparisons have been made solely on perceived user preference. Tests were run an ad-hoc and informal basis using 
EMG naïve able-bodied adult participants. During tests, participants were aware of the context of the research. 
Participants moved virtual blocks using the game platform developed as part of iteration one and were asked for 
feedback as to which device they preferred. 

Table 2: EMG and IMU preferences when comparing microprocessor and Shimmer controllers. 

 

 

 

 

 

Result of recent tests are shown in Table 2. No participants expressed an EMG control preference. Two of three 
participants expressed a clear preference for using the Shimmer device to control the position of the virtual limb. 

 

 

 

Participant Rating of Control (1 poor to 5 good) 

# Amputee Robot Arm EMG 

1 Y 5 5 4 

2 Y 5 5 4 

3 N 4 4 3 

4 N 5 4 5 

Average 4.75 4.5 4 

Participant Blocks Moved Control Preference 

# Microcontroller Shimmer EMG IMU 

1 8 6 No preference Shimmer 

2 6 8 No preference No preference 

3 5 7 No preference Shimmer 
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DISCUSSION 

While children rated their overall level of control as high, perception of overall potential for engagement was 
subjectively low. This problem is not unique to game-based systems orientated toward children, it likely reflects a 
more general issue inherent to attempting to designing video games for rehabilitation purposes [2]. While the barrier 
of entry to creating games is now low, the skills necessary to design engaging games remain within a small group of 
dedicated professionals catering for larger markets. In the context of game-based rehabilitation for children, these 
problems of motivation and engagement are further compounded by the challenge of ensuring any behavioural 
activities involved are appropriately task orientated [4, 7].  

Recent research questions the assumptions which typically underpin game-based training systems for prosthetics, 
instead proposing that transfer of learning from a virtual task to real world use only occurs when the coupling of action 
and perception is matched between tasks [7]. In the context of learning myocontrol, this places greater importance in 
replicating end-effector behaviour when reaching for, grasping and manipulating objects. How best to provide this 
feedback at a low cost and with relatively low complexity for younger children is unknown. Current age 
recommendations for virtual reality devices err on the side of caution, as such the most appropriate platform for 
simulating perception in adults will not necessarily be available for children in the near future. 

When considering paediatric upper-limb prosthesis rejection rates [1] and the effective age ranges for 
rehabilitative intervention [8] it appears highly unlikely that any one game-based rehabilitation technology would be 
suitable for all children. A more productive approach may therefore focus on enabling the necessary hardware 
platforms to deliver effective child-appropriate game-based rehabilitation. As the overall market size for this type of 
technology remains limited, it may be prudent to consider designing for other appropriate paediatric use cases. 
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ABSTRACT 

The dexterity of conventional myoelectric prostheses is limited in part by the small datasets used to train the 

control algorithms. Variations in surface electrode positioning make it difficult to collect consistent data and to 

estimate motor intent reliably over time. To address these challenges, we developed an inexpensive, easy-to-don sleeve 

that can record robust and repeatable surface electromyography from 32 embedded monopolar electrodes. Embedded 

grommets are used to consistently align the sleeve with natural skin markings (e.g., moles, freckles, scars). The sleeve 

can be manufactured in a few hours for less than $60. Data from seven intact participants show the sleeve provides a 

signal-to-noise ratio of 14, a don-time under 11 seconds, and sub-centimeter precision for electrode placement. 

Furthermore, in a case study with one intact participant, we use the sleeve to demonstrate that neural networks can 

provide simultaneous and proportional control of six degrees of freedom, even 263 days after initial algorithm training. 

We also highlight that consistent recordings, accumulated over time to establish a large dataset, significantly improve 

dexterity. These results suggest that deep learning with a 74-layer neural network can substantially improve the 

dexterity and stability of myoelectric prosthetic control, and that deep-learning techniques can be readily instantiated 

and further validated through inexpensive sleeves/sockets with consistent recording locations. 

INTRODUCTION 

Neural networks have been used to classify hand gestures from surface electromyography (sEMG) with high 

accuracy [1]. However, these improvements have not been realized for kinematic regression, where the network is 

used to control multiple degrees of freedom (DOFs) simultaneously and proportionally. Although neural networks are 

effective at suppressing unintended movement (i.e., reducing cross-talk), their proportional control is noisy, which 

ultimately can make neural networks inferior to Kalman filters in functional tasks [2]. One explanation for this poor 

performance is that the amount of data used to train neural networks in past work was roughly two orders of magnitude 

less than what is traditionally used for deep learning in other domains, and performance is critically dependent on 

large training datasets [3]. 

Gathering large datasets of sEMG synchronized to motor intent is particularly challenging because patient time is 

limited and the placement of recording electrodes changes day to day [4]. Here, we demonstrate a simple approach to 

gather large datasets of sEMG and thus enable deep learning for myoelectric prostheses. We first introduce an 

inexpensive sEMG sleeve that can be repeatedly donned with consistent electrode placement, and then we demonstrate 

how accumulating spatially consistent sEMG over time yields the large datasets necessary for deep learning. The 

results of this case study suggest that deep learning can improve the dexterity and robustness of myoelectric prostheses. 

METHODS 

Sleeve Design and Fabrication 

The sEMG sleeve was constructed from neoprene fabric sewn into a hollow cylindrical shape after electrodes and 

wires were inserted (Fig. 1A). The neoprene can be stretched during donning and doffing, but also provides enough 

structural integrity to maintain consistent placement on the forearm. Brass-coated marine snaps served as inexpensive 

dry electrodes; 32 were embedded across the full circumference and length of the sleeve to record from extrinsic 

flexors and extensors. Two additional electrodes were embedded at the proximal end of the sleeve to be placed along 

the ulna bone and serve as an electrical reference and ground. Each electrode was soldered to a segment of flexible 
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wire with high-strength heat shrink to reduce wire 

breakage. Electrodes were embedded into the 

neoprene using a crimping tool, and loops of wire 

were formed to near each electrode to alleviate strain 

when the fabric is stretched. Wires were stitched onto 

the neoprene and soldered to a 38-pin SAMTEC 

connector. Grommets were inserted into the 

neoprene, unique to one intact individual, such that 

the grommets aligned with natural skin markings 

(e.g., freckles, moles, scars) (Fig. 1B). A loose cover 

made of Lycra® was used to electrically isolate wire 

and house front-end devices for amplification and 

filtering (Fig. 1C). The sleeve can be manufactured in 

a few hours and costs less than $60 (Table 1). 

Signal Acquisition 

Thirty-two monopolar sEMG electrodes were 

sampled at 1 kHz using Micro2+Stim Front-Ends and a 

Grapevine Neural Interface Processor (Ripple Neuro 

LLC). The 300-ms smoothed Mean Absolute Value 

(MAV) on the 32 single-ended electrodes (or 528 

possible differential pairs) was calculated at 30 Hz [5]. 

Signal-to-noise ratio (SNR) was defined as the mean 

300-ms smoothed MAV during movements (see 

Training Datasets below) divided by the mean 300-ms 

smoothed MAV during rest. 

Sleeve Performance 

Seven intact participants were recruited to validate 

the sleeve performance. All experiments were performed with informed consent and under protocols approved by the 

University of Utah Institutional Review Board and the Department of Navy Human Resources Protection Program. 

Each participant donned the sleeve five times, attempting to align the grommets with colored markings on their 

forearms. The times to don and doff the sleeve, as well as the average distance between donned positions, were 

recorded. Participants also completed one training dataset to determine the sEMG SNR.  

Training Datasets 

sEMG and intended movement were recorded simultaneously while participants mimicked the following six 

preprogrammed movements of a virtual prosthetic hand (MSMS [6]): flexion/extension and abduction/adduction of 

D1; flexion/extension of (D2); simultaneous flexion/extension D3, D4 and D5; and flexion/extension and 

pronation/supination of the wrist [5], [7]. Seven intact participants completed one training dataset to determine the 

sEMG SNR. For one intact participant, a total of 20 datasets were collected over time, each requiring the sleeve to be 

donned and doffed. For this participant, each dataset introduced slight variations in the movement speed, movement 

hold-time [2], and forearm posture. 

Neural Network Control Algorithms 

Two neural networks were used in this study. The first was a shallow, 10-layer, neural network with similar input 

and architecture as [2], but with added 50% dropout layers after each rectified linear unit. The second network was a 

deep, 74-layer, residual neural network with similar architecture as [3]. Input at each timepoint consisted of the MAV 

from 32 single-ended electrode recordings over the last 32 time-samples (~1.07 seconds) (Fig. 3A). The bulk of the 

network consists of nine residually connected convolutional units, each of which consisted of two repetitions of a 3x3 

convolutional layer followed by batch normalization, followed by a rectified linear unit (Fig. 3B). The output of both 

neural networks was the kinematic predictions for the six-DOF virtual prosthetic hand. An optional unmodified 

Kalman filter [5] was placed on the end of deep neural network to smooth the kinematic predictions. 

Because tests were performed entirely online, the networks were trained with 97% of the training data, and the 

Table 1: Cost of Materials 

Component Description / Use Cost 

Coated brass marine 

snap fasteners (34) 

Dry recording electrode to record 

surface electromyography 

$8.83 

Round stainless-

steel washer (34) 

Electrode backing to hold 

electrodes into sleeve 

$3.07 

Neoprene fabric 

(1.5 sqft) 

Stretch material for easy don/doff  $2.98 

Lycra fabric (1.5 

sqft) 

Cover material to reduce electrical 

noise with movement/contact 

$1.60 

Copper wire (26 ft) Electrode connections $17.16 

Heat shrink (1.5 ft) Reinforcement for solder joints $1.62 

Thread (3 ft) Assembly of fabric and wiring $0.01 

SAMTEC 
connector (1) 

Connection to front-end 
amplification and filtering 

$23.20 

Total: $58.47 

 

 
Figure 1: Inexpensive surface electromyography sleeve with consistent 

electrode placement. A) Thirty-four electrodes (brass-coated marine 
snaps) are inserted into neoprene, and then the fabric is then sewn into a 

sleeve. B) Grommets (red) are inserted alongside electrodes (orange) so 

they align with natural skin markings (e.g., freckles, moles, scars). C) A 

loose Lycra® cover electrically isolates wire. 
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remaining 3% was used for validation to avoid overfitting. Training automatically terminated once the root-mean-

squared-error (RMSE) on the validation data increased to avoid overfitting. The networks were trained using a 

Stochastic Gradient Descent with Momentum solver with an initial learning rate of 0.001 [2]. 

Online Performance Metrics 

The participant completed a real-time virtual hand matching task in which they actively controlled the virtual 

prosthetic hand and attempted to move only select DOF(s) to a target location [5]. Performance was evaluated as the 

mean longest continuous-hold duration (i.e., hold duration) within the 10%-error window around the target location 

out of a theoretical maximum of seven seconds (i.e., seven seconds max if no reaction time) [5]. Performance of the 

shallow network, trained only on the first dataset, was evaluated ten times over the span of 263 days. Performance of 

the shallow network trained on the first ten datasets was also directly compared against the performance of the shallow 

network trained on only a single dataset collected immediately before the task. Prior results demonstrated that Kalman 

filters produce smoother movements than neural networks, which is critical for functional tasks [2]. To this end, we 

evaluated the performance of a deep neural network trained on 20 datasets with and without a Kalman filter to smooth 

the network output. Direct comparisons were performed using a counterbalanced pseudorandom cross-over design. 

RESULTS 

Inexpensive sleeve enables consistent placement and prosthetic control 

Seven intact participants were able to self-don the sEMG sleeve within 

7.32 ± 0.26 mm of precision in 10.30 ± 3.35 s (Fig. 3). The mean SNR for 

participants was 14.03 ± 4.43 (Fig. 3). A shallow neural network, trained 

on only a single dataset one day before the start of testing, provided 

relatively stable performance over time in one individual tested 

longitudinally (Fig. 4A). Performance fluctuated over time (p < 0.05, one-

way ANOVA), but the performance on day one was not significantly 

different from that on any subsequent day, including 263 days after initial 

training (p’s > 0.05, multiple pair-wise comparisons with correction). 

Deep learning substantially improves prosthetic control 

We hypothesized that additional training data would improve neural network performance. To this end, we 

compared the participant’s performance with a shallow neural network trained on a single dataset collected 

immediately before testing against a shallow neural network trained on 10 datasets collected multiple weeks prior. 

Performance (hold-time duration) doubled when trained on 10 prior datasets (p < 0.05, paired t-test; Fig. 4B). 

Deeper neural networks have a greater capacity to learn the intricacies of large complex datasets. Building on this 

idea, we trained a deep neural network on 20 prior datasets (Fig. 2). Performance significantly improved relative to 

the shallow networks reported here (p’s < 0.05, paired t-tests). Deep neural network performance further improved 

when a Kalman filter was added to the end to smooth kinematic predictions (p < 0.05, paired t-test; Fig. 4C). The final 

architecture, a deep residual neural network with a Kalman filter (DNN+KF), resulted in up to a 152% improvement 

 
Figure 2: Deep residual neural network for myoelectric prosthetic control. A) Example 32-by-32 input “image” consists the 300-ms smoothed 
MAV on the 32 single-ended electrodes over the last 32 time-samples (i.e., the last ~1.07 seconds). The example image shows EMG activity 

increasing across all channels as the participant transitions from rest to D3 extension, although EMG activity is highest on channels 23, 28, and 

30. B) Multiple layers of convolution across electrodes and across time allows for complex non-linear activation patterns. An optional Kalman 

filter was used to smooth the kinematic predictions from the deep neural network.  

 
Figure 3: The inexpensive sleeve can be 

donned rapidly with sub-centimeter precision 

and adequate signal-to-noise. Data show 
mean ± S.E.M. for seven intact participants. 
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relative to a modified Kalman filter 

(4.42 s reported here vs 1.75 s reported 

previously with the same task and the 

same participant [2]). Informally, the 

participant used the DNN+KF to 

control a physical prosthesis (LUKE 

Arm) and was able to grasp objects 

while simultaneously rotating and 

flexing the wrist – a task that is 

particularly challenging when 

simultaneously controlling the position 

of six different DOFs. 

CONCLUSION 

This work first highlights an 

inexpensive sEMG sleeve with 

consistent electrode placement. Then, 

we show how these consistent 

recordings can enable deep learning, 

and drastically improve dexterity and stability of myoelectric prosthetic control. Although this latter finding is based 

on the results from a single participant, the findings are consistent with a recent study that also used spatially consistent 

sEMG accumulated over time to improve neural networks [8]. Future work should expand this approach to a larger 

cohort of amputee participants, and validate dexterity and stability in activities of daily living. Additional training 

paradigms or design considerations may be necessary to account for sEMG variations due to sweat, swelling, and/or 

excessive fatigue. 
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Figure 4: Online performance of prosthetic control. Neural networks were trained to predict 

motor intent based on surface electromyographic recordings from a custom-made sleeve 
that maintained consistent electrode placement. A) Functional performance, evaluated as 

the ability to hold complex grasps for up to seven seconds [2, 5], was relatively stable over 

time. Performance on day one was not significantly different from that on any subsequent 
day, including 263 days after initial training (p’s > 0.05). B) A neural network trained on 

10 prior datasets accumulated across time doubled the performance of a neural network 

trained on single dataset from the current day. C) A deep neural network (DNN) trained on 

20 prior datasets further improved performance relative to the shallow networks in B (p’s 

< 0.05). Adding a Kalman filter to smooth the output of the DNN (DNN+KF) significantly 

improved performance yet again. DNN+KF performance was 152% greater than what was 
previously reported for a modified Kalman filter [5] with the same participant [2]. Data 

show means ± S.E.M. from one participant. p-values shown for paired comparisons. 

110

MEC20
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ABSTRACT  

Clinicians and prosthesis users care about the 

practical attributes of movement like the physical 

effort required by the user, the response time of the 

device, the reliability, and the accuracy of the 

movement performed. But the calibration parameters 

of a prosthetic device are relatively abstract and do not 

directly correspond to those quantities that the users 

and the clinicians inherently care about.  Here, we 

propose an intuitive tuning technique that allows 

clinicians to tune prostheses based on the things that 

end-users actually care about. We use well-established 

engineering techniques (optimal control) to determine 

the set of best possible solutions for different relative 

preferences of the user. This required optimizing the 

problem for multiple objectives, (effort, time, 

reliability, and accuracy) to compute the best tuning 

parameters for a wide range of trade-offs. By solving 

this optimization problem, the complexity of the 

relationship between the performance and the 

prosthesis parameters can be implemented as a 

mapping procedure, and thereby hidden from the user. 

This simplifies the calibration process and allows 

clinicians or users to intuitively customize the device 

for their individual needs.  

INTRODUCTION 

Biological movement and motor coordination can 

be thought of as optimization tasks that minimize the 

cost of effort and time while maximizing the reward 

obtained from performing the movement [1], [2]. The 

costs are mathematical representations of quantities 

that the brain tries to minimize when generating any 

motor command to move our body. Several different 

cost functions like effort, metabolic energy, and 

endpoint variance have been used to describe specific 

movements. This inconsistency in literature actually 

suggests that humans optimize a combination of 

different costs [3] and simply change their cost 

priorities to perform different tasks. The composite 

costs of effort, accuracy, reliability and time 

sufficiently describe how we consistently coordinate 

our joints to perform different tasks [4]. This cost 

preference also changes from person to person. 

Suppose we ask a group of people to write by hand the 

entire abstract of an article-  some might care more 

about the time spent on the task and write as fast as 

they could, while others might care more about the 

reliability of the outcome and don’t mind spending a 

few extra minutes.  

Clinical motivation  

Let’s take the example of driving a car. We 

usually care about things like fuel efficiency, comfort, 

safety, and the dynamic response of the car. The input 

parameters like the steering force, powertrain 

characteristics, suspension control, two-wheel and 

four-wheel drive modes can be adjusted to reflect our 

personal priorities in terms of the things we care about 

when driving. An experienced driver might be able to 

easily tune these parameters to get the desired 

response. But for new drivers, this could be a daunting 

task. The driving mode options provided by most car 

manufacturers nowadays, simplifies this task for both 

new and experienced drivers. The different modes like 

the eco mode, comfort mode or the sport mode speak 

the language of the user and directly convey the 

information in terms of things they care about.  

Likewise, both clinicians and end-users of 

prosthesis care about the costs of effort, time, 

accuracy, and reliability incurred by the users when 

making a movement with a prosthetic device. The 

input parameters for a myoelectric prosthesis are 

abstract quantities like the device gain, amplifier 

thresholds, and control mapping paradigms like 

proportional position or velocity control.  But unlike 

the example with the cars, the clinicians are not 

provided with a set of “driving mode” settings that 

simplifies the relationship between the cost space in 

which they care about and the input parameter space 

in which they work.  

Moreover, there is an inherent trade-off in the 

balance of these cost preferences. That is, we cannot 

have the best of both worlds and improve both the 

speed and the accuracy of our movements 

simultaneously. When larger control signals are 

produced to make faster movements, the 

multiplicative nature of the noise in our myoelectric 

signals deteriorates the accuracy and the reliability of 

the movement. The device gain parameter should 

hence be adjusted to a sweet spot that best reflects the 

user preference. But there is another catch, some 

combinations of the input parameters always produce 

results that are worse for all possible user preferences. 

For example, proportional velocity control always 

performs better than position control in terms of both 

111

MEC20



the costs of effort and reliability. Conventional tuning 

techniques force the clinicians to tune a limited 

number of abstract parameters that do not directly 

reflect the cost space that they care about, and make it 

much harder to tune for the optimal set of parameters 

for a given user. 

 So when tuning a prosthetic device, it will be 

beneficial to avoid the sub-optimal input parameters to 

ensure that the user gets the best experience. 

Optimization methods or optimal control techniques 

can be used to identify the optimal input parameters 

for each individual user preference. This approach 

makes the tuning procedure much more intuitive for 

the clinicians as the abstract device input parameters 

can be computed and set by an algorithm that 

optimizes based on the costs that users inherently care 

about.  

Background 

We care about a variety of things when making a 

movement. As we have multiple objectives that we 

wish to optimize, we need to perform multi-objective 

optimization (MOO) to find the best set of tuning 

parameters for each user’s personal preference. For a 

MOO, no single solution can be best with respect to all 

the conflicting objectives and we have several optimal 

solutions instead. The optimal solutions are those in 

which we cannot further reduce the cost of one 

objective function without increasing the cost of 

another. These optimal solutions are called the Pareto 

solutions, or the Pareto set [5].  

There are two broad strategies for obtaining these 

Pareto solutions for MOO problems. 

1) The first method is to scalarize the different 

objectives and to repeatedly solve for the 

entire range of cost- preferences. 

In terms of our prosthesis tuning example, 

this would mean that the different objective 

functions of effort, time, reliability, and 

accuracy get added up with relative weights 

that represent the user’s preference for the 

different cost functions. The computation is 

then repeated for every user’s individual 

preference.  

For example, if the total cost (J) is 

represented as a sum of two independent 

costs (J1 and J2):  

(i) J = J1 + J2, represents an equal 

preference for the two costs. 

(ii) J =  J1 + 10 J2,  represents that the 

user cares about 10 times as much 

about the second cost when 

compared to the first one.  

2) The second method is to find multiple Pareto-

optimal solutions in a single run, without any 

prior information about the relative 

preference of the different costs.  

For our prosthesis tuning problem, this would 

mean that we compute a set of optimal tuning 

parameters without any reference to the 

user’s individual preference for the different 

costs. This method can be represented 

mathematically as:  

J = [J1, J2], where we 

simultaneously try to optimize for both the 

cost functions J1 and J2.   

The first strategy expresses the user’s preference 

in terms of simple relative weights that change the 

optimum tuning parameters for the individual. But the 

tuning parameters must be recomputed every time the 

user’s preference changes. The interpretation of 

relative weights also becomes incorrect when the 

multiple objective functions are not normalized 

appropriately [6]. The second strategy has the 

advantage of solving multiple optimal tuning 

conditions in a single simulation run, but it is not 

possible to incorporate the user preference into the 

algorithm. Our third option is optimal control which 

best approximates how humans move their joints and 

control human-machine interfaces [7], but the 

disadvantage is that this method requires a single 

objective function.  Hence, we decided to blend the 

three ideas to get multiple meaningful Pareto solutions 

for the tuning parameters such that they can be saved 

in a look-up table to avoid re-evaluation.    

Technical challenge 

There are infinite solutions that satisfy the Pareto 

optimality condition and form the Pareto front. Ideally, 

we would like to obtain the optimal tuning parameters 

for a finite number of points on the Pareto front. These 

Pareto solutions can be saved in a look-up table that 

can aid with prosthesis tuning.  Due to the inherently 

nonlinear nature of the human movement cost 

functions, an equally spaced set of relative weights 

does not produce a uniform Pareto set. Figure 1 shows 

an example in which only the costs of effort and 

accuracy of the movement were considered, for a first-

order dynamic model of the prosthetic device. In this 

case, the Pareto solutions found are clustered towards 

one end of the Pareto front in which the effort cost is 

much lower than that of the accuracy cost. This means 

that a step-change in the user’s preference for the two 

costs will lead to a larger change in the cost of effort 

when compared to the cost of accuracy.  This also 

indicates that the problem is not accurately normalized 

(and that it requires nonlinear normalization mapping). 
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To describe the priorities meaningfully in terms of the 

cost, we need to flip the problem on its head and obtain 

a set of evenly distributed Pareto points that 

correspond to specific user priorities. This will allow 

us to bin the different regions of the Pareto front into 

“tuning modes” similar to the driving mode options 

provided by car manufacturers.  

In addition to conveying the tuning information in 

the language of the user, this technique allows us to 

entirely avoid normalization. In this article, we 

propose a gradient-based approximation technique 

that can be used to produce an evenly distributed set 

of points on the Pareto front. 

 

Figure 1: Pareto front for a set of cost preferences linearly 

spaced between 0.01 and 10. The red asterisks indicate the location 

of the obtained Pareto set.  

METHODS 

The main aim of this study is to determine if a 

uniform set of Pareto solutions can be obtained for a 

generic optimal control problem that has multiple 

objective functions. Optimal control guarantees the 

best solution, but it requires a single objective 

function, which is at odds with our attempt to enable 

users engage with multiple objectives. To solve this 

problem, we strategically assign weights across the 

multiple objectives to enable them to be considered as 

a single objective (which can then be solved using 

optimal control). Because this scalar composite cost 

can be solved using optimal control, it is guaranteed to 

land on the Pareto front, but where it lands on the 

Pareto front depends on the weights we choose. In 

order to strategically assign those weights to ensure an 

evenly distributed set of Pareto front, we use a 

crowding metric to decide where on the Pareto front 

we would like to land next, and then estimate the 

weights that should get us in that ballpark using a 

gradient-based approximation technique. This process 

is further described in the section on the Gradient-

approximation technique. 

To demonstrate the feasibility of the blended 

optimal control and MOO based approach, we use a 

simple optimal control example that relates to our 

ultimate aim of clinical prosthesis tuning. The 

example is that of a simple human-machine interface 

that is used to perform a target reaching task. In order 

to keep the problem simple and retain the multi-

objective nature of human movement, only the two 

contrasting objectives of effort and accuracy were 

used to compute the cost incurred to the user. The 

human-machine interface model contained two parts: 

the human component that modelled the user’s motor 

commands, and the prosthesis component that 

performed a reaching movement in response to the 

user’s control signal. The system was assumed to be 

deterministic and the potential uncertainties in the 

control signal and the environment were not modelled.  

The human component of the model produces an 

optimal control signal (𝑢) that minimizes the 

composite cost of effort and accuracy to the user.  The 

machine or the prosthesis component was simulated 

using standard zero, first or second-order dynamic 

system models. The tuning parameters of the 

prosthesis were not optimized in this study to reduce 

the number of optimization parameters. The duration 

of the movement was fixed to be a single time step for 

all conditions. The model was entirely implemented in 

MATLAB (Release 2016a, The Mathworks, Inc., 

Natick, MA.) 

Cost Function and User Priority 

The cost of effort was defined as the squared 

control signal 𝑢 that represents the magnitude of the 

myoelectric signal from the user.  

 𝐽𝑢 = 𝑢2  (1)  

The cost of accuracy penalizes based on the error 

between the target (represented as 𝑔) and the 

movement endpoint.  

𝐽𝑎 = [𝑔 − 𝑥(𝑝)]2, (2) 

 where 𝑥(𝑝) is the position of the simulated 

device at the end of the movement and the final time 𝑝 

is set to one for all the simulations without loss of 

generality.  

The total cost is a weighted sum of the accuracy 

and the effort costs and is represented by: 

𝐽 = 𝛼. 𝐽𝑢 +  𝐽𝑎, (3) 

 where α shows the user’s relative preference for 

the two costs. A large value of α shows that the user 

would rather minimize their physical effort even if it 

means that they don’t reach the target accurately. A 

small α value indicates that the user prioritizes the 

endpoint accuracy and won’t mind spending more 

effort. For a perfectly normalized set of costs, an α  

value of one will indicate that the user cares about 

the two costs equally. But as the magnitudes of the cost 
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values are highly task-dependent, normalization was 

not performed for our system.   

Gradient-based approximation technique 

The purpose of this algorithm boils down to two 

simple things – selecting the next point on the Pareto 

front that needs to be populated and landing there by 

computing the required α value. The distance 

(Mahalanobis form) between consecutive points was 

used as a measure of crowding and the next point was 

selected to ensure an even distribution of points on the 

Pareto front. We need to compute the desired user 

preference level or the α value to land at these points 

and a simple gradient approximation technique was 

used to achieve this. The required user preference 

value was calculated using the following equation. 

∝𝐷𝑒𝑠𝑖𝑟𝑒𝑑=
(𝐽𝐷𝑒𝑠𝑖𝑟𝑒𝑑

𝑖 − 𝐽𝐶𝑢𝑟𝑟𝑒𝑛𝑡
𝑖 )

𝜕𝐽𝑖

𝜕𝛼
| 

𝐽𝐶𝑢𝑟𝑟𝑒𝑛𝑡
𝑖

+ ∝𝐶𝑢𝑟𝑟𝑒𝑛𝑡   ,        (4) 

  

where 𝐽𝑖  corresponds to the individual costs of the 

effort or accuracy objective functions, and 
𝜕𝐽𝑖

𝜕𝛼
| 

𝐽𝐶𝑢𝑟𝑟𝑒𝑛𝑡
𝑖   refers to the sensitivity of the individual 

cost with respect to changes in 𝛼, computed at the 

current Pareto solution. These sensitivities are 

obtained by perturbing the α values at the different 

Pareto solutions obtained and are essentially just 

numerical approximations of the gradient at those 

points. 

The two extreme points on the Pareto front that 

correspond to slopes 0.01 and 100 were picked 

heuristically by tuning the α values for the given task. 

After this, the “selection” and the “landing” 

algorithms were used iteratively to obtain a uniformly 

distributed Pareto set. 

RESULTS 

In order to ensure that a uniform Pareto front can 

be produced using our algorithm, a variety of scenarios 

were tested. The prosthesis was modelled as a standard 

zero, first, or second-order dynamic system. The 

proposed algorithm was able to successfully produce a 

uniform distribution on the Pareto front for all three 

cases. Figure 2 shows an example of the Pareto 

solutions found for a first-order dynamic model. These 

results show that the algorithm is generalizable and 

can be applied to optimize the tuning parameters for a 

variety of different user preferences.  

DISCUSSION 

The aim of this study was to determine if we can 

generate sufficient Pareto solutions for a human-

machine interaction model, such that we can 

adequately describe different user preferences. Our 

simulations demonstrate the feasibility of the proposed 

method and show that it is robust for a variety of 

scenarios. The concept of relative tuning that we have 

described in this article could allow intuitive 

prosthesis calibration in terms of quantities that the 

clinicians and the patients care about. It will also 

permit the device to be tuned by the user. The user-

tunability function can allow them to optimally 

perform vastly different tasks like painting and yard 

work, which requires them to change their personal 

cost priorities. 

Limitations 

As the intention of this article was to understand 

if a uniform set of Pareto solutions can be formed, the 

mathematical model was simplified to reduce the 

computational complexity of the problem. For 

example, the system was assumed to have no noise and 

the tuning parameters of the prosthesis model were not 

optimized.  
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Figure 2: Uniform Pareto front obtained using the proposed 
algorithm  
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ABSTRACT 

Commercial myoelectric control systems using surface 

electromyography are unable to obtain consistent control 

signals for finger-specific motions because the desired 

signals are either obscured by more superficial muscles or 

non-existent due to the level of amputation. Intramuscular 

recording techniques and Regenerative Peripheral Nerve 

Interfaces (RPNIs) can potentially resolve each of these 

issues. Two persons with transradial amputations had bipolar 

electrodes surgically implanted into residual musculature and 

RPNIs. Participants used a low latency pattern recognition 

system to intuitively distinguish 7 individual finger postures 

with 100% online success and complete a functional task 

requiring multiple grasps with a commercially available 

prosthetic hand. A classifier with the same architecture was 

also used to distinguish movements in a simultaneous and 

proportional 2 degree of freedom control scheme. Both 

participants used this controller in real-time to complete a 

virtual target matching task with success rates of 99%. 

INTRODUCTION 

Traditional myoelectric prostheses for persons with 

upper-limb amputations are controlled by residual muscle 

activity via electromyography (EMG) recorded from the skin 

surface. Pattern recognition systems seek to provide users 

with intuitive control of wrist and hand functions. However, 

grip selection remains unintuitive as control is limited to 

simple open/close due to the lack of robust signals specific to 

finger movements [1]. Surgical interventions such as 

Targeted Muscle Reinnervation can create additional motor 

control sites [2] and more recent research has demonstrated 

the potential to extract specific motor inputs with signal 

decomposition [3]. Focusing on movement transitions has 

also allowed researchers to demonstrate more intuitive 

switching between a few grips [4]. However, without direct 

access to muscles that control fingers these techniques rely 

on algorithms to distinguish individual finger movements 

from subtle co-activations of prominent muscles or highly 

obscured deep muscle activity. Therefore, more work is 

needed to demonstrate that these techniques generalize 

outside of controlled tests. Given these challenges, it is also 

not surprising that pattern recognition is very sensitive to 

surface electrode placement [5]. Instead of attempting to 

resolve these issues with software alone, this study evaluates 

the use of intramuscular electrodes which can record large 

amplitude movement-specific EMG when implanted directly 

into finger flexors and Regenerative Peripheral Nerve 

Interfaces (RPNIs).   

RPNIs are created by implanting the end of a severed 

peripheral nerve into a small, autologous free muscle graft. 

After reinnveration, electrodes implanted into RPNIs record 

highly specific and anatomically consistent EMG signals, 

which remain stable, allowing for precise control of 

individual fingers in humans for up to one year without 

requiring recalibration [6]. Previous work in able-bodied 

non-human primates has shown accurate tracking of digits, 

suggesting that control is intuitive as well as precise [7]. In 

this study, two participants with transradial amputations had 

bipolar recording electrodes surgically implanted into RPNIs 

and residual forearm muscles. The high-quality EMG signals 

recorded from the implants allowed a low latency pattern 

recognition system to predict individual finger movements 

and grasps in a virtual reality environment and during 

preliminary functional testing with a commercially available 

prosthetic hand. The high speed classifier also predicted 

movements in combination with a regression algorithm to 

provide 2 degree of freedom (DOF) position control of the 

index and middle-ring-small (MRS) fingers of a virtual hand 

to complete a dextrous target matching task.  

METHODS 

Two patients with transradial amputations, P1 and P2, 

had RPNIs surgically created on each of the median, ulnar, 

and radial nerves. P1 had one RPNI created on each nerve, 

while P2 had two RPNIs surgically created on the ulnar 
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nerve, which had been subdivided into two fascicles, and one 

RPNI created on each of the median and radial nerves. Both 

participants provided written and informed consent and this 

study was approved by the Institutional Review Board at the 

University of Michigan. Eight pairs of bipolar electrodes 

(Synapse Biomedical, Oberlin, OH) were implanted into the 

ulnar and median RPNIs for both subjects as well as six and 

five residual muscles for P1 and P2, respectively. Although 

wrist movements were not a focus of this study, each subject 

had one electrode pair implanted in flexor carpi radialis 

(FCR). The remaining residual muscles were selected to 

target thumb, index, and small finger flexion and extension.  

For 7 total experiment sessions, a Matlab xPC 

(Mathworks, Natick, MA) decoded EMG in real-time and 

controlled virtual [8] and physical (DEKA, Manchester, NH) 

prosthetic hands. Controllers were calibrated by having 

participants mimic 5-10 movement repetitions with their 

phantom limb while seated at a table. Training for virtual 

posture matching and functional grasps instructed 

participants to make discrete holds as opposed to gradual and 

intermediate movements for the continuous motor task. A 

Hidden Markov Model (HMM) was fit to training data and 

modelled transitions between latent states [9]. The underlying 

classifier, features, and processing windows were selected 

from other studies [6,7]. P1 performed preliminary functional 

tests where HMM output was directly mapped to pinch (Pi), 

point (Po), and hand close (HC), while rest (Re) predictions 

opened the DEKA hand (Figure 1). P1 and P2 also performed 

a pilot test that required them to precisely move the index and 

MRS fingers of a virtual hand to target positions (Figure 2). 

The controller for this task was a switching Kalman filter 

(KF) [10] with regression coefficients fit according to 

previous work [6,7] and an HMM to distinguish flexion of 

individual finger groups along with flexion and extension of 

both. Three performance metrics were evaluated per trial: 

acquisition time was the total time excluding a hold period, 

orbiting time was the time spent stabilizing around the target 

position, and path efficiency was defined as the distance ratio 

of a perfect 2D path to the actual path including orbiting 

(Table 1). These metrics were specifically chosen to evaluate 

the fine motor ability afforded by the intramuscular signals 

and controller.  

RESULTS  

P2 controlled a virtual hand in real-time to match a cue 

hand and select 7 postures: thumb, index, ring, and small 

finger flexion, fist, finger abduction, and rest. The HMM 

issued an incorrect prediction transitioning to the cue on 

8.64% of trials, however P2 was able to quickly recover from 

these errors and hold the cued posture for 1 second with a 

100% success rate. P2’s average latency between the onset of 

new EMG activity and a successful hold was 311±31.2ms. 

Total trial time including reaction and hold was 1.73±0.03s 

on average (mean±s.e.m, n=73 trials across 3 sessions).  

P1 controlled the DEKA hand with a HMM and 

completed a reach and place task (Figure 1) with an average 

time of 18.39±2.77s (mean±s.t.d, n=5 trials). Real-time 

accuracy was calculated by comparing the instructed grips for 

interacting with each object to the HMM commands output 

to the hand. Most misclassifications occurred when using the 

point grip during the button press, which was found to be a 

result of moderate index flexor activation. 

 

P1 and P2 both used the switching KF to perform the 

dextrous 2 DOF target matching task which evaluated fine 

motor performance. The virtual task required them to 

navigate to 9 precise finger positions and remain within a 

tolerance window of ±13% flexion for 0.5-1s. Both subjects 

completed the task with success rates of 99%. On average P2 

could not manage to move to target positions as directly as 

P1, evidenced by lower path efficiency and higher acquisition 

times despite comparable orbiting times (Table 1). This 

indicates that the P1 was better able to use the control 

algorithm to independently make fine movements. 

Table 1: Dextrous 2 DOF Target Task Metrics 

Participant Successful 

Trials (n) 

Metric (mean±s.e.m.) 

Acquisition 

Time (ms) 

Orbiting 

Time (ms) 

Path 

Efficiency 

(%) 

P1 100 871.8±77.4 190.5±72.0 74.2±2.5 

P2 109 1025.7±82.3 141.2±51.3 63.2±2.5 

 

 

Figure 1: P1 performing the reach and place task 

which required three separate grips: point to press a timer 

button, pinch to move a ball, and hand close to move a 

bottle. P1 was instructed to start the timer, place both items 

on the shelf, bring the items back to the table, and stop the 

timer. Real-time accuracy was calculated across 5 trials. 
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DISCUSSION 

This study demonstrated that electrodes surgically 

implanted into residual muscles and RPNIs allow pattern 

recognition of individual finger movements and functional 

grasps. The HMM did not require lengthy integration 

windows, allowing P2 to quickly recover from errors and 

complete the 7 posture virtual task with low average latency 

and a perfect success rate.  P1 was also able to use the HMM 

and the DEKA hand to perform a task that required 

interacting with objects at multiple elevations. The common 

misclassification noticed during this preliminary functional 

test could be the result of subconscious muscle activity to 

stiffen the index finger for a button press. Similar phenomena 

have been noted by other groups and a variety of strategies 

exist to prevent such errors in future work [2,4]. The HMM 

implementation used a Naïve Bayes classifier to model latent 

states. However, it is likely that many classifiers could 

provide comparable performance due to the high amplitude 

and anatomical specificity of intramuscular EMG [6]. 

P1 and P2 also piloted a 2 DOF controller and performed 

a dextrous target matching task with similar near perfect 

success rates. P2’s slightly lower average orbiting time may 

have been an artefact of a lower required hold time than P1. 

The larger discrepancies in other metrics suggest that for P2 

either the HMM was not as effective in suppressing undesired 

movements or the movement distinctions were less intuitive. 

Strategies that blend trajectories of a switching KF may 

mitigate these issues [11]. The 2 DOF target task assessed 

fine motor control of independent finger groups. With 

commercial myoelectric systems using surface EMG, users 

rely on features of prosthetic hands such as compliant joints 

or internal controllers to substitute fine actuation for a gross 

motor command. Providing users with direct fine motor 

control of their prostheses will increase confidence over a 

broader range of activities, particularly as research in sensory 

feedback mechanisms progresses. Long term goals of this 

research are to increase the number of DOF and precision of 

finger control and incorporate precise control of wrist 

movements into a fully dextrous controller. 
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Figure 2: P2 performing the dextrous 2 DOF target 

matching task by simultaneously and precisely matching 

the positions of the virtual index and MRS fingers (grey) 

which she had position control over to their cued positions 

(blue). The cue turned green to indicate successful 

positioning of the fingers. 
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ABSTRACT  

It is important for myoelectric control schemes to be robust to various non-stationarities in electromyography (EMG) 

signal such as unintended activations and contraction level variations. In order to address this limitation, the present 

study compared performance measures of two EMG processing pipelines with two filtering techniques: frequency 

division technique (FDT) and standard bandpass processing (Bandpass) in a simultaneous and proportional 

myoelectric control (SPEC) scheme for two contraction levels (medium and high). Twenty able-bodied participants 

(14 males and 6 females, age 23.4 ± 3.0) performed wrist movements (flexion/extension, rotations and combined 

movements) in two degrees-of freedom (DOF) virtual tasks. FDT had a mean completion rate (CR) of 95.33%, which 

was significantly higher than the SPB technique with a CR of 64.08% (p<0.001). FDT method performed significantly 

better in all other performance indices in at least one movement type. Furthermore, there was no significant difference 

in the performance of FDT between medium and high contraction levels, while there were such differences for 

bandpass filtering. This study showed that FDT is advantageous in regression based online myoelectric control as it 

generates a more accurate, robust and contraction level invariant scheme for performing prosthetic hand movements. 

This study is the first to use frequency-based features with a SPEC scheme and shows promise for more intuitive 

prosthetic devices.  

INTRODUCTION  

Myoelectric prostheses use EMG signals for performing prosthetic functions. Conventional control of a 

myoelectric prosthesis involves mapping the amplitude of EMG signals to the desired prosthetic function. Challenges 

with the direct control scheme such as EMG crosstalk have led to the use of pattern recognition (PR), a machine 

learning approach that classifies EMG features to activate different prosthetic functions [1]. Currently, the state-of-

the-art PR technique uses linear discriminant analysis (LDA) classifiers applied to a set of time domain (TD) features 

[2]. However, PR techniques only allow control of one DOF at a given time (sequential control) which is contrary to 

the natural control flow of the neuromuscular system. In order to achieve a more natural hand movement, simultaneous 

rather than sequential control is more desirable. Recently researchers have explored regression techniques, which 

allow for simultaneous and proportional control of the prosthesis [3, 4]. It has been found that linear regression (LR) 

performed superior to PR in an online closed loop setup [4]. The promising results of regression techniques has 

warranted further research to improve control of current prosthesis.  

However, regression and PR techniques demonstrate relatively poor performance in real-world conditions due to 

the non-stationarities in EMG patterns and the noise introduced from different sources [5]. These variations or the 

non-stationaries in EMG may be caused by several factors including variations in training muscle contraction levels 

[6] and activation of an undesired degree of freedom [7, 8] are critical. One filtering approach using a frequency 

division technique (FDT) was proposed to increase varying contraction levels  in PR-based myoelectric control [9], 

and this approach was demonstrated in a closed-loop online PR experiment [10], where. the control scheme with the 

FDT filter was found to be robust against varying levels of training contraction and it performed significantly better 

than the traditional band-pass technique. Further research with the FDT filtering on simultaneous and proportional 

myoelectric control (SPEC) scheme paired with FDT is warranted to corroborate findings in the PR-based myoelectric 

control scheme. Therefore, the purpose of this study was to compare the performance of the FDT and the traditional 

bandpass processing on a linear regression (LR) based online myoelectric control scheme while intact subjects 

completing virtual tasks. This study also examined the effects of varying training contraction level on the performance 

of the FDT based myoelectric control scheme to determine its robustness against force variation. 
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METHODS 

Frequency Division Technique (FDT) 

The FDT directly calculates the spectral power of various frequency bands of sEMG using discrete Fourier 

transform (DFT) by dividing the full bandwidth of sEMG signals into L segments.  For the ith segment, let fi,1 and fi,ni 

denote the frequency values of the two endpoints. The feature is defined as  

𝐷𝐹𝑇𝑖 =  𝐹 [∑ |𝑋(𝑓𝑖,𝑗)|
𝑛𝑖
𝑗=1 ], i=1,2,…L (1) 

where, X(·) denotes the magnitude of the FFT spectrum, F denotes a non-linear smoothing function. In the current 

study, F is the root operator is used with a value of 2/3. The whole frequency band of EMG (20-450 Hz) is subdivided 

into six (L=6) equi-width frequency bands (20-92, 92-163,163-235,235-307,307-378, and 378-450 Hz) [10].  

Protocol 

Twenty intact-limbed participants (6 females and 14 males) with a mean age of 23.4±3.0 years participated in the 

study. The study was approved by the University Research Ethics Board (REB 2018-079). The participants were asked 

to sit on a chair in an upright position with both of their upper limbs in a resting position. They faced a computer 

screen, at an approximate distance of 75 cm. Eight equally spaced (19 mm inter electrode distance) bipolar electrodes 

(Duotrodes, Myontronics, Inc) were placed at approximately 1/3 distal measured from the olecranon process to the 

styloid process of the ulna to cover the circumference of the forearm. A commercial wireless biosignal amplifier 

(Trentadue, OT Bioelettronica, Italy), sampled at 1000 Hz, was used to transmit the signals. The dominant forearm 

was used for the electrode placement.  

Feature Extraction and Testing 

The surface EMG signals were processed initially using the common averaging method [10]. This was followed 

by two filtering techniques for two separate analyses, the band-pass filtering and FDT. The Bandpass filtering involved 

applying a bandpass filter (second order, Butterworth) from 20 Hz to 450 Hz followed the TD feature set extraction 

[10]. For FDT, the signals from each channel were divided into specific frequency sub-bands. LR was used for the 

simultaneous and proportional scheme. The outcomes of the regression model were mapped to the virtual task.  

The experimental testing session consisted of two phases: 1) calibration phase and 2) control phase. The window 

size for processing was set to150 ms and the regression models provided an output every 50 ms. The calibration phase 

involved training a regression model using EMG signals with position labels of the cursor during wrist 

flexion/extension (DOF1) and hand pronation/supination (DOF2). In the calibration phase, the participants were 

instructed to follow the position of a cursor on a screen. In the training phase, the subjects performed two contraction 

levels: the wrist movements at the normal contraction level, i.e. ‘train-medium’, and wrist movements at a strenuous 

contraction level, i.e. ‘train-high’.  

From the data acquired in the training phase, a LR model were generated for each of the combination of the two 

contraction levels, i.e. train-high and train-medium and two filtering techniques: Bandpass, and FDT, resulting in four 

experimental sets in the control phase: medium-Bandpass, medium-FDT, high-Bandpass and high-FDT. In the 

subsequent control phase, the participants performed goal-directed tasks using the four LR models in a random order 

[10]. In each experimental session, 20 targets from each type of task group, termed type I, type II, and type III at 

 

Fig. 1. Left: Goal oriented tasks: type I (flexion/extension DOF only), type II (pronation/supination DOF only) and type III (combination 

of flexion/extension DOF and pronation/supination DOF). The grey arrow represents the desired position for the completion of the tasks. 

Right: Mean CR for varying contraction levels (train-medium and train-high) and different processing methods (Bandpass and FDT) for 

the three types of targets (type I, type II and type III). The error bars represent the standard error.  
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different locations were provided on the screen (Fig. 2). The targets in type I only require the activation of wrist 

flexion/extension (DOF1), targets in type II require activation of wrist supination/pronation (DOF2), and targets in 

type III requires activation of both DOFs. The participants were instructed to place the tip of the arrow in the targets. 

Instead of sequential articulation of each DOF as in a PR-based control scheme, a simultaneous articulation of both 

DOFs was used. To measure the performance of these tasks, the performance indices used were: 1) completion rate 

(CR), the ratio of number of successfully completed task to the total number of tasks in percentage 2) time to reach 

(T2R), time taken to reach a target in seconds 3) throughput (TP) ratio of task difficulty and task completion time in 

bits/s and 4) near miss (NM), number of times the cursor enters the target but exits before the completion of 300 ms. 

Kruskal Wallis (non-parametric test) was used to determine if the CR of the two filtering techniques were 

significantly different. Also, for the control participants repeated measures analysis of variance (ANOVA) was used 

to test for significant differences in mean performance indices (T2R, TP, NM) between FDT and Bandpass from 

successful trials. With significance resulting from the interaction of main factors the Bonferroni post hoc comparisons 

were performed to test significant differences in performance measures between FDT and Bandpass. For all the tests, 

level of significance was p<0.05. All the statistical tests were performed using RStudio 1.0. 136 (RStudio, Boston, 

MA). 

RESULTS AND DISCUSSIONS 

The mean CR of FDT was 95.33%, which was significantly higher (p<0.001) than Bandpass which had a mean 

CR of 64.08%. This indicates that FDT clearly outperforms the Bandpass. This was supported by the lower variability 

in CR for FDT compared to Bandpass, indicating less inter-subject variation. In addition, all participants performed 

equally well with FDT. The same training data was used to train both the processing/feature extraction methods. It 

was observed for most of the participants that while performing the Bandpass technique, the task arrow was 

unresponsive in at least one of four LR models. There was also frequent unwanted activation of the non-target DOF. 

For example, when an individual attempted a wrist extension there was undesired activation of supination as well. On 

the contrary, the FDT (CR>95%) was robust to unwanted activations and provided a more efficient control scheme. 

These activations have been briefly discussed by previous regression studies [7, 8], but there has been no detailed 

analysis on unwanted activations and it is crucial for further studies to research these non-stationarities and 

mechanisms of addressing them.  

The mean T2R was significantly lower (p<0.001) for two types of targets (I and III) with FDT than Bandpass 

(Fig. 3). The mean TP was significantly higher (p<0.001) for two types (I and III) with FDT than Bandpass (Fig. 3). 

The mean NM of only type I target was significantly lower (p<0.001) for FDT. The Bandpass performed significantly 

better (p<0.001) than FDT for type II targets. A lower NM implies a more accurate position control. For FDT, the 

T2R and TP values suggested that the participants performed type I (horizontal only) and III (horizontal and rotation) 

tasks more easily and at a faster rate. Also, for both techniques, the variability was observed to be consistent for T2R, 

TP and NM (Fig. 3) suggesting that the participants had equal performance for all target types and across contraction 

levels. The overall TP and T2R values found in this research were comparable to previous study [10], however the 

NM was found to be higher. A possible explanation for higher NM is for some participants, the task arrow was unstable 

at higher pronation and supination angles, thus the participant had to hold it for longer increasing the NM. The mean 

NM was still low enough to allow real time control and the participants were able to complete tasks.  

It was found that there were no significant differences in the mean values of any of the performance measures 

(CR, TP, T2R, and NM) between the train-medium and the train-high runs for FDT. For CR, the variability was lower 

 
Fig. 3. (From left to right) Mean TP, T2R and NM values for varying contraction levels (train-medium and train-high) and different 

processing methods (Bandpass and FDT) for the three types of targets (type I, II and III). The error bars represent the standard error. 
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for FDT than for Bandpass (Fig. 2). For T2R, TP and NM, the variability was found to be consistent across contraction 

levels for both FDT and Bandpass (Fig. 3). This demonstrates that the performance of FDT is robust to contraction 

level variations while training. This observation agreed with the findings in [10], which used PR-based methods with 

FDT and found no difference between performance measures of medium and high contraction level variations [10]. 

Previously it has also been found out that the power spectrum of some frequency bands are not affected by varying 

contraction levels [9]. For the testing phase, the participants could perform tasks with any contraction level (medium 

or high). This finding is very important as the participant’s control is independent of the contraction level performed 

during the training. A freedom of performing movements at a desired contraction level without any performance 

degradation would be beneficial for the prosthesis users to complete daily living tasks with limited errors. 

CONCLUSION 

The results from this study suggest that the proposed FDT performs significantly better than the Bandpass method 

in a LR-based control scheme. Also, the FDT technique is less variant to changing contraction levels. The two 

processing methods compared in the study used time domain (TD) features and frequency domain (FD) features. Most 

research studies to date have used the TD feature set. Results found in this study are promising and suggest a need for 

further research using FD features. The findings of this study directly relate to the robustness of FDT as a myoelectric 

control scheme which is critical for clinically viable advanced prosthetic control. In another research work (currently 

under review), the FDT technique demonstrated higher completion rates for individuals with trans-radial amputations 

compared to the Bandpass. Robustness against these non-stationaries allows users the freedom to operate a prosthesis 

at their desired contraction levels and prevents erroneous prosthetic functions. Thus, FDT in SPEC control scheme 

promises greater accuracy, robustness to varying contraction levels, and is more intuitive.  
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ABSTRACT 

To physically interact with a rich variety of environments 

and situation-oriented requirements, humans continuously 

adapt both the stiffness and the force of their limbs through 

antagonistic muscle coactivation. Reflecting this behaviour 

in prostheses may promote control naturalness and 

intuitiveness and, consequently, their acceptance in 

everyday life. We propose a method capable of a 

simultaneous and proportional decoding of position and 

stiffness intentions from two surface electro-myographic 

sensors placed over a pair of antagonistic muscles. First, the 

algorithm is validated and compared to existing control modalities. Then, the algorithm is implemented in a soft under-

actuated prosthetic hand (SoftHand Pro). We investigated the feasibility of our approach in a preliminary study involving 

one prosthetic user. Our future goal is to evaluate the usability of the proposed approach executing a variety of tasks including 

physical social interaction with other subjects (see Figure 1). Our hypothesis is that variable stiffness could be a compromise 

between firm control and safe interaction.  

INTRODUCTION 

Artificial limbs are very valuable assets to restore some of the capabilities 

lost after an amputation. However, there is still a sharp separation between 

available functional devices and the real needs of prosthetic users [1]. Social 

interaction and safety are aspects that cannot be underestimated in prosthetics, 

especially in upper limb, due to the inherent interaction of the artificial hand 

with, not only the user, but also the rest of the world. Already in 1983, Hogan 

[2] suggested impedance control as the preferred paradigm for controlling 

prostheses, as it would provide the amputee with an essential component of the 

natural adaptative capability of humans, despite the severe sensory loss. 

Moreover, behavioural studies of postural limb control show that humans 

modulate joint stiffness to minimize the perturbing effects of external loads [3] 

and to improve limb stability and movement accuracy [4]. However, muscles 

stiffness regulation is not available in off-the-shelf prosthetic aids, neither its 

investigation is given, in literature, the space we believe it would deserve, both 

under the control [5] and mechatronics points of view.  

We introduce a method for decoding an estimate of user’s stiffness 

intention, based on cocontraction, which can be used simultaneously within a 

proportional velocity control framework, thanks to the inclusion of a custom 

Finite State Machine. The primary objective is to exploit cocontraction for a 

useful and intuitive increase of direct control robustness, a better decoding of patient’s intentions and to enlarge prosthesis 

dexterity. The novel control was preliminary tested with one subject with limb loss, with encouraging results. 

 

 

Figure 1: Physical social interaction between two subjects mediated by 
a soft robotic hand with variable stiffness control. 

 

 
Figure 2:  Block diagram of the proposed method: 

Three functional blocks decode stiffness (green 
colour) and position (blue colour) references from 

a pair of sEMG. 
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DECODING OF STIFFNESS & POSITION 

It is well known that the position of a joint is defined by the equilibrium of the various muscles acting on it, together with 

external forces. However, the multiple action of antagonistic muscles, i.e. coactivation, defines the mechanical properties of 

the joint as well. In order to benefit from the intrinsic muscle stiffness regulation that humans have, we propose an algorithm 

capable to decode both position and stiffness intentions from two sEMG channels with the inclusion of coactivation.  

A common method to estimate the level of coactivation of a pair of muscles is to correlate it to the weighted average of 

the  level of activation of the two antagonistic muscles (e.g. as in [6]), as  

Stiffness K can either increase due to involuntary reaction to external disturbances, voluntary cocontraction, or reciprocal 

muscle activation. Unfortunately, combining this estimate with traditional velocity control schemes, would have the 

inconvenience that pure cocontraction phenomena, unless perfectly symmetrical and synchronized (which never happens in 

practice), would be interpreted as either open or close commands, depending on which of the two EMG signals is observed 

overcoming its threshold first. 

To prevent this issue, we observe that usually the level of the extensor muscle contraction is almost zero when closing, 

and the opposite happens when opening. Therefore, we can define an additional variable used for binary (true/false) detection 

of pure cocontraction, CD, as in 

 

where ThCD is a suitable threshold value. Consequently, CD will be one only when cocontraction is intended, as both sEMG 

have a high level of activation, and null when only one of 

the two sEMG is above the threshold, indicating a motion 

intention. 

Note that the calculation of CD and K are simultaneous 

and independent, thus the algorithm keeps generating 

commands of velocity and stiffness simultaneously. It is 

possible to observe that there is some correlation between 

motion commands and stiffness, since when the user 

contracts one muscle, e.g. to close the hand, it will always 

command a minimum level of stiffness, proportional to the 

minimum level of activation needed for the active muscle to 

overcome its threshold (see Figure 3), but this reflects the 

natural behaviour of muscles, being a desired and welcome 

effect.  

Figure 3 shows the Finite State Machine that is 

ultimately used to discriminate the user’s intention to 

modify the reference configuration (RC) - opening or 

closing the hand - or to hold it still. The definition of the hand RC, in analogy with typical velocity control frameworks, is 

updated as 

ALGORITHM VALIDATION 

We present an example of the behaviour of the proposed algorithm, and compare it to existing methods, highlighting the 

different interpretation of the user’s intentions. Two EMG signals were collected and read into MATLAB Simulink 

(Mathworks, Inc) from a healthy subject (female, age 26). Two commercial sEMG sensors were used to get the signals 

(13E200=60, OttobockGmbH, Germany). The various control algorithms were run in Simulink. 

The first panel of Fig. 5 shows the EMG activations, while the three remaining panels present the system responding to 

the following control modalities: 

𝐾 =  𝐶1𝐸𝑀𝐺1, 𝐶2𝐸𝑀𝐺2  . (1) 

𝐶𝐷 = {
0, 𝑖𝑓 𝑚𝑖𝑛(𝐶1𝐸𝑀𝐺1, 𝐶2𝐸𝑀𝐺2)  <  𝑇ℎ𝐶𝐷

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 

 

Figure 3:   Finite States Machine used to refine the speed of the 

hand. Hand states are defined by circles, while guard conditions 

are written directly nearby the arrow connecting pre and post 

states. The starting state is STAY. Th1 and Th2 are the activation 

threshold for each channel to detect intention of movement. 

𝑅�̇� = {

𝐶1𝐸𝑀𝐺1, 𝑖𝑓 𝐶𝐿𝑂𝑆𝐸
0, 𝑖𝑓 𝑆𝑇𝐴𝑌

𝐶2𝐸𝑀𝐺2, 𝑖𝑓 𝑂𝑃𝐸𝑁
       . 

(2) 
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• PPC-PS: Proportional Position (used e.g. in [6]) with Proportional Stiffness; 

•  PVC-HS: Proportional Velocity (FSM 1) with High constant Stiffness; 

•  PVC-LS: Proportional Velocity (FSM 1) with Low constant Stiffness; 

•  PVC-PS: Proportional Velocity (FSM 2) with Proportional Stiffness. 

where FSM 2 refers to the machine previously detailed (figure 3), while the FSM 1 does not consider CD as an input of its 

conditions. 

The differences between the two variables related to muscle coactivation used in this work (K and CD) are observable in 

figure 4. K is presented in the second and fourth panel, proportional to muscle activation. K tends to rise both in the case of 

cocontraction and of pure contraction, making the detection of pure cocontraction phenomena hard. This leads to the 

introduction of CD, which is defined by the variable cdet represented by the grey area of the first panel. Comparing cdet to a 

simple threshold (the dashed black line), there is a clear categorization between cocontraction and other types of muscle 

activation. 

Concerning position reference, in the case of proportional position control (second panel), based on the difference between 

EMG1-EMG2, we observe how cocontraction is interpreted in opposition to as intended, reducing the level of activation. This 

results in motion of the hand in a direction opposed to the desired one. In addition, although PPC is more reactive to muscle 

variations, the subject must keep the muscle active during all the time in order to maintain the hand closed. This is tiring both 

from a physical and mental point of view. Regarding the performance of the two FSM for PVC, FSM 1 already solves the 

problem of the tiredness, but is not able to understand pure cocontraction as an extra user’s intention. As seen in the third 

panel, the FSM states does not correspond with the real intentions, not just closing the hand when cocontracting, but also not  

opening the hand in the first part, as no relaxing phase (STAY state) occurs before the opening intention (around t = 5s). On 

the contrary, FSM 2 understands correctly subject’s intentions, closing and opening just when the proper muscle is active, 

and remaining in STAY state when nothing occurs or if the user cocontracts to increase the stiffness but not intend to change 

hand position. Although it is noticeable some very fast oscillations of the FSM 2 close to cocontractions, when just one of 

the EMG is active (e.g. shortly after 14s and before 22s), in practice these oscillations do not affect RC sensibly. 

GRASP COMPLIANCE 

The proposed method was implemented on a soft underactuated hand device, the SoftHand Pro [7]. To the best knowledge 

of the authors, this is the first experimental validation of impedance control in prosthetics hands performed by an amputee, 

indeed, previous works as [8] and [9] used healthy subjects only. We validate the feasibility of the control algorithm used by 

a prosthetic user with informed consent. The subject (female, age 37) has a congenital malformation at the trans-radial level 

in the left arm. She typically uses a cosmetic prosthesis but is well trained in control of standard myoelectric prostheses. We 

study the response of the system with regards to an external perturbation while using the four control algorithms presented 

in the algorithm validation section. 

CONCLUSIONS 

In order to achieve different desired behaviours in upper limb prosthetics for Activities of Daily Living and for social 

interactions, an alternative solution to the classical sEMG based control is explored. The proposed method includes stiffness 

modulation of the hand, proportional to muscle coactivation with a proportional velocity control of the hand configuration 

with the use of a Finite State Machine. The algorithm is preliminarily validated with a prosthetic user, comparing it with 

other conventional control modalities implemented in the SHP. Eventually, this concept could be implemented in other rigid 

prosthetic hands, where differences between modalities could be even more visible/useful, as their only compliance can be 

given by the motor impedance. 

Preliminary results evidence a better understanding of user’s intentions through the inclusion of cocontraction on the 

control algorithm. Different performances are observed among control strategies studied, which could influence subjects’ 

perception. For the moment, the user underlined the lack of confidence and difficulties to command the hand when using the 

Low constant Stiffness control (LS), because of the lack of reactivity, and Proportional Position Control (PPC), because of 

the amount of cognitive load required.  

Our objective is to explore the perceived function of variable stiffness control compared to strategies with a constant 

stiffness value. User’s preferences will be assessed by the System Usability Scale (SUS) [10] after performing a set of tasks 

without having any information about the control implemented in the prosthetic hand. Among these tasks, one- and two-

handed object manipulation are included together with self-interaction and social interaction with 12 able-bodied volunteers. 

Volunteers reactions will be also collected and analysed.  
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Figure 4:  Experimental comparison of different control strategies responding to the same muscle activation. The first panel presents the muscle activation 

from a healthy subject performing a series of intentions described in coloured boxes in the upper part of the graph. The variable 𝑐𝑑𝑒𝑡 =
 𝑚𝑖𝑛(𝐶1𝐸𝑀𝐺1, 𝐶2𝐸𝑀𝐺2) defines CD for the FSM 2. Second panel shows the outputs of PPC-PS, third panel the overlapped outputs of PVC-LS and PVC-

HS, while fourth panel reports the outputs of PVC-PS. Black line (left y-axis) reports RC while blue line (right y-axis) reports stiffness reference. In the 

third panel, both high and low constant stiffness are represented, HS is outlined with a blue dashed line, while LS with a blue continuous line. All quantities 

are normalized. In the bottom two cases, where FSM are employed, colours are used to represent the state (detected intention of the user) in each moment. 
Red areas correspond to when closing is understood by the algorithm, green when opening, and grey when the hand keeps the previous position. 
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ABSTRACT 

We present a novel method for controlling a myoelectric prosthetic wrist. Five multiple degree-of-freedom (DOF) 

wrist trajectories are obtained from healthy participants that performed tasks that span the range of Activities of Daily 

Living (ADL) using dimensionality reduction and unsupervised machine learning techniques. The efficacy of these 

motions is tested as part of a pilot study where a participant used a simulated wrist device controlled using two-site 

surface electromyography (sEMG); two trajectories were tested in an immersive virtual reality. Novel wrist control 

has been demonstrated to be more intuitive to use and appears more natural while limiting the amount of body 

compensation. 

INTRODUCTION 

Orienting the hand has been shown to be as important as finger dexterity in aiding us perform Activities of Daily 
Living (ADL) [1]. Prosthetic devices featuring a wrist, however, have either only 1 or 2 degrees-of-freedom (DOF), 

largely due to a lack of intuitive control associated with orienting a hand in 3-DOF rotation space while operating each 

orthogonal DOF independently. Our work focuses on developing an intuitive control strategy for a 3-DOF prosthetic 

wrist device by taking advantage of joint angle synergies and identifying predefined wrist orientation trajectories that 

do not require users to independently control each DOF. 

Synergies have been identified across different joints in the human body [2], and have been demonstrated to be 

effective in prosthesis use [3]. Some joints are also predictably coupled [4]. We found inspiration in these findings 

and identified sets of predefined full arm shoulder-elbow-wrist trajectories using unsupervised machine learning 

techniques that clustered whole wrist movements into defined sets [5]. The arm movements corresponded to healthy 

individuals performing a comprehensive set of activities of daily living (ADL). We implement a similar approach to 

identifying clusters of wrist movements, following with an averaging algorithm to obtain a small, yet representative, 
set of wrist trajectories. 

Virtual Reality (VR) has been used across many domains dealing with the human hand. It can be a valuable tool 

for training the use of myoelectric prosthesis [6], and can be truly immersive; demonstrated through its capability to 

treat phantom limb [7]. We make use of advances made in VR technology to demonstrate the capacity of the proposed 

wrist trajectory control to be a practical approach to operating all 3-DOF of a prosthetic wrist. 

METHODS 

Wrist Trajectories 

We obtained a set of representative wrist trajectories through a series of dimensionality reduction techniques. We 

first collected 12 healthy subjects (age 24-71) performing ADL using motion capture; 12 Bonita Vicon cameras 

tracked markers placed around the subjects’ forearm and hand. The set of ADL were inspired by work done on upper-

limb rehabilitation and prosthesis use evaluation [8], and include the following: drinking from cup or mug placed in 

various locations, transferring a suitcase or a box, reaching to a can overhead, pouring from a cup, eating with a fork 
or spoon, reaching to the axilla, and reaching to the back pocket; listed in more detail in our previous work [5]. 

Joint angles were extracted from marker data and clustered using Hierarchical Clustering with Ward’s Distance 

measure, using dynamic time warping (DTW) to measure the similarity between motions. The number of clusters was 
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identified using the L method. Each cluster was averaged using DTW barycenter averaging (DBA) to distil the large 

set of motions to a small set of representative wrist trajectories. This study protocol was approved by Yale University 

Institutional Review Board, HSC# 1610018511. 

Control Modes 

Participants completed the series of tasks using two types of wrist control: sequential control, and the proposed 

novel trajectory control. Sequential control interpreted the flexion sensor as driving the wrist along the positive angle 
direction while the other sensor drove the wrist in the opposite direction at constant speed. A co-contraction cycled 

the mode from pronation-supination to flexion-extension to ulnar-radial deviation, with pronation, flexion, and ulnar 

deviation being the positive directions. 

The identified wrist trajectories are implemented in our proposed trajectory control. In this setup, the flexion 

sEMG sensor drove the wrist forward along a selected trajectory, while the extension sensor drove the wrist backwards 

along the trajectory at a constant speed. A co-contraction results in the cycling between the five trajectories. Each of 

the trajectory control modes have a defined start and end point. Therefore, even for sequential control conditions, the 

wrist began in the same orientation as the trajectory control. 

Control Input 

We used HTC Vive for both the head tracking and for the head mounted display (HMD). The participant’s forearm 

was tracked and displayed within the virtual environment (VE), implemented in Unity, to provide a point of reference 

for the hand orientation. This was done using Vicon to track markers placed around the forearm and streamed to Unity. 
To control the virtual hand, the participant’s forearm was also outfitted with two surface electromyography (sEMG) 

sensors, placed on the flexor and extensor muscle groups (see Figure 1), connected to an Arduino Uno. Sensor readings 

were translated to either on or off according to a calibrated threshold value. 

Pilot Study Procedure 

In this pilot study, one healthy right-handed participant (male, age 28) performed two tasks related to ADL in VR 
by attempting to align the end effector with the desired goal. The subject did not have any visual or motion impairment 

and was comfortable using VR. Tasks included in this pilot study are described in more detail in Table A. Because 

each trajectory control mode corresponds to a specific task, these were included in the table for reference. Only two 

tasks were tested in this pilot, therefore only trajectories (4) and (3) (see Figure 2 for detail) were used, for reaching 

to the cup and pouring with the cup, respectively. Prior to each task, the participant was given ample time to practice 

and develop a strategy that they’re comfortable with using during the task recording; the purpose was simulate the 

performance likely achieved by an experienced user. For tasks involving object transfer, objects were automatically 

placed within the hand. 

 

 

(a)     (b)   

Figure 1: (a) Marker set used to collect healthy arms motions that were then used to generate the wrist 

trajectories. (b) The elbow brace was used to maintain the reflective marker arrangement, such that the virtual 

forearm and humerus segments are automatically detected and displayed within VR. The brace’s range of motion 

was set to maximum and was not used to limit the elbow motion itself. sEMG sensors placed over the skin around 

the forearm can be seen underneath the elbow brace. 
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Table 1: Pilot tasks 

 

 

 

Evaluation 

The participant’s performance can be assessed in various ways. Because the goal is to improve prosthesis use in 

the real world, we wanted to focus on the time it takes to complete a task and the motion cosmesis. The participant 

also provided feedback and helped guide our interpretation of his performance. While cognitive effort to control the 

prosthesis was not directly measured, it may be inferred from the time measurements. 

RESULTS 

Wrist trajectories were obtained through averaging each of the motion clusters. Although each consists of a 3-
DOF wrist rotation, they can be better described according to the dominant DOFs as follows: (1) supination/ulnar 

deviation (2) flexion/ulnar deviation (3) supination/flexion (4) supination/extension (5) extension-ulnar deviation, as 

seen in Figure 2. Two of these wrist trajectories, (3) and (4), were used in the pilot study. 

Recorded wrist joint motion trajectories for each of the trials are displayed in Figure 3. Motions were segmented 
according to when the participant’s hand began to move and when the target end effector position and orientation, was 

reached. 

The participant was able to complete both tasks faster using trajectory control. Sequential control for the cup 

pouring task took significantly longer than when using trajectory control, while the times were much closer for the 
cup reaching task. This is likely because the task required switching between the different joint angles, which can be 

challenging, or even confusing, for the user. The cup reaching task did not require switching between the different 

DOF, and supination alone was sufficient. 

Task Task description Corresponding wrist trajectory 

Reach to cup Standing, starting with the hand by the 
side, reach to the cup on the table 

(4) supination/extension 

Pour from cup Sitting, transfer the cup from the table to 

the pouring location and orientation 

(3) supination/flexion 

 

Figure 2: Hierarchical clustering results. A horizontal cut segmented the dendrogram into five clusters of 

motion. A descriptive label is included for each cluster. 

 

Figure 3: The 3-DOF wrist joint angle trajectories are displayed for each trial. θ1, θ2, and θ3 correspond to 

pronation, flexion, and ulnar deviation respectively. The left two plots correspond to the cup pouring task under 

the two different control strategies, sequential and trajectory control, while the right two images correspond to the 

cup reaching task. Wrist rotation did not necessarily begin when the hand started to move. 
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Wrist motions appeared more naturally under trajectory control. This is largely due to the lack of access to all 3-

DOF of the wrist during sequential control, as is evident in Figure 3. Without haptic feedback, the user appeared to be 

looking down at their simulated device. This was exacerbated when multiple mode switching was required, such as 

for the cup pouring task with sequential control. Trajectory control for both tasks did not require mode switching, 

since a single mode, corresponding to the respective task, was sufficient. 

DISCUSSION 

In this study we were able to gain significant insight into our proposed wrist trajectory control that encourages 

further investigation. In this preliminary study, trajectory control has been demonstrated to be a superior alternative 

to sequential control, despite limiting users to specific wrist orientations. Findings further demonstrate the capacity of 

joint synergies to simplify control.  Trajectories appeared to generalize well to the tasks, without requiring the user to 

compensate with their residual limb or torso. 

During the experiment, when using sequential control, the participant generally relied on fewer DOF than were 

available. This was likely the easiest way to control the wrist without having to repetitively switch between DOF. This 

showcases the benefits of trajectory control whereby all 3-DOF of the wrist are at use while maintain a simple and 

intuitive control strategy. 

We must also acknowledge that there were learning differences between the two control strategies. While 

sequential control would task users to learn the correct order of rotations, trajectory control requires a memorization 

of which tasks belong to which motion control. In the future, training time and cognitive load will be addressed. 

Using state of the art motion tracking, HMD, and control input, we believe this is the closest a simulation can get 

to testing prosthesis without using the actual prosthetic device. Innovations in this field have the potential to streamline 

prosthesis design iterations, prosthesis training, and rehabilitation [9], [10]. However, there are certain drawbacks that 

need to be addressed in the future in order to fully bridge the gap between simulation and reality. These include adding 

haptic feedback, inertia, wider field of view and resolution in the HMD, and improving the realism of the virtual 

environment design. 

In future iterations of this experiment we will recruit additional subjects and expand on the tasks. We will also 

include alternative state of the art control strategies, such as enabling participants to simultaneously control DOF. 

Positive and negative controls will be included as well, corresponding to tracking the users’ hand while unrestricted 

and fully restricted, respectively. 
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ABSTRACT 

Improved nerve interface approaches are sought for prosthesis control and sensory feedback as well as visceral organ 

study/modulation.  Optical approaches that can read-in and read-out neural activity have advantages over electrode-based 

systems in terms of selectivity and non-invasiveness.  To address limitations of existing nerve interface designs, we present an 

optical approach capable of reading activity from individual nerve fibers using activity-dependent calcium transients.  Here we 

demonstrate the feasibility of using activity-dependent calcium transients to a control prosthetic hand. This work provides a 

proof-of-concept for an optogenetic nerve interface demonstrating as it does our ability to read-out signals at the axonal scale 

in real-time and apply it to a devices control. 

INTRODUCTION 

We are developing a Bidirectional Optogenetic 

Neural Interface to read-in and/or read-out action 

potentials from a nerve with the goal of creating a 

neural interface that is selective yet minimally 

invasive to the nerve. There are significant drawbacks 

to current nerve interface approaches. They either lack 

specificity - they use nerve cuff electrodes, such as the 

Flat Interface Nerve Electrode (FINE) Array[1] that 

must sit on the outside of the nerve and measure 

signals originating inside the nerve bundle, or they 

involve penetrating the nerve with needle electrodes - 

such as Longitudinal Intrafascicular Electrodes 

(LIFE)[2] or the Utah Slant Array[3]. Penetrating electrodes tend to be hard and rigid, resulting in a stiffness mismatch that 

causes irritation and necrosis, decreasing longevity. Instead of using electrical interfacing with the nerve, we will use light 

activated ion channels (opsins) and fluorescence protein Ca2+ or voltage indicators that allow stimulation and recording of 

action potentials of specific afferent or efferent neurons using viral vector transfection.  Our Optogenetic Neuronal Interface is 

based on a fiber optic coupled  miniature two-photon microscope with electrowetting adaptive optics [4-7].  

The Bidirectional Optogenetic Neuronal Interface system is 

based on the principal of two-photon (TP) excitation[8,9].  In TP 

excitation, a fluorophore is excited by short pulses of laser light. 

TP excitation offers intrinsic axial cross sectioning because the 

process only occurs at the focus of the objective lens. The 

technique offers resolutions of 175 nm lateral and 451 nm axial 

for 900 nm light focused with a 1.2 NA objective.  This 

approach, when combined with a lateral scanning head, provides 

axon scale resolution that can be used to selectively interrogate 

an axon while excluding signals from the remaining tissue.  

Peripheral nerve read-out of activity using calcium-sensitive 

fluorescent reporters: We have demonstrated read-out of 

genetically expressed activity-dependent calcium indicators, such as GCaMP6f, has been demonstrated in other work in 

vitro[10] [Figure 1 & Figure 2]. We have also shown how a viral vector might be used as a mechanism for delivery of long-

term optical protein expression in mouse neurons for optical read-out [11]. Selective photo-stimulation (read-in) in nerve: 

We have also demonstrated the ability to selectively read-in (or stimulate) to nerves optically [Figure 3].  

Figure 1: Action potential elicited calcium signal detection in tibial nerve 

axon nodes of Ranvier [1].  

Figure 2: Action potential elicited calcium signal detection in 

vagus nerve axons with GCaMP6f. 
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Here we further demonstrate the feasibility of 

using optical approaches for prosthesis control by 

imaging the axonal fluorescence produced by 

action potentials travelling in an in vitro mouse 

nerve and using the change in image intensity to 

drive a prosthetic hand in real-time. This work 

provides a proof-of-concept for an optogenetic 

nerve interface demonstrating as it does our 

ability to read-out signals at the axonal scale in 

real-time and apply it to a devices control.  

 METHODS 

Nerve Preparation: The sciatic nerve and its 

tibial nerve branch are excised from adult wild 

type mice and loaded from the tibial end with a 

synthetic calcium indicator (2 mM Calcium 

Green-1 Dextran, ex/em = 506/531 nm) dissolved 

in a buffer containing 130 mM KCl and 30 mM 

MOPS, pH 7.2 in  accordance with 

Supplementary Figure 1, Fontaine et al, 2017 

[11] (Figure 4) . The tibial end is freshly cut in a 

zero-calcium buffer to ensure open axon cylinders 

before being suctioned into a tight-fit electrode 

with the dye buffer to facilitate longitudinal 

axonal dye-loading via diffusion and/or axoplasmic transport. The suction electrode on the tibial nerve also serves to record 

electrical activity within the nerve. The sciatic end of the nerve is drawn into a suction electrode for electrical stimulation of 

compound action potentials (CAPs).  All experiments were performed in accordance with our Institutional Animal Care and 

Use Committee (IACUC) regulations and approved protocol. 

Electrophysiology: CAPs are 

generated and recorded 

throughout the experiment 

using 50 μs square pulses to 

confirm and monitor nerve 

viability. The stimulation 

voltage threshold for maximum 

CAP amplitude is determined. 

CAP amplitudes were 

monitored throughout the 

duration of the incubation 

period, to confirm stable nerve 

health.  

Optical Imaging/Recording: Dye labeled axons were imaged in a region of nerve near the tibial recording electrode. The nerve 

was gently pressed to the optical glass of the chamber with low-tension silk strings attached to a small weight for imaging on 

an inverted microscope. Placement of the small ‘harp-like’ device did not affect the CAP. Fluorescence imaging was performed 

on a spinning disk confocal microscope (Intelligent Imaging Innovations, Marianas). A 515nm laser line was used to excite the 

Calcium Green-1. Pixels were binned (2x2) to improve the frame read-out time for fast imaging. To record calcium transients, 

time-lapse images were acquired at 12-20Hz (motor update rate), during which the nerve was stimulated by an electrical 

stimulator triggered via TTL pulses from the microscope. Fluorescence was imaged onto an EMCCD camera (Photometrics 

Evolve) through a 525/50nm emission filter. Images were collected with a 63X, 1.4NA oil-immersion objective lens. 

Photobleaching of the signal was kept minimal by the reduction of laser power and exposure, and any mild decay due to 

photobleaching was not removed.  

Prosthetic Hand Modification: The electronics in the original Bebionic v2 hand (RSL Steeper, UK) (Figure 5) were replaced 

with a custom motor controller system (Sigenics Inc., Chicago, IL) and included a central Arduino controller board and six 

Figure 4:  Nerve dye-loading, electrophysiology & imaging configuration 

Figure 3: Spatially selective photo-stimulation elicits differential vitals responses.  

(a-c) Regions (1-3) of 1040nm photo-stimulation within the cervical vagus nerve 

of an anesthetized ChAT-GCaMP6s mouse.  (d-f) Corresponding vitals responses 

to photo-stimulation; region 1 elicits an increase in heart rate and a decrease in 

oxygen saturation; region 2 elicits a decrease in heart rate and no change in 

oxygen saturation; region 3 elicits a decrease in oxygen saturation. 1040nm 

stimulus was applied for 4 seconds with 20 ms pulses at 20 Hz.   
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satellite boards referred to as ‘penny boards’ (as they were the size of a 

penny). Each penny board was connected by a four-wire I2C bus with each 

board associated with an individual finger for finger flexion/extension with 

two for the thumb to drive flexion/ extension and abduction/ adduction. For 

velocity control motor commands indicating the speed and direction of 

motion for the driven finger were sent from a Matlab script to the Arduino 

(SparkFun Electronics, Boulder, CO) which converted the serial commands 

into I2C commands. Position encoder values from the prosthetic finger 

motor were recorded simultaneously and converted to joint angle 

measurements post hoc. For the Bebionic the fingers can flex from 0-95o and 

run at a max speed of about 2 rads/sec. For position control, desired finger 

position is sent over the I2C bus to the motor controller and a local on-board 

PID loop handles positioning of the finger.  

Control Interface and Method: A standard laptop computer running 

SlideBook 6.0 software (Intelligent Imaging Innovations) took the raw time-

lapse images from the microscope and sent them to a custom Matlab program 

(Mathworks, MA) which calculated the intensity of the region-of-interest 

(ROI) on the selected axon and based on the 

computed value sent commands to the motor 

controllers of the prosthetic hand via a serial link. 

A setup function in the Matlab script established 

the serial communication between the computer 

and the prosthetic hand. A second function 

received the time-lapse captures from SlideBook 

and translated the image data into an optical signal 

by averaging nodal ROI pixel intensities in each 

frame. The change-in-intensity is the control 

signal-of-interest. We see a baseline intensity for 

zero firing rate and a 15-18% for a firing rate of 

125Hz. Since baseline is not constant, we set a 

threshold of 2%. This gives us our command 

signal range: for 0-125hz we expect a 2-18% dF/F 

which should map to 0-100% of our command 

signal for the motor. Initially we mapped the 

optical signal to the prosthetic finger velocity in 

an open-loop velocity control paradigm that is 

standard-of-care [12]. The hand was set up in a 

“cookie-crusher” configuration so single-site 

control could be used. In this case when the 

amplitude of the signal rises above the optical 

signal threshold the finger was driven in flexion at 

a speed proportional to the change-in-intensity. 

Velocity gains were adjusted to achieve a full 

range of motion.  

RESULTS 

An axon which fluoresced in response to the 

simulated motor command was selected. The 

calcium response originated at the center of the 

selected node-of-Ranvier and propagated bi-

directionally into the internodal region of the 

axon. The nodal region, which was used for the 

motor command signal, showed approximately 

Figure 5: (a) Commercially available Bebionic v2 

hand (b) Modified Bebionic hand used for finger 

actuation experiments. Custom electronics were 

installed in order to control individual motors within 

the prosthesis. The Bebioinc has motor encoders 

that can measure finger position and be used in 

closed -loop control.. 

Figure 6: Real-time prosthetic digit actuation by action potential evoked calcium 

fluorescence signal in a peripheral nerve axon. (a) Confocal images of a 

CalciumGreen-1-Dextran-loaded axon node-of-Ranvier used to control finger 

actuation, shown before, during and after the activity-induced fluorescent signal 

(scale bar 10μm). (b) Quantitative trace of the calcium-fluorescence signal in 

response to the 1s, 100Hz train of action potentials (black bar). (c) Prosthetic 

hand’s middle finger flexes and extends under control of the optical signal from 

panel b. Virtual red dot denotes the tip of the middle finger driven in the 

experiment. (d) Corresponding finger joint angle illustrates digit flexion 

occurring during supra-threshold optical control signal. 
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12% change (dF/F) in fluorescence intensity. This signal amplitude was 

comparable to that achieved in prior work for an action potential pulse train 

frequency of 100 Hz [12]. Since an open-loop velocity control paradigm was 

employed, the digit was driven in flexion for the duration of the supra-

threshold optical signal at a rate proportional to the signal intensity (about 1.5 

rads/sec). Upon cessation of the command signal the finger is driven in 

extension at max speed (2 rads/sec) until the hand is fully open, per the cookie-

crusher paradigm (Figure 6). 

Proportional Control was demonstrated using previously recorded signals 

collected for a range of action potential pulse trains frequencies which were 

then used post-hoc to drive fingers in a position-control paradigm. As 

characterized in earlier work [10] average fluorescence amplitudes of 

sustained stimulus are linearly modulated by the action potential pulse train 

frequency. Such graded signals therefore encode intensity of the motor 

command. The fingers flexed to a position proportional to the intensity change 

produced by action potential pulse train frequency which was modulated 

between 25-125Hz (Figure 7). 

While previous studies have optically stimulated peripheral nerve axons 

for functional modulation of motor units [13-15] using the light-activated 

ChannelRhodopsin2 (ChR2) there is an absence of literature describing the use 

of optically obtained signals from peripheral axon activity for device control. 

However, the range of action potential frequencies used to drive the prosthesis 

in this study is within a physiologically relevant range since action potential 

pulse train frequency typically varies between 15-500Hz (in the non-refractory 

range). The control signal was derived from a 1 second, 100 Hz action potential 

burst would likely correspond to a low-side motor command. The present experiments demonstrate the potential for read-out 

and control using an ex vivo model. In other work [11] we have demonstrated that similar signals (dF/F) can be obtained using 

a genetically encoded calcium indicator, GCaMP, with a retro-viral (rAAV) delivery. 

CONCLUSIONS 

Proof-of-concept for an optogenetic nerve interface is demonstrated by showing our ability to read-out signals at the 

axonal scale in real-time and apply it to the control of a prosthetic hand. Optical signals generated by frequency modulated 

action potentials in an axon were transduced to provide proportional prosthetic finger actuation. 
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ABSTRACT 

The displacement of residual muscles during voluntary 
contraction in a transradial amputee could be effectively 
exploited to control multiple degrees of freedom in a hand 
prosthesis. We recently introduced a new human-machine 
interface (the myokinetic control interface) which aims at 
tracking muscles contraction through implanted permanent 
magnets and magnetic field sensors located inside the 
socket. Magnetic markers (MM) tracking systems have been 
widely investigated in the past, especially for controlling 
and guiding medical tools for intra-body applications. 
However, specific design rules for a multiarticulate robotic 
hand control system have not been defined yet. Here, we 
studied the tracking accuracy of multiple implanted magnets 
by simulating different levels of trans-radial amputation 
using a 3D CAD model of the forearm. A magnets placing 
procedure was developed to position the MMs in the 
available muscles, following general guidelines derived in 
our previous study. The localizer was able to accurately 
track up to 9, 13 and 18 MMs, in a proximal, middle and 
distal representative amputation, respectively. Localization 
errors below ~3% the length of the trajectories travelled by 
the MMs during muscles contraction were achieved for all 
amputation levels. Not only this work answers the question: 
“how many magnets could be implanted in a forearm and 
successfully tracked with a myokinetic control approach?”, 
but also provides interesting insights for a wide range of 
bioengineering applications exploiting remote tracking. 

INTRODUCTION 

An upper extremity amputation is an event that 
profoundly affects the quality of life in several aspects, 
limiting the individual in performing working and daily 
living activities. Commercially available artificial hands and 
arms are often controlled through surface EMG electrodes 
that record the electrical activity generated by the residual 
muscles when contracting. Often, this approach suffers the 
lack of accessible independent control sources, and its 
performance is thus limited in the case of multi-articulated 
prostheses [1]. In the last years, different solutions have 
been proposed to overcome this limitation and increase the 
number of degrees of freedom (DoFs) that can be controlled 
independently. 

New technologies like wireless implantable myoelectric 
sensors (IMES) [2] or epimysial electrodes wired through 
osseointegrated implants [3], enabled direct interfacing with 
the physiological structures involved in the motor control, 
when still intact. Our group recently proposed a new 
concept of human-machine interface for the control of 
artificial limbs that takes advantage of magnetic tracking, 
termed myokinetic control interface [4]. The idea is to 
implant multiple permanent magnets (magnetic markers – 
MMs) into the residual muscles of an amputee, track their 
movements using magnetic sensors hosted in the socket, and 
use these signals as control inputs in a prosthesis, e.g. a 
hand. Notably, localizing the implanted magnets is 
equivalent to measure the contraction/elongation of the 
muscle they are implanted in, as the magnets move with it.  

Most of the magnetic tracking systems proposed so far 
reconstruct the pose of a single marker using an appropriate 
number of sensors. Exceptions to single marker systems are 
the trackers developed by Yang et al. [5], Taylor at al. [6] 
and Tarantino et al. [7], that considered the pose of three (15 
unknowns), four (20 unknowns), and seven (35 unknowns) 
markers. A more recent study suggested that this limit could 
be overcome and that, theoretically, an indefinite high 
number of magnets could be properly tracked, as long as 

 

Figure 1: Detail on the anatomical distribution of the extrinsic muscles of 
the hand inside the forearm. The colored sections indicate the regions of the 
muscles belly which were considered for the implant. Dark blue regions 
indicate the proximal sections, which contract proportionally to their 
distance from the muscle origin. Light blue regions indicate the distal 
sections, which move by an amount corresponding to the maximum 
physical contraction. Gray muscles/sections were instead excluded. The 
three simulated levels of amputation (T1, T2, T3) are also indicated. 
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some general design rules are respected [8]. Here, we sought 
to transfer such findings into a more realistic scenario, and 
to validate them by simulating the tracking of multiple 
magnets implanted in an anatomically appropriate model.  

Thus, using a 3D CAD anatomical model of the 
forearm, we simulated the implant of n magnets in n 
available independent muscles. Three representative 
amputation levels were studied, in which both n and the 
implant sites were defined based on the forearm anatomy 
and on the rules identified in our previous study [8]. Results 
showed that it was possible to track up to 9, 13 or 18 MMs 
in a proximal, middle or distal representative transradial 
amputations, respectively. Remarkably accurate tracking 
performance were achieved, as localization errors always 
proved below ~3% the entire trajectories of the MMs inside 
each muscle. These outcomes are relevant because they 
suggest that a large number of magnets could be implanted 
and effectively tracked, thus allowing to achieve 
independent control of multiple DoFs in a hand prosthesis. 

MATERIALS AND METHODS 

Three configurations resembling three possible levels of 
transradial amputation were simulated with the aid of a 3D 
CAD model of the forearm of a healthy human (50th 
percentile male; Zygote, American Fork, US). The first and 
second configurations (T1 and T2) simulated amputations 
occurring at the first and second proximal third of the 
forearm, respectively (Fig. 1). The third one accounted for 
an amputation across the carpal bones (wrist disarticulation) 
leaving most of the extrinsic hand muscles available for the 
implant (T3, Fig. 1). For each configuration, we first 
identified n, i.e. the number of magnets that could be 
implanted and independently tracked, and defined their 
position in the muscles. This was done through a placing 
procedure that took into account: (i) the geometry of the 
residual forearm; (ii) a simplified biomechanical model of 
the muscle contraction; (iii) general guidelines identified in 
our previous study [8]. We then simulated the MMs 
movement caused by the muscles contraction, and acquired 
the generated magnetic field through N simulated sensors. 
Finally, we ran a localization algorithm to estimate the MMs 
poses to verify the effectiveness of the placement procedure. 

MMs were modelled as Nd-Fe-B N45 grade cylindrical 
magnets (axial remanent magnetization Br = 1.27 T, radius = 
1 mm, height = 2 mm). Only muscles that after the 
amputation had a residual length of at least 20% the original 
one [9] were considered eligible for the implant. According 
to such criterion, T1, T2 and T3 presented a total of 18, 19 
and 23 eligible muscles, respectively (Fig. 1). The 
displacement of the muscles was modelled according to the 
following linear equation: 
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 where x is the coordinate identifying the curve that runs 
along the muscle central axis, starting at the ideal transition 
between the proximal tendon and its belly; �(�) indicates 
the actual muscle displacement; ����  is the maximum 
muscle contraction (assumed equal to 10 mm); L is the 
length of the muscle belly at rest. 

Magnets Placing Procedure 

A magnets placing procedure was implemented for 
defining their initial (rest) position in the residual muscles 
for each configuration. More specifically, we exploited an 
optimization procedure based on a non-linear programming 
solver implemented in Matlab (MathWorks, Natick, MA). 
Such procedure worked under the following hypotheses: (i) 
only one magnet could be implanted in each muscle; (ii) 
muscles deformation was assumed to take place only in the 
longitudinal direction; (iii) magnets could be implanted only 
in (sections of) the muscle belly, and not in the tendons; (iv) 
the magnetic moment vectors of the implanted MMs always 
pointed radially, in order to maximize the magnetic field 
measured by the sensors. 

The procedure was initialized by placing the MMs in 
the center of the available muscles belly (i.e., the midpoint 
of the central axis). Then, it searched for a placement of the 
MMs that maximized both the average �(�) and the average 
value of the geometrical parameter ��, defined as: 

�� =  
�

�
 ∑

����������

�����������

�
���   (2) 

 

where ����������
 indicates the distance between the i-

th MM and the nearest implanted MM and �����������
 is 

the distance between the i-th MM and the nearest sensor. 
The procedure searched for a spatial arrangement that 
ensured �� ≥ 0.6 for each magnet, a condition supposed to 
guarantee an accurate multi-magnet tracking [8]. Initially, a 
number of MMs equal to the total number of sites eligible 
for implantat was considered. Then, at the end of each 
iteration, the magnet that scored the lowest R (if below 0.6) 
was removed. The placement procedure was iterated until all  

 

Figure 2: Sensors arrangement around the forearm, extracted from the CAD 
model. A grid of N = 840 sensors was used to collect the magnetic field 
generated by the implanted magnets. The longitudinal and radial step of the 
grid was set to 10 mm and 12°, respectively. 
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 remaining MMs were successfully placed (all �� ≥
0.6) within the simulated forearm. 

 Localization Problem 

Once the placing procedure was completed, the MMs 
were moved along the muscle axis following anatomically 
appropriate trajectories. Each trajectory originated in the 
position defined by the placing procedure, and ended 
proximally at a distance ��(�). The MMs displacement was 
approximated by translating them, one at a time, along 11 
equidistant checkpoints (0%, 10%, 20%, …, and 100% the 
trajectory length). At each checkpoint, the analytical model 
described in [10] and validated in [11] was used to simulate 
the magnetic field generated by the MMs. Indeed, analytical 
approaches generally have a lower computational cost 
compared to numerical methods, other than being more 
accurate [12]. Consequently, many studies focused on the 
analytical calculation of the magnetic field produced by 
currents in a coil [13], or by arc-shaped permanent magnets 
(e.g. cylindrical permanent magnets) [11]. To reduce the 
computational burden, these analytical formulations are 
generally expressed in terms of complete elliptic integrals or 
through series expansion [14]. A compact and efficient 
representation of the magnetic field produced by an axially 
uniformly magnetized cylindrical permanent magnet was 
used in this work [10]. 

Such field was sampled on a grid of N = 840 simulated 
sensors arranged around the forearm, and ideally hosted 
within the prosthetic socket (Fig. 2). The longitudinal and 
radial step of the grid was set to 10 mm and 12°, 
respectively. This resulted in a distance between adjacent 
sensors between 6 mm and 10 mm. Sensors recordings at 
each checkpoint were stored and subsequently fed to a 
Matlab script that ran the Levenberg-Marquardt algorithm 
[15] to retrieve the poses of the MMs offline. 

To solve the inverse problem of magnetostatics and thus 
retrieve the poses of the MMs, the latter were approximated 
as point-like dipoles, akin to our previous works [4][7][8]. 
The localization accuracy, both in terms of position and 
orientation, was evaluated as:  

�� ≈ �� + ���  (3) 

where �� accounts for inaccuracies in tracking the 
displacement of the moving magnet (i.e., model error), 
while ��� accounts for false predictions of simultaneous 
displacement affecting the non-moving magnets (i.e., cross-
talk effect). �� and ��� were defined as the Euclidean 
distance between the actual and the estimated displacement 
for the moving and non-moving MMs, respectively, akin to 
our previous works [4][7][8].  

RESULTS 

The placement procedure selected a total of nine target 
muscles for T1, 13 for T2 and 18 for T3. The minimum and 
maximum displacement underwent by the MMs were 
respectively 0.6 and 1 mm, across all configurations. For the 
sake of brevity we report only the results related to the 
position accuracy. In fact, the orientation accuracy proved 
always lower than 0.36° for all MMs in all configurations, 
and its trend closely matched that found for the position 
accuracy.  

Regarding the localization accuracy, �� proved always 
lower than 0.07 mm (Fig. 3). In particular, the highest �� 
values were obtained for MM3 in configuration T1 (��= 
0.02 mm), for MM13 in configuration T2 (��= 0.05 mm), 
and MM17 in configuration T3 (��= 0.07 mm). ���  proved 
generally higher than �� (Fig. 3), but still in the same order 
of magnitude. Indeed, the highest ���  values obtained were 
0.03 mm for MM3 in configuration T1, 0.18 mm for MM1 in 
configuration T2, and 0.16 mm for MM17 in configuration 
T3. Overall, both �� and ���  proved lower than or equal to 
3% the shortest trajectory covered by the MMs during 
muscle contraction (i.e., 6 mm). For both �� and ��� , the 
localization accuracy generally worsened when R decreased 
(Fig. 3). As an example, in configuration T2, MM1 showed 
the highest ���  (equal to 0.18; R = 0.71), while it proved 
always lower than 0.01 for MM9 (R = 4.20). 

 

Fig. 3. Boxplots represent �� (blue) and ��� (red) for each MM, while the 
lines indicate the corresponding R value, for (a) T1, (b) T2 and (c) T3. In 
general, lower R values led to lower accuracies, and vice-versa. 
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DISCUSSION 

In this work, we studied the effects of the complex 
anatomy of the human forearm on the design of a 
myokinetic control interface aimed at driving multiple DoFs 
in a hand prosthesis. A magnets placing procedure was 
implemented which, based on the forearm anatomy and on 
predefined rules, guided the choice of the number and sites 
of implant of multiple MMs.  

Traumatic amputations lead to a large variety of muscle 
health conditions, which are not standardized across 
subjects. Our approach allows to customize the MMs 
arrangement based on the muscles distribution of a specific 
patient. The latter could be made available from 3D MRI 
images [16]. By enabling a preclinical planning of the MMs 
placement, we could significantly reduce the duration of the 
surgical procedure, and optimize as well as ensure good 
performance of the prosthesis control system. 

In agreement with previous findings [7][8], localization 
errors generally increased for lower R values. This justifies 
the need for planning the MMs placement as opposed to a 
random one. Specifically, in [7] nine MMs were randomly 
distributed in a workspace that mimicked only the bulk 
volume of the forearm. In this case, the system failed to 
retrieve their poses with acceptable accuracy. Here, the 
imposed constraints allowed to achieve good tracking 
accuracies even when the number of magnets was doubled.  

The present study was indeed limited in some respects. 
First, in order to limit the number of combinations tested, 
the orientation of the MMs was kept fixed (pointing towards 
the sensors). This is the optimal configuration, selected to 
maximize the magnetic field sampled by the sensors. 
However, variability in the orientation of the MMs is 
expected as these will likely be implanted manually in the 
muscles. Secondly, we considered a simplified linear model 
to describe the muscle displacement. This only captured 
longitudinal elongations/contractions of the muscles, while 
it is known that these undergo radial deformations as well. 
Thus, the ability of the approach in coping with more 
complex movements of the MMs remains to be tested. 

The outcomes of this work pave the way towards the 
development of an intuitive control system that can be used 
to drive a dexterous hand prosthesis, by significantly 
improving both the naturalness of the control strategy and its 
functionality. Furthermore, they are of great interests for a 
multitude of bioengineering applications that exploit multi-
magnet tracking in a constrained workspace.  
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ABSTRACT 

Several medical applications involve the use of remote 

magnet tracking for retrieving the position of tools 

instrumented with one or more magnets, when a free line-

of-sight between the magnets and the tracker is not 

available. Our group recently proposed to implant passive 

magnetic markers (i.e. permanent magnets) in the forearm 

muscles of an amputee in order to track the displacements of 

those muscles during contraction. The idea is to use the 

retrieved information to control a hand prosthesis. We called 

this the myokinetic control interface. However, besides the 

system feasibility, how much its accuracy and precision are 

affected by external noise sources has not been quantified 

yet.  

Here, through an experimental setup, we investigated 

the influence of different magnetic/electromagnetic 

interferences on the localization accuracy of three 

permanent magnets. The magnetic field generated by the 

magnets was collected both in interference-free conditions 

and in presence of disturbances. Localization errors 

achieved under different conditions, and for both raw and 

low-pass filtered signals, were derived. Results showed that 

the steel bar caused the maximum average localization error, 

equal to 9.8 mm and 74° in terms of position and 

orientation, respectively. The microwave oven caused 

instead the maximum localization variability, with a 

standard deviation of 0.21 mm and 2.2°. The low-pass 

filtering operation (5 Hz cut-off frequency) did not lead to 

significant improvement in the accuracy, resulting in an 

error decrease always below 7% compared to the unfiltered 

signals. 

This work is important because it gives a quantitative 

measure of the disturbances encountered in everyday life 

which could cause the failure of those systems exploiting 

remote tracking. 

INTRODUCTION  

The deprivation of a hand is an event that significantly 

affects a person’s ability in performing working and daily 

living activities (AdL), thus having a strong impact on 

his/her social life. In order to restore the lost motor 

functions in individuals with a hand amputation, two 

important factors are needed: first, the development of a 

dexterous prosthesis; secondly, the development of an 

intuitive Human-Machine Interface (HMI). Despite the 

recent research efforts to find a solution to these problems, 

both are still far from being solved. Indeed, on one hand a 

prosthesis able to replicate the dexterity of the natural limb 

has not been realized yet; on the other, commercially 

available prostheses often have more Degrees of Freedom 

(DoFs) than those controllable with current control 

strategies. In this regard, commercial hand prostheses are 

currently driven through HMIs which exploit the so-called 

direct control [1]. The latter consists in mapping the EMG 

signal recorded from agonist/antagonist muscle pairs using 

surface electrodes to a unique function in the prosthesis. 

Despite being intuitive and robust [2], this approach is 

hardly applicable to the control of multiple functions/DoFs, 

due to the lack of accessible independent control sources 

[3].  

In order to overcome this limit and enhance the number 

of naturally controllable DoFs, our group recently 

introduced an alternative solution, dubbed the myokinetic 

control interface [4]. The idea is to implant permanent 

magnets into the residual forearm muscles, track their 

displacement using external magnetic sensors, and use this 

information as control input for the prosthesis. This 

approach would allow to physiologically (i.e. 

simultaneously and proportionally) control multiple, 

independent DoFs of the prosthesis by exploiting simple, 

passive implants.  

In our previous work [5], we presented an embedded 

system which proved able to accurately localize in real-time 

up to five magnets. Such a system could potentially be used 

to control a robotic hand/arm. In order for this technology to 

be used in real-world scenarios, we need to make it robust 

against an environment which is largely corrupted with 

noise. Indeed, the presence of ferromagnetic elements and 

electromagnetic noise can potentially compromise the 

accuracy of the magnet tracking system. This problem has 

been poorly studied, since most of magnet tracking 

applications found in the literature are carried out in 

dedicated environments (e.g. an operating room), where the 

different noise sources can be avoided or modelled [6].  
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Figure 1: Experimental setup. The acquisition board and 

the three magnets to be localized are shown w.r.t. the 

disturbing object position (a). Those objects are: the 

magnet (b), the steel sheet (c), the steel bar (d), the hollow 

steel cylinder (e) and the microwave oven (f). 

Preliminary results on the efficacy of a shielding 

strategy were presented in our previous study [4]. However, 

a deeper understanding of the problem in a real-world 

scenario remains to be tested. For this reason, it is of pivotal 

importance to investigate the effects of different 

interferences in a real experimental setup, in order to 

quantify the entity of the disturbances and find solutions to 

ultimately reject them.  

MATERIALS AND METHODS 

System Architecture 

A myokinetic control interface is composed by two 

elements, namely the implanted magnets and a localizer 

embedded into the prosthetic socket which is responsible for 

continuously retrieving their poses (localization process). 

The latter is achieved by solving the so-called inverse 

problem of magnetostatics which, akin to previous works 

[4][5][7], was done by exploiting the well-known 

Levenberg–Marquardt optimization algorithm [8]. The 

acquisition unit already introduced in our previous work [5] 

was used to collect the magnetic field generated by the 

magnets. It consists of a custom board that collects signals 

from 32 three-axis magnetic field sensors (MAG3110, NXP 

Semiconductors NV, Eindhoven, Netherlands; full-scale 

output of ±10 G and sensitivity of 1 mG), arranged in a 4 × 

8 matrix, except for two sensors that are placed remotely to 

compensate for the geomagnetic field. The sensors are 

connected to a 16-bit architecture microcontroller 

(dsPIC33EP512MU810-I/PT, Microchip Technology Inc., 

Chandler, AZ, USA) which samples their readings and 

transmits them to the actual localizer.  

In our previous work [5] we proved the equivalence in 

terms of localization precision and accuracy between the 

embedded localizer implemented in C (running on a 

MIMXRT1050–EVKB, NXP Semiconductors, Eindhoven, 

NL) and the PC implementation of the same algorithm in 

Matlab (MathWorks, Natick, MA, USA). In this work, the 

latter was used in order to simplify the data analysis phase. 

Experimental Setup 

There exist different error sources which can affect the 

magnets pose estimation. Those due to model 

approximations, cross-talk effect between magnets, as well 

as sensor fluctuations have been extensively studied in our 

previous works [4][5][7]. Here, we addressed localization 

inaccuracies caused by environmental factors through a 

dedicated experimental setup (Figure 1). 

Specifically, three axially magnetized neodymium 

cylindrical magnets (d = 4 mm; h = 2 mm; M = 0.0254 

A·m2 and Br = 1.27 T) were fixed in anatomically relevant 

positions w.r.t the acquisition unit, using a rigid frame. 

Their magnetic field in presence of different noise sources 

(Table 1) was acquired and stored for offline analysis. Such 

interferences included the presence of close 

magnetic/ferromagnetic objects, as well as active 

electromagnetic noise sources (e.g. microwave oven, 

moving elevator). 

Table 1: Settings details 

 Disturbance Distance (D) Notes 

R
ep

re
se

n
ta

ti
v
e 

el
em

en
ts

 

Magnet 

5 cm; 

15 cm; 
25 cm. 

Same type of magnet as those 
used for the localization process. 

Steel bar C40 steel. D = 2.5 cm, h = 80 cm 

Hollow steel 

cylinder 

C40 steel. Dext = 1.3 cm,  

dint = 67 cm, h = 24 cm 

Steel sheet 
0.5 mm thick stainless steel.  

l1 = 32 cm, l2 = 27 cm 

A
d

L
 e

le
m

en
ts

 

Microwave 
oven 

Samsung, model GW712K. 

Acquired with power set to 750 

W.  

Electrical 

substation 
40 cm  

Distance is from the substation 

door. 

Elevator 70 cm 

Distance is from the floor. 
Produced by BAMA srl. 

Acquired both while elevator is 

still and moving. 

R
ef

. Disturbance-

free 
- 

Acquisition unit held still with 
no disturbance. Used as 

reference. 
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Figure 2: Results. Average position and orientation errors (ep, eo) and relative standard deviations (Sp, So) for the three 

magnets in all the experimented settings. 

The tested noise sources were selected as representative 

of objects that can be encountered in AdL. For instance, a 

locker gives an interference comparable to that of a metal 

sheet, while a mobile phone originates a disturbance due to 

the two magnets present in its speakers. Some noise signals 

were acquired by considering different board - noise source 

distances (namely, 5 cm, 15 cm and 25 cm), because it was 

interesting to see how they affected the localization process 

for different interference intensity. Others, instead, were 

only measured at a single distance (Table 1). 2000 samples 

per configuration were acquired with a sampling frequency 

of 13 Hz, resulting in ~150 seconds per recording session. A 

pre-processing step was implemented by subtracting the 

field measured by the remote sensors and subsequently 

applying a low pass filter with a 5 Hz cut-off frequency, 

which we considered a reasonable bandwidth for human 

movements. Both the raw and the low-pass filtered 

acquisitions were used for estimating the pose (i.e. position 

and orientation) of the three magnets, in order to compare 

the results.  

For assessing the entity of the disturbance, the average 

position and orientation errors (ep, eo) and their relative 

standard deviations (Sp, So) were derived. In order to isolate 

the noise contribution from the model and the cross-talk 

error, the mean value of the magnets poses derived using the 

interference-free signals were considered as a ground-truth 

reference.  

RESULTS 

The average localization error in terms of both position 

and orientation proved generally higher in presence of the 

interference cause by the steel bar (Figure 2). In particular, a 

maximum ep of 9.8 mm was shown by magnet #1 when the 

steel bar was put at the minimum tested distance (i.e., 5 cm). 

Such error was comparable to the expected range of motion 

of the implanted magnets inside the muscle, which is ~10 

mm [9]. In the same configuration, magnet #2 showed the 

maximum eo across all configurations, equal to 74°. All 

other noise sources generally led to a lower accuracy 

deterioration, resulting in a maximum ep (eo) value of 1.1 

mm (9.8°) in presence of the magnet at 5 cm. 
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The variabilities Sp and So acquired in presence of 

active noise sources proved significantly higher than those 

derived from the disturbance-free acquisitions (Figure 2). In 

particular, the maximum variability was always caused by 

the presence of the microwave, for which a maximum Sp 

and So value of 0.21 mm and 2.2° were derived, 

respectively. Ferromagnetic noise sources showed instead a 

smaller variability. 

The 5 Hz low-pass filtering operation generally led to a 

small error reduction when compared to the error obtained 

using the raw signals (<7% reduction). Indeed, a median 

relative error reduction of less than 1% for both ep and eo, 

and between 5% and 7% for Sp was derived (Figure 3). 

DISCUSSION 

In this work, we evaluated the effect of different noise 

sources that can be encountered in everyday life and can 

affect the tracking performance of a myokinetic control 

interface. Everyday objects and dedicated tools that mimic 

their characteristics were studied to assess this effect. Our 

results showed that, while it is possible to retrieve the poses 

of the three magnets under different noisy conditions, some 

settings led to a significant deterioration of the localization 

accuracy. 

Indeed, we found that specific ferromagnetic materials 

caused a considerable shift in the pose estimation, 

comparable to what is expected to be the range of motion of 

the magnets inside the muscles. Furthermore, some active 

noise sources (e.g. the microwave oven) induced high 

frequency oscillations in the estimated poses. The latter 

could be removed by applying a proper filtering approach. 

The cut-off frequency used in this work (5 Hz) led to 

modest improvements in the localization results, and we 

hypothesize this to be due to aliasing effects. Indeed, since 

the acquisition unit worked at 13 Hz, while the active noise 

sources may present higher frequencies, we were not able to 

entirely remove the interferences. However, by setting a 

higher frequency for the sensors acquisition, we can expect 

the noise contribution to be better discriminated and filtered. 

This remains to be tested in future works. Nevertheless, in 

most cases, the entity of the localization variability (Sp and 

So) was not relevant compared to the expected magnets 

range of motion (Figure 2). 

The outcomes of this work demonstrate the importance 

of developing a magnetic shielding system able to make the 

myokinetic control interface robust and reliable in a real-

world scenario. They are important because they provide a 

quantitative measure of the disturbances that could cause the 

failure of remote tracking applications. 
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Figure 3: Comparison between the position error standard 

deviation (Sp) in localizations from raw and filtered data in 

the microwave oven at 5 cm. 
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ABSTRACT 

Although myoelectric upper limb prostheses have been 

commercially available for decades, many patients who 

receive these devices abandon them due to their limited 

functionality. Some of these functional limitations are related 

to the difficulties in sensing activity in different muscle 

compartments with surface electromyography. We believe it 

is possible to overcome the limitations of myoelectric control 

through use of sonomyography, or ultrasound-based sensing 

of muscle deformation. Sonomyography can better 

distinguish individual muscle activity and provides access to 

control signals that are directly proportional to muscle 

deformation, which has the potential to significantly improve 

prosthesis functionality. In this paper, we will describe our 

work towards developing a low-power wearable imaging 

system that will enable sonomyographically-controlled 

prostheses.  

INTRODUCTION 

Major upper limb loss affects more than 41,000 

individuals in the United States alone [1] and can cause 

significant functional deficits. Despite recent advances in 

electromechanical design for prosthetic hands, development 

of control strategies has not kept pace. Surface 

electromyography (EMG) remains the predominant method 

for sensing muscle activity in order to actuate a prosthetic 

hand. As a result of the poor amplitude resolution and low 

signal-to-noise ratio [2], [3] for EMG signals, it can be 

challenging for prosthesis users to control a hand having 

more than one degree of freedom (DoF). More sophisticated 

signal processing algorithms relying on pattern recognition 

(e.g., [4]) can enable control of multiple DoFs but do not 

avoid the inherent problem of poor amplitude resolution. 

Alternative strategies such as targeted muscle reinnervation 

[5] or implanted electrodes [6] offer access to a richer set of 

control signals at the expense of surgical intervention and 

may not be tolerated by all individuals [7].   

To address these problems, we propose the use of a 

different sensing modality based on ultrasound. 

Sonomyography (SMG), or ultrasound-based imaging of 

muscle contractions, is a non-invasive technique that can 

spatially resolve individual muscles with sub-millimeter 

precision. Other research groups (e.g., [8], [9]) have 

demonstrated that SMG is a viable option for classifying 

individual finger motion. We believe our group is the first to 

develop a low-power wearable imaging system for SMG that 

ultimately could be incorporated into a prosthesis socket, and 

demonstrate the ability of SMG to enable proportional 

positional control in amputee subjects. In this paper, we will 

describe our prior work in this area, present some new 

previously-unpublished results, as well as describe the 

anticipated directions for our future work. 

BASICS OF SONOMYOGRAPHY 

Sonomyography involves real-time ultrasound imaging 

of muscle contractions during voluntary movement. For 

different movements that the individual performs, a unique 

group of muscle compartments are activated and undergo 

mechanical deformation. Ultrasound images capture a 

spatially- and temporally-resolved view of the forearm 

muscle deformation over time as the users perform different 

motions (Figure 1A). Individual ultrasound scanlines can be 

visualized over time as M-mode images, which can be used 

to track deformation of specific muscle compartments 

(Figure 1B). By applying custom-developed image analysis 

and machine learning methods to these images, we can 

extract control signals and use them to drive a prosthetic hand 

(Figure 1C). 
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GRASP CLASSIFICATION USING 

SONOMYOGRAPHY 

Ultrasound systems are becoming increasingly 

inexpensive and portable, and probes can now be connected 

to a laptop or smartphone through USB (e.g., Philips Lumify, 

Butterfly iQ, Mobisante). To demonstrate the feasibility of 

using these systems as part of a wearable prosthesis system, 

in a previous study, we recruited 10 able-bodied individuals 

and attached a handheld ultrasound probe to their forearm. 

Participants were asked to move each individual digit (thumb, 

index, middle, ring, little fingers) multiple times in sync with 

an auditory cue from a metronome. Activity pattern images 

corresponding to each movement were saved in a training 

database and were used to train a k-NN algorithm. Leave-

one-out cross-validation revealed the offline classification 

accuracy to be 98.33%. We also demonstrated that ultrasound 

echogenicity changes proportionally in response to different 

levels of thumb flexion, showing the potential for achieving 

proportional digit control. Taken together, these results show 

that inexpensive handheld ultrasound probes are adequate for 

sensing and classifying muscle activity [10]. 

We have also explored the use of low-resolution binary 

activity patterns as features for classifying complex grasping 

gestures [11]. In a group of six able-bodied individuals, we 

demonstrated an average offline classification accuracy of 

91% for 15 different grasps. Additionally, we showed that 

simultaneous wrist and hand movements (e.g., power grasp 

with wrist pronation) can be classified with > 90% accuracy. 

These results indicate that low-resolution imaging can be a 

viable option in a wearable ultrasound system. 

As a step towards further reducing the instrumentation 

footprint, we investigated the effect of using a sparse set of 

ultrasound scanlines for gesture classification [12]. We 

recorded ultrasound images from the forearms of five able-

bodied subjects performing five grasps (power grasp, pinch, 

index point, key grasp, wrist pronation) using a 128-element 

linear array transducer. We then selected different subsets of 

scanlines to quantify the extent to which classification 

accuracy was affected. Even with a subset of only four 

scanlines, classification accuracy was virtually unchanged 

(94 ± 6% for 128 scanlines, 94 ± 5% for 4 scanlines). This 

demonstrates the feasibility of using a small number of 

single-element transducers rather than a full array, which 

A. 

 

C. 

 

B. 

 

Figure 1. Schematic showing our approach to prosthetic control with SMG. (A) Muscle deformation over time is tracked with 

an ultrasound transducer placed on the forearm. The figure shows an able-bodied subject performing index finger flexion and 

middle finger flexion. The corresponding ultrasound images show different muscle compartments deforming for each 

movement. (B) M-mode images (depth over time) show deformation of different muscle compartments over time corresponding 

to individual finger movements (red, green, blue segments). (C) Control signals are extracted based on the muscle deformation 

associated with individual finger movements (red, green, blue traces) and are then mapped to movement of a prosthetic hand. 
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simplifies the instrumentation that would need to be 

incorporated into a prosthesis socket.  

SONOMYOGRAPHIC CONTROL IN AMPUTEES 

Musculoskeletal anatomy can differ significantly 

between the forearm of an able-bodied individual and the 

residual limb of an individual with transradial limb loss. It is 

therefore important to demonstrate that our methods for 

classifying finger movements and complex grasps in able-

bodied individuals are applicable to amputees as well.  

We tested the ability of our system to distinguish 

between five different hand motions (power grasp, wrist 

pronation, tripod, key grasp, and point) in a group of five 

able-bodied controls and five transradial amputees. Average 

cross-validation accuracy was 100% for able-bodied controls 

and 96% for amputees, indicating that the system could 

reliably predict motions in both groups [13]. 

Having demonstrated that real-time classification of 

motion endpoints is possible in amputees, we next sought to 

implement an extended version of our algorithms that would 

enable proportional position control [13]. Participants were 

asked to perform a target acquisition task in which they 

manipulated a computer cursor that moved vertically in 

response to the degree of grasp completion (Figure 2). A 

series of targets were presented at 10 different levels of grasp 

completion and we quantified participants’ ability to reach 

each target and stay within the target bounds. The task was 

repeated for each of the five hand motions. There were no 

differences in performance between groups, showing that 

sonomyography can enable proportional position control for 

both amputees and able-bodied individuals. 

WEARABLE LOW-POWER ULTRASOUND SYSTEM 

FOR PROSTHETIC CONTROL 

In our most recent work, we have developed a low-power 

ultrasound imaging system using a novel signalling method 

that uses low-voltage (5V peak to peak) transmissions. The 

system consists of a wearable band of 4 single element 

transducers (Figure 3) weighing less than 2 ounces, and 

benchtop instrumentation powered by a 7.4 V battery. This 

system consumes 350 mW/channel and provides comparable 

results to conventional pulse echo imaging and is well below 

FDA guidelines for acoustic exposure.  

In a preliminary study (previously unpublished), we 

tested the performance of this system. All study procedures 

were approved by the George Mason University Institutional 

Review Board, and we obtained an abbreviated 

Investigational Device Exemption to test this system on 

human subjects. We recruited 5 able-bodied subjects, who 

were asked to perform 9 different motions: key grasp, pinch 

and power grasp in three different wrist orientations: supine, 

neutral and prone. The acquired data from the 4-channel 

system were then analysed offline to calculate the confusion 

matrix and classification accuracy. Our results show that the 

system can differentiate between 9 movements with 94.7% 

classification accuracy on average. The key grasp in supine 

position was the motion with the lowest classification 

accuracy overall.  

DISCUSSION 

We believe our research thus far demonstrates numerous 

advantages of SMG compared to EMG, making it a 

promising modality for restoring dexterous movement to 

individuals using upper limb prostheses. One of the primary 

 

Figure 2. Representative time series plot showing an amputee performing the target acquisition task using power grasp. A 

cursor position of “0” corresponds to a fully relaxed state and a cursor position of “1” corresponds to motion completion.  

 
Figure 3. Wearable low-power 4-channel ultrasound 

system (A) for controlling a prosthetic hand (B).  
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benefits of SMG is that muscle activity can be sensed with 

high spatial specificity, even in deep-seated muscle 

compartments. As a result, cross-talk from muscles that are 

not associated with the intended movement is effectively 

suppressed. We have shown that SMG can classify five  

individual digit movements with 97% accuracy [10] and 15 

complex grasps with 91% accuracy [11] in able-bodied 

individuals. Importantly, similarly high classification rates 

can also be achieved in transradial amputees [13].  It is also 

noteworthy that full-resolution ultrasound imaging is not 

required to achieve these outcomes. Classification accuracies 

are not affected even when a subset of only four ultrasound 

scanlines are used. Single-element transducers may be used 

instead of a full array, reducing the instrumentation required 

for implementing SMG control in a standalone prostheses. 

Furthermore, the control signals derived from muscle 

activity using SMG have high signal to noise and are able to 

resolve sub-millimeter muscle deformations, so the resultant 

control signals enable finely-graded proportional positional 

control. We have demonstrated that individuals with 

transradial amputation can consistently achieve 10 different 

graded positions using SMG [13]. 

Unlike the control signals derived from EMG that must 

be mapped to velocity of a terminal device, the control signals 

from SMG can be mapped to position. This strategy is similar 

to natural motor control and doesn’t involve learning a new 

strategy, which is required for conventional myoelectric 

control. We have shown that learning to use SMG requires 

minimal training. In fact, transradial amputees were able to 

achieve 96% classification accuracy for 5 grasps after only a 

few minutes of training time [13]. 

CONTINUING WORK 

The majority of our work to date has been implemented 

in a benchtop setting. As a next step toward demonstrating 

the utility of SMG control, we are now working to translate 

our technology to a standalone research-grade prototype that 

can be integrated into a prosthetic socket. This will ultimately 

enable functional assessment in a laboratory setting. 

There are several critical questions that still need to be 

addressed as part of our continuing work. First, it is necessary 

to demonstrate whether adequate signal quality can still be 

maintained when the transducers are integrated into a socket 

and used for long periods of time. We have shown that 

classification accuracy is robust to changes in arm and wrist 

position for able-bodied individuals [11], but it remains to be 

seen whether coupling between the residual limb and 

transducer will be affected by changes in arm position, 

sweating, or loading introduced by the socket and terminal 

device. In future studies, we plan to investigate this 

systematically. Additionally, we will explore the extent to 

which use of SMG contributes to functional improvements 

compared to EMG. In particular, we will test whether higher 

scores on standard clinical tests, improved quality of 

movement, greater patient-reported satisfaction, and reduced 

cognitive load can be achieved through use of SMG.  

Despite these remaining questions, we believe our work 

demonstrates the feasibility of using SMG to achieve real-

time proportional positional control with limited training. 

Importantly, these outcomes can be achieve using a low-

power wearable imaging system for SMG that can 

incorporated into a prosthesis socket. We anticipate that this 

approach will ultimately enable intuitive proportional control 

of multi-articulated prosthetic hands and will contribute to 

improved acceptance of these devices.  
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ABSTRACT 

Restoring the sense of touch is a critical component for a 
closed-loop prosthetic limb. In an upper limb amputee, we 
explored regions on the residual limb that elicited sensory 
activation of the phantom hand through either physical touch 
or targeted transcutaneous electrical nerve stimulation 
(tTENS). We found that sensory sites on the residual limb 
responded to either physical touch or tTENS, but typically 
not both. Further, some regions of the phantom hand were 
only activated with one of the stimulation modalities, such as 
the thumb or wrist. Interestingly, some locations on the 
phantom hand could be activated with either physical touch 
or tTENS but at different locations on the residual limb. Our 
work helps highlight potential differences in perceived 
location of sensory feedback depending on the stimulation 
modality.         

INTRODUCTION 

Direct neural interfaces, such as the flat interface nerve 
electrode (FINE) [1], and advanced surgical techniques, such 
as targeted muscle reinnervation (TMR) [2] and targeted 
sensory reinnervation (TSR) [3], [4], have enabled significant 
advances in providing sensory feedback to upper limb 
amputees. The sense of touch can be restored to the phantom 
hand of using direct electrical nerve stimulation [5]. 
Recently, researchers used bioinspired stimulation models to 
convey perception of texture [6], mechanical pain [7], and 
increase naturalness of restored tactile sensations for 
improved functionality [8]. Restored sensation to the 
phantom hand can be achieved through noninvasive 
approaches including cutaneous vibration [3] and targeted 
transcutaneous electrical nerve stimulation (tTENS) [7], [9], 

[10]. Recently, researchers showed that you can even elicit 
illusory perception of phantom hand movement during 
cutaneous vibration after TMR [11]. In addition to continued 
research on prosthesis technology, such as advanced 
myoelectric control methods [12], [13] and tactile sensing 
[7], [14], [15], work on sensory feedback is progressing 
quickly.  

We explored the regions of phantom hand activation in 
an amputee using both physical touch and TENS. The 
purpose of the sensory mapping was to identify the 
similarities and differences between the two sensory 
activation modalities. Because sensory feedback is possible 
through both physical (cutaneous vibration) and electrical 
(TENS or direct nerve stimulation) modalities, it is important 
to understand the differences to provide useful and 
meaningful sensory information to prosthesis users.   

METHODS 

As a case study for comparing tactile feedback 
modalities, the participant discussed was a 64 year old male 
with a left transhumeral amputee who previously underwent 
TMR surgery  and   has   an   osseointegrated   interface   for   
prosthesis  attachment  in  his  residual  limb.  The  participant  
provided written informed consent to be a part of this study. 
This research protocol was reviewed and approved by  the  
Johns  Hopkins  Medicine Institutional Review Boards in 
accordance with all applicable Federal regulations governing 
the protection of humans in research.  

Sensory stimulation of the participant’s phantom hand 
was achieved through either physical touch or targeted 
TENS. To active the phantom hand with physical touch, the 
participant used his intact hand to identify and palpate known 
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regions, on the residual limb, of sensory activation in the 
phantom hand. Once a stimulation site on the residual limb 
was found, the participant used a marker to draw out the 
activated regions. 

Targeted TENS was used to electrically activate 
underlying nerves in the residual limb to elicit sensory 
perceptions in the phantom hand. Sensory mapping was 
performed by scanning a 1 mm beryllium copper (BeCu) 
probe across the surface of the skin on the residual limb. The 
frequency (f) of electrical stimulation ranged from 2 – 4 Hz 
and the pulse width (pw) was 5 ms. The amplitude of the 
stimulation (I) ranged from 1.5 – 1.8 mA. We’ve validated 
the tTENS method in previous studies [7], [9] The locations 
that elicited sensory activation in the phantom hand were 
marked on the residual limb.      

RESULTS 

Sensory activation of the phantom hand is shown in Fig. 
1. Locations on the residual limb that correspond to regions 
of the phantom hand are labeled in Fig. 1A-C. The sites on 
the residual limb that activate the phantom hand during 
physical touch are labeled with P, whereas the sites that 
respond to tTENS are labeled with E. The phantom hand 
activation for each stimulation site is shown in Fig. 1D-E. 
The participant reported that sensory stimulation was 

perceived like a pressure or a light touch and was localized to 
the phantom hand for both physical touch and tTENS.  

The phantom thumb was only activated during physical 
touch (P1) whereas the palm and wrist were only activated 
during electrical stimulation (E5 and E6, respectively). The 
arrows next to P1 and E6 indicate that the participant could 
feel the physical touch (P1) or the tTENS probe (E6) moving 
within the sensitive region on the residual limb. The 
participant reported that these sensations were localized to 
the phantom hand.  

The index and middle fingers were activated during both 
physical touch and tTENS. Further, the region of activation 
was similar for both modalities in the index finger, but 
differed slightly in the middle finger. For both index and 
middle fingers, the stimulation sites on the residual limb were 
different for the physical and electrical stimulations; 
however, they were relatively close to each other. 

DISCUSSION & CONCLUSION 

Based on our observations, the sites on the residual limb 
that are linked to activation of the phantom hand are different 
for physical touch and tTENS. That being said, we did 
observe that some of the locations, specifically for the index 
and middle fingers, are close in proximity. The fact that these 
stimulation locations are close could be indicative of the 
underlying sensory nerve fibers that respond to TENS being 

Figure 1: Phantom hand activation from physical and electrical stimulation. (A) Sensory stimulation sites on the medial portion
of the arm that correspond to the index finger, middle finger, and wrist. (B) Little finger and (C) thumb sensory stimulation
sites on the residual limb. Larger circles represent sites where physical touch activates the phantom hand, and the smaller circles
represent sites that activate the phantom hand during tTENS. (D) Sensory activation in the phantom hand during physical touch
of the corresponding sites on the residual limb. (E) Sensory activation in the phantom hand during tTENS. 
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along the same nerve fascicle with fibers that innervate the 
skin at locations where physical touch elicits sensory 
activation in the phantom hand. 

We believe that the physical touch sites on the residual 
limb are likely areas of the skin where sensory nerve fibers 
reinnervated superficially and thus produce action potentials 
as a result of physical manipulation. The underlying nerves 
in regions activated by tTENS are likely deeper in the soft 
tissue and are activated by the electrical pulses. It is 
reasonable to consider the possibility that the physical touch 
activation sites contain nerves reinnervated into the skin, and 
tTENS responsive sites are regions where nerve fibers or 
fascicles are close enough to the surface of the skin to allow 
electrical activation of the fiber or fascicle. The mechanical 
manipulation at reinnervated sites or where nerve fibers 
terminate likely causes the perceived sensation in the 
phantom hand. The tTENS sites on the residual limb are 
likely regions where electrical stimulation penetrates along 
the path of a fiber, eliciting the phantom sensory activation. 

Because of the different mechanism of nerve activation 
(mechanical manipulation of reinnervated nerves and 
electrical stimulation of underlying nerve fibers or fascicles), 
it might explain why we didn’t observe physical touch and 
tTENS sites being at exactly the same location on the residual 
limb. The force exerted on the skin by the TENS probe was 
likely not large enough to elicit mechanical activation of the 
reinnervated sites on the residual limb that corresponded to 
sensory activation of the phantom hand during touch.    

Some regions, like the thumb and wrist are only activated 
by either physical touch or tTENS, respectively. The thumb 
responding to physical touch but not tTENS could be due to 
the underlying nerve fibers or fascicle innervating that 
location being too deep for the electrical stimulation to reach 
it. Similarly, the region of tTENS wrist activation could have 
an underlying nerve fascicle that is superficial enough to be 
activated by electrical stimulation, but the reinnervation 
occurs deeper in the soft tissue, thus preventing mechanical 
stimulation on the surface of the skin. 

Every amputation case is different and each participant 
requires thorough sensory mapping to understand the 
perceived sensations in the phantom hand due to physical and 
electrical stimulation. Although we previously explored 
tTENS in multiple subjects [7], [9], every sensory map is 
different and varies between participants. As closed-loop 
prosthesis research continues to advance, it is important to 
explore and quantify the various forms of sensory stimulation 
modalities and resulting perceptions in amputees.  
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ABSTRACT 

This paper describes a portable, prosthetic control system that uses a modified Kalman filter to provide 6 degree-of-

freedom, real-time, proportional control. We describe (a) how the system trains motor decoding algorithms and controls an 

advanced bionic arm, and (b) the system’s ability to record an unprecedented and comprehensive dataset of EMG, hand 

positions and force sensor values. This technology enables at-home dexterous bionic arm use, and provides a high-temporal 

resolution record of daily use—essential information to determine clinical relevance and advance future research. 

INTRODUCTION 

Commercially available prostheses suffer from a variety 

of limitations, including: a limited number of pre-determined 

grips, temporal delay due to sequential inputs used to select 

grips, fixed output force (e.g., from classifier algorithms), 

extensive training that takes days to weeks, and non-intuitive 

methods of control (e.g., inertial measurement units on arm 

or feet) [1]–[3].  Advanced control of multiple degrees-of-

freedom, and the training associated with them, are not 

always amenable to deployment on portable systems with 

limited computational power. However, a Kalman filter [4], 

modified with non-linear, ad-hoc adjustments [5], [6], can 

provide a computationally efficient  approach to 

proportionally and independently control multi-degree-of-

freedom prostheses. 

In a previous publication we demonstrated supervised 

at-home use of a portable, prosthetic control system that 

relied on a modified Kalman filter to provide 6 degree-of-freedom, real-time, proportional control [6].  Here, we describe this 

system including: (a) how it can be used to train motor decoding algorithms and control an advanced bionic arm; and (b) its 

ability to record an unprecedented dataset of electromyography (EMG), hand positions and force sensor values. This technology 

constitutes an important step toward the commercialization of dexterous bionic arms by demonstrating at-home use of 

proportional control, multi-degree-of-freedom prostheses and recording high-temporal resolution data describing the arm use.  

METHODS 

Design Considerations 

A portable take-home system designed to research advanced bionic arms should meet several criteria for optimal 

performance and data collection: (a) the system must accurately and efficiently control the prosthetic arm; (b) training of the 

prosthetic arm must not be too long or burdensome to prevent its daily use; (c) high temporal resolution data should be stored 

automatically so that researchers can study at-home use without influencing the users with in-person observation; and (d) the 

system must be easy to use and allow the user to adjust control preferences.  

Hardware and Signal Acquisition 

Figure 1 – Portable take-home system includes the DEKA LUKE Arm 

and battery, the Ripple Nomad neural interface processor and battery 

(hidden) and a front-end amplifier (amplifier for surface EMG shown 

here).  
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The components of the portable system are shown in Figure 1, 

including: (a) the 6 degree-of-freedom DEKA LUKE Arm (Manchester, 

NH) and its 13 force sensors (0 to 25.5 N) and rechargeable battery; (b) the 

Nomad Neural Interface Processor (Ripple Neuro, Salt Lake City, UT) 

with a more than 4-hour, rechargeable battery, a 500 GB disk storage and 

up to 512 channels of data acquisition; and (c) the front-end amplifier 

(Ripple Neuro, Salt Lake City, UT) which filters (15 to 375 Hz bandpass; 

60/120/180 Hz notch) and amplifies 1-kHz sampled EMG data. Surface 

EMG in intact participants was recorded with a Micro + Stim front-end, 

and implanted EMG in the amputee participant was recorded with an 

active gator front end. Ripple also provided firmware with the Nomad for 

data acquisition (EMG at 1 kHz; LUKE Arm positions and force sensors 

at 33 Hz), communication with the LUKE Arm (CAN bus protocol), 

ability to start and stop compiled decoding algorithms via external buttons, 

and WiFi communication to interface with external devices. The Nomad 

runs Linux 8 (jessie) environment with an Intel® Celeron™ processor 

(CPU N2930) at 1.83 GHz with 2 GB RAM. Algorithms were converted 

to C using MATLAB® Coder and compiled for stand-alone use on the portable Nomad. 

Training, Feature Calculation and Motor Decoding 

The Kalman filter presented by Wu et. al [4] was modified with external, ad-hoc thresholds as described in George et. al 

[6]. To improve stability and reduce the effort required to sustain grasping movements, a latching filter was also applied to the 

output of the modified Kalman filter [5]. Training the modified Kalman filter first requires the user to mimic a computer-

controlled prosthetic arm as it cycles through several movement trials for each degree-of-freedom. Features were then 

calculated for each differential EMG pair (496 total from 32 single-ended electrodes) by taking the mean-absolute value of a 

moving 300-ms window. Using the movement kinematics and the EMG features, the compiled algorithm recursively chose the 

48 most-descriptive features using the  Gram-Schmidt forward selection algorithm [7] and then trained the Kalman filter 

matrices [4]. 

Human Subjects 

Eight EMG leads (Ripple Neuro LLC;  Salt Lake City, Utah, USA) with 4 contacts each, and a ninth lead with an electrical 

reference and ground, were implanted in the lower-arm extensor and flexor muscles of a trans-radial amputee as described 

elsewhere [6]. Intact individuals used the portable system with a bypass socket [8] and a custom-made neoprene sleeve with 

32 surface EMG electrodes, plus 1 reference and 1 ground (George et al., MEC, 2020). All experiments and procedures were 

performed with approval from the University of Utah Institutional Review Board. 

RESULTS 

 Three external buttons were employed to create a simple user-friendly interface. Pressing the first button initiated a new 

training session. The second button initiated a previously trained and compiled motor decoding algorithm so that the user could 

have on-demand control of the arm. A third button 

was used to toggle between position or velocity 

control modes or to freeze a degree-of-freedom at 

a desired position.  

The system was trained in about 7.5 

minutes—including a movement mimicry session 

(252 sec) and the subsequent selection of the 

optimal channels and computation of the steady-

state Kalman filter matrices (about 199 sec) (Table 

1). Training data included 4 trials for each of the 

thumb, index, middle/ring/little and wrist flexion 

and extension; thumb adduction and abduction; 

wrist pronation and supination; and grasping and 

extending all digits together. The trained Kalman 

Table 1: Computational times required for training and 

testing (running) the steady-state, modified Kalman 

filter. 

Process Computation Time 

Training: 

Data collection 252 s 

Channel Selection 198 s 

Train Steady State Kalman 

Filter 

0.7 s 

Total Time 7.5 min 

Testing: 

Update Positions < 1 ms 

Figure 2 - Two-handed activities-of-daily living in the home using a bypass socket 

and the portable system: (a) using scissors, (b) donning a sock and (c) folding a 

towel. 
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filter was automatically saved to a log file and could be recompiled onto 

the Nomad as a stand-alone application for on-demand use (e.g., the 

second external button). This was accomplished over the Nomad’s 

wireless network using a laptop and required less than 30 seconds.  

Prior to use, the steady-state Kalman gain matrix (K) was calculated 

by iteratively running the filter until the fluctuations in every value of 

the gain matrix were less than 1x10-6, reaching steady state after about 

25 ms. With the gain (Κ), the observation (𝐻) and the state-transition (𝐴) 

matrices, a steady state matrix (Γ) was then calculated: 

 Γ = A −  Κ ∗ H ∗ A (1) 

Thus, new position predictions (�̂�) were calculated with only two matrix 

multiplications involving the previous positions and the 48 selected 

EMG features (z):  

 �̂�𝑛𝑒𝑤 =  Γ ∗  �̂�𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + K ∗ z (2) 

This simplification avoided a computationally expensive matrix 

inversion required by the recursive algorithm. Consequently, the time 

required to predict new positions and update the prosthesis was, on 

average, less than 1 ms, far below the update loop speed of 33 ms (see 

Table 1). The portable system was used at home to perform two-handed 

tasks with both intact participants (Fig. 2) and a trans-radial amputee [6].  

Comprehensive EMG (sampled at 1 kHz), arm positions and arm 

forces (both sampled at 30 Hz) were stored on the Nomad while a trans-

radial amputee grasped, held and released an orange (Figure 3). Figure 

3 shows one differential pair of the implanted EMG (iEMG) and the 

index finger positions and force. A grasp occurred when the index 

position moved from -1 to +1. During the grasp, the difference in position between the motor decoding algorithm’s estimated 

and the actual positions occur because the object prevents the finger from flexing to its full extent (Fig. 3b). This caused a 

dramatic increase in force (Fig. 3c). Data from the 32 EMG channels, 6 arm positions and 13 force sensors are saved at a rate 

of 250 MB/hour in an ‘.hd5’ format. As a result, the 500 GB capacity of the Nomad can record nearly 2000 hours of arm use. 

DISCUSSION 

We have shown that a modified Kalman filter can be trained in about 7.5 minutes to proportionally control 6 independent 

degrees-of-freedom using the Nomad portable processor. The portable system has been used in the lab and at home by intact 

persons, as well as by a trans-radial amputee to perform tasks not possible with his commercial prosthesis [6]. Even with an 

ordinary microprocessor, position updates were generated much faster than the 33-ms loop speed, providing the users with 

real-time control. The portable system also stores EMG, position and force data with unprecedented temporal resolution. This 

comprehensive dataset will be crucial for fully understanding how proportional control algorithms are used during unsupervised 

at-home use.  

 Figure 3 highlights how the comprehensive data recorded by the Nomad reveals complex interactions between the various 

degrees of freedom for improved control. The stable index finger position implies that the amputee held the orange with a fixed 

grasp from pick up to release; however, the force data revealed a dip in force during this same period. Close inspection of the 

position data of the opposing thumb (not shown) also shows that a subtle readjustment occurred to improve the grasp stability. 

Because degrees of freedom are coupled together during object manipulation, the connection between each degree of freedom 

must be considered. Due to complex regional pain syndrome, the trans-radial amputee in this study had kinesiophobia and had 

not used his hand for several years prior to amputation. As a result, the recorded EMG signals were often very weak (Figure 

3a). However, with these weak signals, the portable system and motor decoding algorithms still provided the participant the 

functional control necessary to complete common daily tasks in his own home. 

Rich datasets like this will help researchers study at-home, unsupervised prosthesis use; improve motor decoding 

algorithms and training paradigms [9] by understanding the types of grasps and degrees of freedom commonly used; understand 

when mastery of prosthetic control occurs and when interventions might be applied or lifted; better describe noise encountered 

Figure 3 - (a) A differential implanted EMG channel 

(iEMG, at 1 kHz), (b) motor decoding algorithm estimates 

and actual arm positions (at 30 Hz) and (c) force sensor 

values (at 30 Hz) recorded while a trans-radial amputee 

grasped, held and released an orange.  
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in real-world environments and design features and algorithms that reduce its influence on motor performance; and address 

many other unanswered questions about at-home use of advanced upper-limb prostheses. These rich datasets will also enable 

future at-home trials to study the benefits and use of high-resolution sensory feedback from intraneural electrical stimulation—

a feature soon to be added to the portable system. 

The most computationally demanding aspect of training was performing Gram-Schmidt forward selection to choose the 

48 most useful features out of the 496 differential pairs. Despite taking considerable time up front, this down-selection method 

has several advantages [7]. First, choosing the features up-front enables fast loop speeds (below 33 ms) by eliminating the need 

to calculate complex features (e.g., principal components) or even all 496 differential EMG features during each update cycle. 

Second, forward selection recursively chooses independent and informative features using orthogonality reduction and 

correlation with the training kinematics. This ensures that each selected feature describes kinematics and not uncorrelated noise. 

Refined movements, the hallmark of proportional control algorithms, account for little variance and could be inadvertently 

discarded using techniques agnostic to the training kinematics. Finally, orthogonalization in the forward selection algorithm 

avoids redundant features and singularities. 

A key feature of the portable system is that the time from powering the system to having real-time proportional control is 

less than 8 minutes. The amount of time required to both collect training data by mimicking arm movements and train the motor 

decoding algorithm are related to the number of trials for each mimicked movement. In this work, and published elsewhere, an 

amputee familiar with the training process only trained with 4 trials on each degree-of-freedom and a grasp and extension of 

all digits. With this training, he was able to control the arm in the lab and perform tasks not possible with his commercial 

prosthesis at home [6]. A less experienced user may require training with more trials; however, even if a naïve user requires 

twice as many trials the total training time (mimicry and computation) is still under 15 minutes. 

In its current form, the portable system is only able to communicate over a CAN bus python socket with the DEKA LUKE 

Arm. However, other custom communication sockets could be designed to communicate through the micro D-sub, USB or 

Bluetooth connections available to Nomad for proportional control of and data logging from other prosthetic limbs. 

In the future, the portable system will also include sensory stimulation for haptic feedback in response to the forces 

experienced by the prosthesis. Ultimately, this system will be used in upcoming take-home clinical trials to record high-

resolution data and study advanced, proportional control algorithms and sensorized prostheses in trans-radial amputees. 
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ABSTRACT 

The PSYONIC Ability Hand is a commercially available multiarticulated prosthetic hand with six degrees of 

freedom and sensorized digits. Through using contact reflexes and vibration feedback, users can grasp delicate objects 

without damaging them. We show results that two subjects successfully grasp hollow eggshells and fragile cups 

statistically significantly more often when provided with contact reflexes and touch feedback. 

INTRODUCTION 

The Ability Hand 

PSYONIC has developed the commercially available Ability Hand—a compliant, robust, sensorized prosthetic 

hand to be used by people with upper limb amputations. The Ability Hand is: 

• Multiarticulated – all five digits flex/extend and the thumb rotates both electrically and manually 

• Robust – compliant fingers allow the hand to withstand blunt force impacts to the fingers 

• Lightweight – 460 g, carbon fiber palms make the hand light and strong 

• Fast – using brushless motors with field-oriented control, the fingers can close 90 degrees in 200 ms 

• Waterproof – IP64 waterproof rating, enabling washing the hand in water 

• Sensorized – pressure from the fingertips, fingerpads, and lateral edges maps to a vibration motor 

 

The Ability Hand uses a standard electronic quick disconnect and integrates with commercially available 

control systems (e.g. Coapt Pattern Recognition, OttoBock/RSL Steeper myoelectrodes, etc.). Apple and Android 

phone apps are available to configure the hand over Bluetooth as well as make firmware updates. USB-C charging 

allows the hand to be fully charged within one hour. 

 

Fig. 1 The Ability Hand attached to a socket 
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Sensory Feedback 

Poor manipulability due to the lack of sensory feedback is a leading cause of prosthesis abandonment [1-2]. While 

body-powered prostheses can give users some sensory feedback, these devices are limited in achievable grasps and 

can cause overuse injury in the shoulders of the user. There are several functional advantages to providing sensory 

feedback in a multiarticulated prosthesis, including contact detection and body self-identification [3]. An external 

study by Matulevich et al. [4] shows that users could grasp foam, crackers, and hollowed eggs statistically significantly 

faster (between 1.4x-3.3x) when using contact detection from pressure sensors on a prosthetic hand. Another external 

study by Berke et al. [5] showed users performing tasks more than 15 seconds faster on average when provided with 

contact detection. 

In the Ability Hand, all five digits can be sensorized with four pressure sensors in each digit. The index and little 

fingers have pressure sensors on the distal fingertip, the fingerpad, and two on the outer lateral edges. The thumb, 

middle, and ring fingers typically have pressure sensors on the distal fingertip, the fingerpads, and one on each lateral 

side of the digit. These pressure sensor locations were chosen due to their increased likelihood of contacting objects. 

The sensor providing the highest pressure value is mapped to a vibration motor whose amplitude changes with the 

pressure applied. 

To test the efficacy of the sensory feedback, we recruited two volunteer subjects. The first subject, S1, was a 

male, age 42, with a right proximal below-elbow amputation. The second subject, S2, was a male, age 78, with a left 

distal below-elbow amputation. S1 was fitted with a commercial muscle pattern recognition system developed by 

Coapt that we integrated to use with PSYONIC’s hand. S2 used a custom linear transducer mechanism developed by 

PSYONIC that uses shoulder movements to control opening and closing the hand. 

Subjects S1 and S2 were asked to use the hand at home for 1 week. Immediately prior to and after the home trial, 

both subjects participated in two experiments: 1) a cup grasping task, and 2) an eggshell cracking test. All methods 

were approved by IRB #13920 at the University of Illinois at Urbana-Champaign. Subjects also consented to images 

and videos to be taken during the experiments. Preliminary experiments were performed in Akhtar et al. [6]. 

In the cup grasping task the subjects were asked to grasp ten empty plastic cups. The distance between the outer 

tips of the index finger and thumb was measured to determine the amount of deformation of the cup. This process was 

repeated over 4 conditions: 1) with Touch Feedback and with Visual Feedback, 2) without Touch Feedback and with 

Visual Feedback, 3) with Touch Feedback and without Visual Feedback, and 4) without Touch Feedback and without 

Visual Feedback. The order of the conditions was randomized. These conditions were selected to observe differences 

in grasping performance when providing touch feedback, both with and without visual feedback. 

For the eggshell cracking test participants were asked to grasp ten hollowed eggshells without cracking them. We 

recorded the number of eggshells cracked. Again, the process was repeated under the same four conditions as the cup 

grasping task. When providing touch feedback to subjects, a contact reflex was implemented in the hand that caused 

the hand to automatically stop when contact with the object was made. Fig. 2 shows a typical pressure sensor reading 

when grasping a hollowed eggshell. 

 

Fig. 2 Reading from pressure sensor on the finger pad of the distal index finger when Subject S1 grasped an eggshell. 
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Results from Subjects S1 and S2 across both sessions are given in Table I for the cup grasping task and Table II 

for the eggshell cracking test. For the cup grasping task, there was a statistically significant difference between 

feedback conditions as determined by a two-way repeated measures ANOVA (F(3,3) = 567.7, p < 0.0005). Post-hoc 

tests revealed that the touch feedback conditions (with or without visual feedback) statistically significantly 

outperformed both conditions without touch feedback (p<0.05). Consequently, we conclude that by providing touch 

feedback with contact reflexes users deform the plastic cup significantly less. There were no statistically significant 

differences between sessions, and the session had no significant effect on the condition. 

 

Table I Results from cup grasping task 

 
Session Touch, Visual (mm) Touch, No Visual 

(mm) 

No Touch, Visual 

(mm) 

No Touch, No Visual 

(mm) 

S1 
1 80.3 79.5 37.4 39.4 

2 78.7 82.2 51.4 48.9 

S2 
1 77.3 80.2 38.6 38.9 

2 87.3 89.5 49.5 54.3 

Grand Mean 80.9 82.9 44.2 45.4 

 

For the eggshell cracking test, there was a statistically significant difference between feedback conditions as 

determined by a two-way repeated measures ANOVA (F(3,3) = 21.63, p = .016). There was no statistically significant 

differences between sessions, and the session had no significant effect on the condition. Again, touch feedback with 

contact reflexes resulted in better performance, with less eggshells cracked compared to when no touch feedback with 

contact reflexes was given (with or without visual feedback). 

 

Table II Results from eggshell cracking test 

 
Session Touch, Visual (# 

cracked) 

Touch, No Visual (# 

cracked) 

No Touch, Visual (# 

cracked) 

No Touch, No Visual 

(# cracked) 

S1 
1 0 2 7 9 

2 0 3 6 6 

S2 
1 0 0 7 7 

2 2 1 8 6 

Grand Mean 0.5 1.5 7 7 

 

Fig. 3 shows images of the Subject S1 performing the eggshell cracking test. When touch feedback with contact 

reflexes was turned on, the subject could easily grasp the eggshell without cracking it, even while blindfolded. When 

touch feedback with contact reflexes was turned off, the subject usually cracked the eggshell, even when he could see 

it. Fig. 4 shows Subject S2 successfully grasping the eggshell while blindfolded when receiving touch feedback with 

contact reflexes. 
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Fig. 3 Subject S1 cracking an eggshell when not receiving touch feedback while seeing the eggshell (left), but 

successfully grasping the eggshell when receiving touch feedback while blindfolded (right). 

 

 

 
Fig. 4 Subject S2 successfully grasping the eggshell when receiving touch feedback while blindfolded. 

 

Qualitative feedback from the subjects after the home trials was positive. Subject S1 reported he mostly wore the 

hand during work. Common tasks included holding drinks, driving, shaking hands, and sweeping. He liked the light 

weight of the prosthesis as well as the bionic look. Subject S2 liked the fact that our hand could work with both off-

the-shelf myoelectric systems and a linear transducer system. He used a linear transducer system for the trial that he 

found to perform vastly better than a myoelectric system. He used this mainly to grasp glasses to drink from, for 

exercising on a stairmaster, and for assistance in typing (e.g. holding down the shift button on a keyboard). For 

improvements, he expressed that multiple settings for the pressure sensor contact reflexes would be helpful, as some 

objects require tight grips while others require delicate grips. 
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ABSTRACT  

Conventional motor assessments provide limited actionable information to prosthetic clinicians and engineers. Recent 
work has sought to develop objective ways to measure psychological aspects of a person controlling a prosthesis to develop 
more powerful motor assessment tools. One area of emphasis has been to develop a way to objectively measure device 
ownership, a key component of embodiment. Assessment of ownership has historically been limited to subjective 
questionnaires but here we use a spatial interference reaction time task, the crossmodal congruency task (CCT), to objectively 
assess this key factor in supporting prosthesis use. We improve the CCT protocol to increase its usability. We aim to establish 
a causal link between ‘device ownership’ and the crossmodal congruency effect, a correlational link observed in previous work. 
In this paper we summarize our efforts to develop a comprehensive platform to assess ownership and share results from an 
initial study. 

 
INTRODUCTION 

 
Emerging prosthetic devices using peripheral nerve interfaces [1], [2], targeted reinnervation [3], [4] and non-invasive 

control and feedback strategies [5], [6] show promise. However, the methods used to assess these technologies often provide 
limited information. Performance measures, such as the Box and Blocks Test [7], the Southampton Hand Assessment Procedure 
[8] and the Jebsen Hand Function test [9], provide little mechanistic insight with results that can be distorted by interacting 
compensatory movements [10]. Functional assessments like the Assessment of Capacity for Myoelectric Control [11], although 
shown to be reliable [12], rely on subjective scoring provided by trained raters. Recent efforts in the development of motor 
system assessments have focused on objective measures that are theoretically-grounded in neuroscientific and psychological 
principles [13]. Quantifying aspects of a prosthetic system that are involved in control of an intact limb may aid in identifying 
deficiencies in the engineered systems that might explain differences in observed motor performance. The goal is to use 
assessments to inform, target and customize device improvements to try to better mimic their biological system counterparts.  

Recent efforts to develop objective assessments have focused on measuring the psychological factors that are involved in 
a motor system. One goal in engineering a prosthetic device is to convey to the user a sense of embodiment [14]. That is, the 
device is felt as an integrated part of one’s body [15]. Although there remains some debate about what psychological aspects 
contribute to the sense of embodiment, it is thought that both a sense of ownership and a sense of agency (or control) over the 
device are required  [16], [17]. Much work has been done to assess ownership, agency, and embodiment overall but these 
studies typically rely on subjective questionnaires [4], [18]. Furthermore, these studies are often correlational, lacking direct 
experimental manipulations to identify causal links between factors contributing to embodiment. When experimental 
manipulations are undertaken, they usually focus on one aspect of embodiment (e.g. ownership [19] or agency [20]), and not 
their interaction.  

We have undertaken a series of studies [21] to explore embodiment using a standardized simulated prosthesis system. 
We aim to simultaneously assess the sense of agency and the sense of ownership using objective measures. In this study we 
focus on ownership assessment. But why is it important to measure ownership and agency with respect to prosthetic devices? 
We argue that if a device is more incorporated into one’s body image by feeling (ownership) and moving (agency) like one’s 
own biological limb, it will be more functional and more useful. We anticipate that increases in ownership and agency will 
lead to better motor performance, reduced user frustration, increased device use and reduced rates of device rejection which 
has been shown to be a key roadblock in prosthetic device implementation [22]. 

Our recent work has developed objective ways to measure the sense of ownership using an adapted crossmodal congruency 
task (CCT) [23], [24]. An increase in ownership is correlated with an increase in the reaction time (RT) difference between 
congruent (aligned) and incongruent (misaligned) sensory stimulation. This RT difference is called the crossmodal congruency 
effect (CCE) score. Here we present an improved protocol for assessing ownership using a simulated prosthesis. First, we 
highlight the improvements we have made on our previous work and that of Marini et al. [25]. Then we describe results from 
an initial study and ongoing experiments to validate this new experimental platform. Finally, we present our upcoming 
experimental plans to better understand the dynamics of device ownership and its interaction with the sense of agency.  
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IMPROVING THE CROSSMODAL CONGRUENCY TASK 

We first sought to develop an improved objective ownership assessment. Across individuals, we observe high variability 
in CCE scores [26]. This would imply that within-subject assessment may be more informative (as in [25]). However, due to a 
practice effect observed with the repeat use of the CCT [26], we expect changes in CCE scores with repeat task completion. 
Therefore, we looked to improve the implementation of the CCT by reducing inter-individual variability to allow for the use 
of between-subjects designs in future experiments. 

One potential reason for the high variability in CCE scores was due to the random trial order presented to participants. In 
our previous work [23], the stimulus condition (congruent vs. incongruent, and location) was randomized independently for 
each trial. Typically, half of testing trials are congruent and the other half incongruent. However, if during initial practice and 
testing trials the actual percentage congruent were not 50% (which is likely in small samples of random trials) we might see 
different learning dynamics occur. Congruency expectation might lead to different responses and variable CCE scores, early 
model learning that could persist throughout testing. When presented with different percentages of congruent trials in other 
psychophysics tasks, we see significant changes in the RT differences between congruent and incongruent stimuli [27].  

We analyzed previously collected CCT data [26] to determine if a congruency sequence effect is present in CCT results. 
RT data on correctly discriminated trials were sorted into four groups representing the possible congruency combinations for 
each pair of trials: Congruent then congruent (CC); Incongruent then congruent (IC); Incongruent then Incongruent (II); and 
Congruent then Incongruent (CI). We calculated the RT z-scores for each subject 
and ran a one-way ANOVA with Bonferroni-corrected post-hoc comparisons 
for the results in each trial congruency pairing. 

Trial pairs for which congruency is switched show slower RTs than when 
congruency is consistent between two trials (Figure 1). Although this 
observation was not statistically significant as determined by a one-way 
ANOVA, the trend in Figure 1 shows a congruency sequence effect. Therefore, 
we updated the CCT protocol to use pre-generated pseudo-random sequences of 
trial conditions as is common practice with studies using different interference 
tasks like the Stroop Test and the Flanker Task [27]. We generated pseudo-
random sequences of test stimuli that ensured each paired order of trials 
appeared equally often. This ensured no more than 4 trial types (e.g., 4 congruent 
trials) could occur in a row. We generated 4 different test sequences of 64 trials 
each, and the order of these 4 sequences is randomized for each participant. We 
similarly generated 3 practice sequences of 8 trials each and the order of their 
presentation was randomized during the practice phase. 

IMPROVING THE PROSTHESIS SIMULATOR SETUP 

One study using a simulated prosthesis with CCE assessment used a fixed prosthesis mounted to a table with the able-
bodied user controlling hand open and close [25]. This approach could potentially limit the degree of embodiment attainable 
and provides for less realistic movements than the freely moving simulated prosthesis we use here. Our previous work in this 
area used a heavier simulated prosthesis [23], [28]. By reducing the mass, from 1.43kg to 0.66kg, we expect reductions in EMG 
signal noise and user fatigue. We also use an improved mechanotactile tactor [21] to apply force feedback on the user’s 
fingertips, driven proportionally by signals from force sensitive resistors embedded in the index finger and thumb of the 
prosthesis. We ensured that with no force applied to the finger/thumb sensors, there was no contact between the tactor and the 
user’s skin. This approach was not taken in [23] and may explain some unexpected results in that study.  

 
TEST PLATFORM VALIDATION 

 
We ran an initial study to determine if the newly developed system would operate consistently and lead to consistent 

ownership assessments. Written informed consent per Rhodes College IRB oversight was obtained for each participant. After 
a participant donned the simulated prosthesis and MyoBand (see [21] for hardware details), EMG settings were calibrated. Two 
of the eight electrodes were used: the one with the highest signal-to-noise ratio (SNR) during wrist flexion and the one with the 
highest SNR during wrist extension. The participant’s baseline EMG activity and maximum voluntary contraction (MVC) 
activity were measured and used to set the activation threshold and gain, respectively, for both electrodes. The threshold was 
set at about two times the baseline EMG activity level, and the gain was adjusted to map the prosthetic hand velocity from the 
threshold (V0) to the MVC level (Vmax). Wrist flexion was mapped to hand close, and wrist extension to hand open.  

Figure 1. RTs for different congruency 
sequence pairs during the CCT. 
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Participants trained by grasping an object with the prosthesis (right hand) and moving it to the left over a barrier 14.5 cm 
high. The object was dropped after crossing barrier, the experimenter retrieved the object and placed it back on the right side 
of the barrier for the user to start the next movement. Two participants completed 30 training movements with a break halfway 
through for two different training conditions. In the voluntary control condition, the person’s EMG activity controlled the hand. 
In the involuntary control condition, the experimenter controlled the opening and closing of the hand with the participant 
matching the hand movement with their EMG activation. After training, participants completed a questionnaire assessing 
embodiment, ownership, agency and localization. Table 1 shows the ownership statements to which users indicated their 
agreement on a continuous scale [from Strongly Disagree to Strongly Agree] that was converted into a -5 to +5 score. 

Switching between involuntary and voluntary control would affect agency as shown in a concurrent study [29], but not 
ownership. We observed similar ownership scores across both conditions in both participants (Figure 2).  

 

                    
DISCUSSION 

 
This study’s results suggest that the updated simulated prosthesis is a suitable platform to test questions related to device 

ownership. The device is lighter than those used previously and we observed consistent ownership results via questionnaire 
assessment in an initial study. Ongoing studies will attempt to validate the objective psychophysics-based CCT by 
investigating the correlation between questionnaire results and CCE scores. We are also seeking to determine the training 
duration necessary to elicit device ownership. To further validate the CCT as an ownership assessment we can experimentally 
manipulate the level of ownership (e.g. by adding feedback delay), and then observe the sensitivity of the CCT response 
compared to the sensitivity of questionnaire results. 

We provide some evidence that the CCE is subject to the congruency sequence effect like the Stroop task [30]. For future 
statistical analysis, we will use a multi-level mixed effects design to further control cofounding variables and quantify order 
effects more precisely. Additionally, we will run a CCE experiment which varies the percentage of congruent and incongruent 
trials to see if the congruency sequence effect can be mediated by participant expectations of future trials. 

This is ongoing work intended to characterize embodiment development during prosthesis use. Our next step is to 
characterize the training duration necessary to elicit ownership with our prosthesis simulator system. Previous studies using 
simulated prostheses have shown quite varied durations of training necessary from about an hour [23] to 30 hours [25]. We 
expect to observe embodiment with much shorter durations of training because we are using a dynamic prosthesis simulator, 
unlike [25], that is lightweight (unlike [23]) and we have adopted a new protocol aimed to reduce the inter-individual variability 
in CCE score results.  

In our study establishing the relationship between training duration and ownership for this device, we will also implement 
the CCT along with the questionnaires. Both previous studies using CCE assessment with robotic hands [23], [25] did not 
correlate CCE results with results from established questionnaires. We expect to see ownership increase with increased training 
duration and expect a positive correlation between questionnaire results and CCE scores. 

Once the validation studies are complete, we can test various questions related to prosthesis ownership and how this 
concept interacts with other psychological aspects of device use. For example, we can look at how emerging feedback systems 
affect device ownership. We will also investigate the relationship between ownership and agency in prosthesis use. Previous 
work has focused on one of these aspects alone, or relied on subjective questionnaires. Along with concurrent work developing 
a robust measure of agency [29], we can objectively assess both ownership and agency at the same time in the same platform. 

 

OWNERSHIP 
I felt like I was looking directly at my own hand, rather than at a 

prosthetic hand. 
I felt like the prosthetic hand was my hand. 
I felt like the prosthetic hand was part of my body. 
I felt like the prosthetic hand belonged to me. 
It seemed like the prosthetic hand became to resemble my real hand. 
 

OWNERSHIP CONTROL 
I felt like my real hand was turning rigid. 
It seemed like I had more than one right hand. 
The prosthetic hand started to change shape, colour, and appearance 

so that it started to (visually) resemble my hand. 

Figure 2. Average response on ownership questions for 
each participant and condition. 

Table I. Ownership post-training questions [31] 
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ABSTRACT 

Myoelectric technology has the potential to improve 

prosthetic device functionality. However, device rejection 

rates remain high, an observation partly attributed to a lack of 

sensory feedback and difficult control strategies in these 

devices. Sense of agency, or feeling of control over one’s 

actions, may be able to address these high rejection rates, but 

existing studies tend to rely on subjective questionnaires to 

study this experience. Evidence suggests that intentional 

binding, the compression of the perceived time interval 

between a voluntary action and its sensory effect when an 

individual feels in control, may be a quantifiable correlate of 

the sense of agency. However, existing intentional binding 

protocols are susceptible to expectation bias and are 

attentionally demanding for participants. Psychometric 

assessment tools, such as two-alternative forced choice, may 

be able to quantify this subjective experience while avoiding 

bias and attentional demand. In this work, we developed an 

experimental protocol that uses a psychometric assessment 

method, namely a two-alternative forced choice paradigm, to 

study intentional binding and the sense of agency. Here we 

present preliminary results from 2 able-bodied participants 

using a myoelectric simulated prosthesis fitted with 

mechanotactile feedback during voluntary and involuntary 

control conditions for a grasp-and-release task. These results 

show that responses to sense of agency questionnaire items 

are affected by voluntary and involuntary control of a 

prosthesis. 

INTRODUCTION 

Researchers report high rejection rates among advanced 

myoelectric prosthesis users [1] with mean adult and pediatric 

rejection rates of 23% and 32%, respectively [2]. Lack of 

sensory feedback [3], [4] and difficult control strategies [5], 

[6] are both argued to play a part in myoelectric prosthesis 

rejection. These factors may reduce an individual’s sense of 

embodiment over a device, which may also contribute to 

device rejection [7]. 

Embodiment, which refers to the feeling that occurs 

when one experiences their body as their own and that they 

exist within it [8], [9], is made up of three interrelated factors: 

localization, ownership, and agency. Localization refers to 

one’s assumption of where their body exists in space [10], 

[11]. The sense of ownership describes the feeling when one 

experiences their body as belonging to oneself [11]. Agency 

occurs when agreement between sensory predictions and 

sensory experiences leads to a feeling of control over one’s 

actions and the resulting impact on the surrounding 

environment [12]. The experience is stronger when predicted 

sensory consequences of a voluntary motor action match the 

actual sensory consequences of the action [4]. Agency likely 

has great implications for prosthesis use because it depends 

on sensory information and certainty of control, which are 

factors that contribute to prosthesis rejection [3], [6]. In fact, 

increasing the sense of control may improve prosthesis 

acceptance [4]. 

This sense of control (agency) is commonly investigated 

using questionnaires, which provide valuable insight into the 

experience [13], [14]. However, the subjectivity in 

questionnaire response systems can introduce bias and limit 

comparison of results. A quantitative and objective 

investigation of psychophysical phenomena would allow for 

unbiased data analysis and comparison. When used alongside 

subjective questionnaires, it may lead to a more holistic 

understanding and informed approach to prosthesis 

technological development and training methods.  

Intentional binding (IB) refers to the compression of the 

perceived temporal interval between action and effect when 

an individual feels in control of their actions, which may 

serve as a quantifiable correlate of the sense of agency [15]. 

Temporal estimation procedures can be implemented to 

quantify and compare a participant’s estimated action-effect 

intervals for voluntary and involuntary control. In these 

experiments, involuntary control is used as a baseline value 

in which participants have no sense of agency over the 

movement. However, reporting methods used in existing 

studies are susceptible to response bias or are attentionally-

demanding [16]. The use of psychometric approaches to 

quantify IB may mediate these issues. 
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One psychometric assessment method, known as a two-

alternative forced-choice (2AFC) task, presents participants 

with two stimuli that differ by a specific parameter. The 

participant is asked to consistently identify and select the 

target stimulus out of the two stimuli. A correct response 

indicates that they are able to perceive the difference between 

the two stimuli. This procedure uses an adaptive approach to 

determine the level of difference between the two stimuli 

presentations at which the participant is able to indicate the 

correct target stimulus with only 50% (chance) accuracy [6], 

[17]. This method can be applied to IB research by 

quantifying a participant’s perceived action-effect intervals 

for voluntary control with respect to involuntary control. 

Here we developed an experimental protocol that uses a 

psychometric assessment method to objectively quantify the 

sense of agency, by determining a participant’s perceived 

action-effect intervals for voluntary control with respect to 

perceived action-effect intervals for involuntary control. In 

order to ascertain the validity of this protocol, we first had to 

determine the influence of voluntary and involuntary control 

on sense of agency with a commonly used questionnaire [22]. 

MATERIALS AND METHODS 

Experimental setup 

The experimental setup consisted of a robotic hand with 

four fingers and a thumb that were driven simultaneously 

using a linked bar mechanism attached to a single Dynamixel 

servo motor (MX-64AT). This hand allowed for only 1 

degree of freedom for hand open/close. Participants 

controlled the robotic hand using isometric muscle 

contractions sensed by an array of eight low power multi-

channel operation electrodes (MyoarmTM band) placed 

around their forearm [18]. A PC running MATLAB (Release 

2019b, The MathWorks, Inc., Natick, Massachusetts, United 

States) and BrachIOplexus software [19] was used to record 

the control signals during the experiment. The controlled 

robotic hand was attached to the participant using a modified 

commercially available wrist brace (MedSpec Ryno Lacer) 

that restricts hand and wrist movements. Two mechanotactile 

tactors [20] were fitted on the participant’s index and thumb 

fingers of the restricted hand and noise-cancelling 

headphones playing Brownian noise were placed over the 

participants ears to ensure that audio cues were occluded. A 

black sheet (1 x 1 m) was placed over the able-bodied 

participant's shoulder to ensure that their arm was completely 

obscured, encouraging embodiment of the prosthesis hand 

(Figure 1. a). The same experimental setup can be used for 

persons with transradial amputation by replacing the 

simulated prosthesis system with a modular transradial socket 

[21] with the mechanotactile tactors placed on the residual 

limb (Figure 1. b). 

Experimental protocol 

Participants: 2 able-bodied female participants over the 

age of 18 years were recruited for this study. Written 

informed consent according to Rhodes College IRB was 

obtained from participants before conducting the experiment. 

Participants wore a simulated prosthesis (Figure 1. a) and 

sat comfortably in front of a table that had a cube (57mm x 

57 mm x 57 mm) on it and a barrier (W x H: 25 x 14.5 cm) 

placed perpendicular to the surface of the table. 

Mechanotactile tactors were placed on their fingertips and 

electromyography (EMG) signals from the wrist 

a) 

 

b) 

 

Figure 1: Experimental setup. a) An able-bodied 

participant wearing the simulated prosthesis with 

mechanotactile tactors attached to their index and 

thumb fingers. Note that the participant’s hand is 

covered by a black sheet during the experiment. b) A 

participant with a transradial amputation wearing 

the modular transradial prosthesis with 

mechanotactile tactors placed on their residual limb. 

Table 1: Sense of Agency questionnaire items adopted from 

[22]. (A) denotes Agency; (AC) denotes a control question 

Item Type 

The prosthetic hand moved just like I wanted it to, like it was 

obeying my will. 
(A) 

I felt like I was controlling the movements of the prosthetic 
hand. 

(A) 

I felt like I was causing the movement that I saw. (A) 

When I initiated movement, I expected the prosthetic hand to 

move in the same way that I intended. 
(A) 

I felt like the prosthetic hand was controlling my will. (AC) 

I felt like the prosthetic hand was controlling my movements. (AC) 

I could sense the movement coming from somewhere between 

my real hand and the prosthetic hand. 
(AC) 

It seemed like the prosthetic hand had a will of its own. (AC) 
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flexor/extensor muscles were mapped to the prosthetic hand’s 

open and close controls. The contact forces on the prosthetic 

hand were mapped to the function of the mechanotactile 

tactors placed on the participant’s fingers. The experimental 

protocol consisted of the following 3 blocks. 

Block 1: Voluntary control 

Participants controlled the prosthesis using the calibrated 

EMG controller and received tactor feedback on their 

fingertips when the prosthetic hand contacted an object, with 

a force proportional to that which was placed on the 

prosthesis’ fingers. Each participant was asked to operate the 

prosthesis to complete a grasp-and-release task that consisted 

of grasping an object, transporting it over a barrier, placing it 

down, and releasing the object (30 trials with a 2-minute 

break halfway through). After this training, the participant 

was asked to fill out an embodiment questionnaire. Table 1 

shows a list of the sense of agency items that were on that 

embodiment questionnaire.  

Block 2: Involuntary control  

The experimenter controlled the opening and closing of 

the prosthetic hand and the participant received tactor 

feedback on their fingertips when the prosthetic hand grasped 

the object. The participant was asked to mimic the prosthetic 

hand movement by contracting the muscles corresponding to 

this observed movement during the grasp and release phases 

of the task [grasping the object, transporting it over a barrier, 

placing it down, and releasing it (30 trials with a 2-minute 

break halfway through)]. After these trials, the participant 

filled out the embodiment questionnaire. 

Block 3: IB familiarization and testing 

During the familiarization phase, the participant was 

asked to grasp an object, and attend to the moment when the 

prosthetic hand began to move and the moment that they 

received the tactor feedback. Ten trials of voluntary control 

familiarization occurred before the ten trials of involuntary 

control familiarization. The testing phase of this block 

included pairs of trials; one voluntary trial and one 

involuntary trial. Involuntary trials included variable speeds 

(either faster or slower control). Participants were presented 

with the trial pairs and were asked to indicate which of the 

two trials felt faster. If participants were correct, the 

difference between the speeds of the two trials was reduced 

until the participant achieved a 50% correct response rate. If 

they were incorrect, the difference between the two trials was 

increased (following an adaptive staircase method). The test 

progressed until the termination condition of the adaptive 

staircase was reached (23 reversals). The final value achieved 

indicated the participant’s perceived action-effect intervals 

for voluntary control with respect to their perceived action-

effect intervals for involuntary control. 

Outcome measures: Data included the responses to the 

embodiment questionnaire items, rated on a visual analogue 

scale (0-10). This questionnaire consisted of 20 items that 

were randomly ordered. In this paper, we focus on 8 of these 

items pertaining to the sense of agency. The mean of the 

responses to the 4 agency items for each participant and the 

mean of the responses to the 4 agency control items were 

reported. Data from testing block 3 are not reported here. 

RESULTS 

Similar to our previous study [23], the average responses 

to agency questionnaire items for the voluntary control with 

mechanotactile feedback were at least 4.2 times higher than 

the average responses to control agency questionnaire items. 

Conversely, the average responses to agency questionnaire 

items for the involuntary control with mechanotactile 

feedback were at least 1.6 times lower than the average 

responses to control agency questionnaire items. These 

results indicate that the sense of agency as measured using a 

subjective questionnaire may be affected by voluntary and 

involuntary control conditions. Comparing participants’ 

average responses to agency questionnaire items between 

voluntary and involuntary conditions show that involuntary 

control may have a negative effect on sense of agency and, 

therefore, the overall embodiment of a device. 

DISCUSSION 

The aim of this study was to determine the influence of 

voluntary and involuntary control on the sense of agency with 

a commonly used questionnaire assessment [22]. This step is 

crucial for the development of an experimental protocol to 

objectively quantify the sense of agency by correlating it with 

intentional binding. We found that involuntary control with 

feedback may reduce the sense of agency as determined by 

the administered questionnaire. This finding may be a result 

of participants not being in control of the prosthetic hand, but 

also could have been driven by any unexpected effect of the 

prosthesis touching an object. In our recent work [23], we 

showed that even with voluntary control, delaying the 

mechanotactile feedback (> 500 ms) can negatively influence 

responses to agency questionnaire items. It is worth noting 

that responses to control questions were slightly affected by 

the order of condition presentation. These observations 

warrant an investigation of an objective assessment 

 

Figure 2: Average response to sense of agency 

questionnaire items for voluntary and involuntary control 
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procedure that allows for an unbiased approach and simple 

reporting method. We propose to utilize IB and the agency 

questionnaire, to further investigate the roles that IB, agency, 

and embodiment play in advanced myoelectric prosthesis use. 

This investigation can be implemented in able-bodied 

participants with the use of a simulated prosthesis, or in 

participants with amputation, which will allow for the 

investigation into IB in naïve as well as experienced 

myoelectric users. The methodology presented will allow for 

quantification of IB in a range of prosthesis users with various 

sensory feedback strategies in a standardized manner. 

A standardized IB method will allow for more efficient 

data comparison between research centres. To evaluate this 

assumption, we plan to implement this protocol in a multi-

site investigation with a collaboration between three research 

centres at the University of Alberta, Edmonton, AB; the 

University of New Brunswick, Fredericton, New Brunswick; 

and Rhodes College, Memphis, TN, USA. The breadth of this 

investigation will assist in moving the field of embodiment 

research toward a more standardized approach, especially for 

the investigation of psychophysical phenomenon in 

myoelectric prosthesis users. A standardized methodology 

will lead to more efficient evaluation of myoelectric devices 

and technology, prosthesis training protocols, and evaluation 

of prosthesis embodiment. 
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ABSTRACT MYOELECTRIC CONTROL WITH AN ARDUINO-BASED SYSTEM 
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ABSTRACT 

This paper presents the design and evaluation of an Arduino-based system for electromyogram (EMG) signal 
measurement and prosthesis control with the abstract decoder. It achieves a 2 kHz sampling rate for two EMG 
channels, processes EMG signals on-the-fly and sends the prosthesis control command via a CAN bus. We tested the 
accuracy and responsiveness of the system in real-time by playing back previously recorded EMG signals through a 
Tip, Ring, and Sleeve (TRS) function generator. The correlation coefficients between the mean absolute value (MAV) 
of the original signals and the measured signals were above 97%. 

INTRODUCTION  

In clinical settings, myoelectric control is achieved by dual-site bang-bang control. Other methods such as pattern 
recognition, direct control, regression and abstract decoding have been introduced as alternatives [1]. Pattern 
recognition extract features from the EMG signals and groups the inputs into discrete movement classes. This 
technique often entails complex machine learning procedures, and it is normally implemented on high-performance 
processors [2, 3]. Recently, customised embedded electronic systems have been developed to enable real-time 
prosthesis control to approximate clinical settings [4, 5]. However, the width of adoption of the embedded system, as 
a research tool, is slow due to the cost and resources that are required to develop a reliable, flexible system. 

In this work, we introduce a simple Arduino UNO-based embedded sensing and processing system for prosthesis 
control with abstract decoding [6, 7]. We evaluate the function and reliability of the system using previously-recorded 
EMG signals.  

METHODS 

System architecture 

The conceptual design of the proposed embedded system is presented in Figure 1. 

 
Figure 1: Conceptual design of the proposed embedded system 

Our Arduino UNO-based system comprises four modules for data collection, EMG signal processing, prosthesis 
control and data transmission. The data collection module can sample up to two channels of EMG as fast as 2 kHz per 
channel. The signal processing module works at 100 Hz. It removes the DC bias of the input data, reduces the signal 
noise through an averaging filter and normalises the EMG signal based on calibration, in accordance with Dyson et 
al. [8]. The control module determines the grip patterns with an abstract decoder and sends the motor commands to 
the robo-limb™ prosthetic hand (Össur, Reykjavík, Iceland) via the data transmission module.  
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Abstract decoder 

Unlike machine learning-based approaches, abstract control relies on human learning for the operation of the 
myoelectric-controlled interface (MCI) [6]. Abstract decoding promotes the co-contraction of muscle groups that are 
not co-contracted naturally for new functional gains or the utilisation of natural co-contractions. An example of the 
MCI is as outlined in Figure 2 (a). In our proof-of-concept implementation, we split the control interface into six zones, 
named the rest zone (zero), grip zones one to four and the outlier zone (five). Users control the instantaneous position 
of the blue 2D cursor with the control signals that are extracted from the two EMG signals. To activate a grip on the 
prosthesis, the user should hold the cursor in a grip zone (one to four) for a certain period. Figure 2 (b) shows a 
representative cursor trajectory for an individual trial. 

In our implementation, the cursor timer goes to sleep when the cursor stays at the rest zone or the outlier zone. 
Once the cursor moves to a grip zone, the timer records the period when the cursor is held within it. A grip command 
associated with the zone is sent to the prosthesis if the cursor stays within the zone for 0.25t =  seconds. The 
movement of the cursor to another zone will reset the timer (base time: 10 milliseconds). The system will not send 
motor commands to the prosthesis when the cursor stays at the rest zone or the outlier zone so the hand will maintain 
at the last grip until a new grip is determined. 

In this implementation, we considered four grips, the normal grip, the thumb park grip, the three-jaw chuck grip 
and the pinch grip, and assigned them to zone one to four, respectively (Figure 3). 

  

(a) (b) 

Figure 2: The 2D MCI space and a representative cursor trajectory. 

    
(a) (b) (c) (d) 

Figure 3: The grips correspond to (a) zone one, (b) zone two, (c) zone three and (d) zone four 

RESULTS 

We tested the performance of the proposed embedded system. A MATLAB program controlled the stimulation 
of the signals through the TRJ function generator, as demonstrated in Figure 4. A potential divider and an amplifier 
circuit processed the signal to mimic the EMG signal measured by the Gravity Analog EMG sensors (OYMotion 
Technologies, Shanghai, China). The results are presented in two sub-sections. The performances of the data collection 
module and the signal processing module are in Section one. Section two presents the functional test of the control 
module and the data transmission module. 
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Figure 4: The embedded system connected with a prosthetic hand and TRJ function generator 

Analysis of the EMG signal 

Figure 5 shows the comparison between the original EMG signals and the signals measured from the embedded 
system. The original signals were previously recorded by D360 amplifier (D360, Digitimer, UK) at 2 kHz sampling 
rate for 12 seconds. Since the sampling rate of the embedded system was set to 1 kHz, linear interpolation was applied 
to the sampled signals to maintain the same length as the original signals. The measured signals closely matched to 
the original signal. The correlation coefficient between the moving MAV of the original signals and that of the 
measured signals are 99.43% and 97.58% at two channels. 

 
(a) 

 
(b) 

Figure 5: The comparison between the original EMG signals and the measured signals at (a) channel one and 
(b) channel two. 

Evaluation of the control module 

The state of the prosthesis controller is changed by the control signals. Figure 6 shows an example in which the 
embedded system sent two motor commands to the prosthetic hand. The first command was sent at the 856th  frame, 
which was 0.75 second (75 frames) after the increase in the control signal on channel two. It changed the prosthetic 
hand from the normal grip to the pinch grip. The second command was sent at the 1279th  frame, which was 0.37 
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second (37 frames) after the participant released the muscle on channel 1. The prosthetic hand returned to the normal 
grip after receiving the command. The time required to change the state of the prosthesis was keeping the cursor 
position at the same zone for 0.25 second (25 frames) as expected. Although the cursor temporally moved to zone two 
between the 1243th  frame and the 1254th  frame, the abstract decoder did not send a command to the prosthetic hand. 

 
Figure 6: The EMG control signals and the corresponding changes in the state of the prosthesis 

DISCUSSION 

The analysis of the EMG signals and the controller states demonstrates that the Arduino development board is 
capable of EMG data collection. The measured signals on both channels maintain high similarity with the original 
signals generated from the TRJ function generator. The abstract decoder working at 100 Hz can correctly indicate the 
location of the cursor and control the prosthetic hand with a 10-millisecond temporal resolution. Its simplicity and low 
computational cost requirement allow it to be implemented on the Arduino board. 

This paper presents a new embedded system with off-the-shelf components that allows myoelectric control 
through the abstract decoder. With a £17 equipment cost, the proposed system can achieve a maximum 2 kHz sampling 
rate for 2-channel EMG measurement and the real-time prosthesis control. It removes the barrier for many researchers 
to perform take-home experiments without designing a customised embedded system. We aim to present a demo of 
this system at MEC2020 and release the design specifications and code in due course. 
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ABSTRACT  

The anthropomorphic hands with multi-articulated digit are appealing compared to conventional 1-Degree-of-

Freedom hands with 3-digits 3-joints. The coordinated movable joints ease to grasp objects with variety of shape and 

size while reducing compensative joint movements of the residual limb and torso. Therefore, the developers state their 

design superiority based on the number of capable prehensile forms, which are important index to describe the static 

function of holding object(s) within the hand. However, to conduct tasks, the response and efficiency grasping motion 

are nevertheless important. Further understanding the effect of multi-articulated digit design on the static and dynamic 

functions, in relation with myoelectric control is a notable topic. In this research, we conducted a comparative 

experiment between 3-digit hands: 3-joint conventional, Ottobock DMC hand, and 7-joint multi-articulated fingered 

THK TRX hand. Gripping time of pick-and-place task on large and small diameter cylinders were measured. 3 non-

amputee subjects participated in the test using hand mounted on a quasi-prosthesis socket. As result, the large diameter 

cylinder’s average gripping time of 7-joint hand was 0.77 seconds, larger than that of the 3-joint hand, 0.42 seconds. 

For the small diameter cylinder, the gripping time for 7-joint hand was shorter than the 3-joint hand. 

INTRODUCTION 

The anthropomorphic prosthetic hands with multi-articulated digit are appealing compared to conventional 1-

Degree-of-Freedom (DoF) hands with 3-digits 3-joints structure. The coordinated movable joints of anthropomorphic 

hands ease to grasp objects with variety of shape and size while reducing compensative joint movements of the residual 

limb and torso. Therefore, the developers state their design superiority based on the number of capable prehensile 

forms [1, 2], which are important index to describe the static function of holding object(s) within the hand. However, 

to conduct manipulation tasks, the dynamic functions, i.e. response and efficiency gripping motion, are nevertheless 

important. Fukuda et al. [3] reports difference between the proportional speed and the constant speed myoelectric 

control of a hand on the screen. The trajectory of approaching the hand to the target and the gripping time operating 

the virtual hand on a monitor showed different timing of closing the hand. Bouwsema et al. [4] reports on their 

investigation of two grasping tasks and a reciprocal pointing task of a myoelectric transradial prosthesis in comparison 

to intact hand. Decoupling of reach and grasp were reported with other characteristic of kinematics of grasping. 

Experiment to analyze the trajectory and motion time of conducting tasks with myoelectric hand with multi-articulated 

digit should indicate design solution to improve static and dynamic functions of the hand mechanism. In this paper, a 

basic experiment is reported comparing the performance of 3-digit myoelectric hand with multi-articulated and 

traditional digits. 

METHODS 

Two 3-digit 1-DoF hand is compared. As a conventional prosthetic hand, Ottobock 8E38=6 DMC plus (referred 

to as DMC hand) is applied. The MP joint in the digits are coupled and driven. As Multi-articulated digit hand, THK 

TRX hand prototype (referred to as TRX hand) is applied. The index and middle fingers are designed with link-

coupled 3-joint mechanism. The PIP joint of the finger flexes in relation to the MP joint, and a coil spring in the DIP 

joint operates to adapt the joint angle to settle the contact. The thumb’s MP joint is driven in relation to the finger’s 
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MP joint with a linear actuator. The TRX hand is operated by two microcomputers: THK SEED-MS3A (referred to 

as MS3A) and SEED-BL1A (referred to as BL1A), as in Figure 2. The MS3A acquires and process the myoelectric 

sensor signals and BL1A operates the linear actuator speed for opening and closing the hand.  

 To experiment the effect of articulated finger on the reach-gasp-pick-place-release task, subjects’ operations of 

the hands were measured and the gripping time are compared. Motion capture and analysis system (Nobby Tech, 

VENUS 3D), with 4 cameras (Optitrack Flex 13, 1280x1024, Sampling:120 Hz) are arranged on the desk and 6 

markers (Diameter:6.6 mm) were attached to the hands in relation to compute the joint angles of the digits and hand 

position and posture (Figure 3). The experiment was approved by the TDU IRB (#28-97, 29-83, 30-65, 31-094). Three 

able-bodied subjects (average 23.3 SD0.4 years-of-age, all male and right handed) participated donning a quasi-

transradial socket with hands connected distal to the sound hand, after giving a written consent (Figure 3). Two objects, 

a large diameter cylinder (D:48 mm, H:100 mm, 112 g) and a small diameter cylinder (D:30 mm, H:100 mm, 42 g), 

were to be grasped at the lateral side. The large diameter cylinder was requested to hold with power grip form, and 

small diameter cylinder with precision grip form at the distal phalanges. The right direction was set as positive of X 

axis, the depth direction as positive Z axis, and the vertical up direction as Y axis (Figure 4). The initial position of 

the hand was set on the edge of the desk. The object initial position was set on the desk (H:780 mm) at the position 

Z:300 mm, X:-100 mm and released at position Z:300 mm X:100 mm. The subject was seated at H:440 mm, Z:-300m, 

in front of the desktop workspace. The experimental was proceeded as follows:  

1) Adjust the width between the thumb and finger to 50 mm by grasping a wooden rectangular parallelepiped 

(50x50x100mm) before measurement.  

2) Place the hand in the initial position.  

3) Reach, gasp, pick, move the object to the right 200 mm and release.  

4) Returned the hand to the initial position.  

The experiment was conducted with the small diameter cylinder first and the large diameter cylinder latter for both 

hands. Subjects practiced 5 times before measurement. Total of 120 trials (10 trials for 2-objects, 2-hands, 3-subjects) 

were recorded and the latter 5 trials in each condition were used for evaluation. 

 

 

 

 

Figure 1: DMC (top) and TRX (bottom) hand’s full 

open/close state 

Figure 2: DMC hand and TRX hand’s 

controller components 

 

Figure 3:  Experimental setup of the DMC hand on quasi-transradial socket 

DMC hand Elastic band for 

EMG Sensors 

Quasi-transradial socket 

Connector 
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RESULT & DISCUSSION 

The gripping time, which consist of time during the reach and grasp motion, of the hands were calculated from 

the joint angle valuation of the index finger. The results showed that 3-joint DMC hand took approximately twice 

longer time to grip the small diameter cylinder, average 0.73 s, than the 7-joint TRX hand, 0.38 s, and on the contrary, 

DMC hand took approximately half to grip the large diameter cylinder, 0.42 s, than the TRX hand, 0.77 s (Figure 5). 

T-test showed that the differences were significant: the small diameter cylinder (t=2.22, df=28, p<0.05), and the large 

diameter cylinder (t=-2.38, df=28, p<0.05).  

The changer over between the cylinder diameter size is further inspected. Light et al. reported, that the mean norm 

task time of power grasping objects, heavy- and light-weight, is longer than that of precision (tip and tripod) grip in 

their result analysis experiment with the SHAP test with intact upper limb subjects [5].  The 7-joint hand shows a 

resembling result to the SHAP test, however the time for small diameter cylinder is shorter. This is due to the initial 

“hand open” finger position to make the fingertip travel smaller.  The articulated mechanism allows the fingertip to 

be moved faster making the 3-joint hand slower to grip. On the large diameter cylinder, the 3-joint hand became faster 

with the hand gripping the object with the proximal part of the hand. The assumption of the cause of this was that digit 

shape of the 3-joint hand makes the Form Closure of the grip [6] easier and with less movement to enable short 

gripping time. To confirm this assumption, the time to the contact of the cylinder and the hand were computed (Figure 

6). The 7-joint hand contact was 0.17 s and shorter than that of 3-joint hand. The T-test between the hands showed the 

difference was significant (t = 2.68, df = 15, p > 0.05). This showed that 7-joint hand required additional time to have 

the distal phalanges to contact the object for Form Closure to stabilize the force to proceed to pick the object. The time 

surrounded by the dotted line on the bar of TRX_large can be considered as the drawback of mimetic mechanism of 

the human digit. Furthermore, this lag can be the disappointment of the DMC hand user to feel that multi-articulated 

hands to be cumbersome. 

 

Figure 4:  Experimental setup for measurement of pick-and-place task of small and large diameter cylinder. 

  

Figure 5. The gripping time in each condition Figure 6. Average time till contacting the 

object with the hand 
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CONCLUSION 

The effect of the multi-articulated finger control to perform pick-and-place task was discussed by comparing the 

gripping time of small and large diameter cylinders. A 7-joint THK TRX hand and the 3-joint Ottobock DMC hand 

are operated by non-amputee subject and motion capture system is used to evaluate and compare the result. The results 

showed that 3-joint DMC hand took approximately twice longer time to grip the small diameter cylinder, average 0.73 

s, than the 7-joint TRX hand, 0.38 s, and on the contrary, DMC hand took approximately half to grip the large diameter 

cylinder, 0.42 s, than the TRX hand, 0.77 s. Further inspection described that the time for Form Closure of the 7-joint 

hand causes addition time to power grasp compared to the 3-joint hand. Further analysis of the motion captured data 

and modified experimental design is required to investigate the design factors of prosthetic hand mechanism and 

myoelectric control and their ponderability to the performance of object manipulation. 
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ABSTRACT 
 

Current prosthetic terminal devices require a 
compromise between form and function.  Pointdexter is a 
retrofittable miniature gripper that is integrated into the index 
finger of multi-articulating hands to allow for an additional, 
selectable, grasp to assist in the manipulation of small 
objects.  Pointdexter is an all-mechanical design that does not 
require additional actuators and is controlled using existing 
prosthesis control signals.  Testing on able-bodied and 
amputee test subjects was performed using the Jebsen Taylor 
Hand Function test using three terminal devices: an 
unmodified Bebionic hand, the Bebionic with Pointdexter, 
and a Motion Control ETD.  The results demonstrate that 
Pointdexter improved small object manipulation time over an 
unmodified multi-articulating hand by >35%, while not 
impacting normal hand function.  Additionally, take home 
testing was performed to identify additional areas of 
improvement and to evaluate robustness of the device.   

 
INTRODUCTION AND BACKGROUND 

 
The Problem 
 
Current prosthetic terminal devices (TDs) each have 

their advantages and disadvantages, which requires a 
compromise between form and function (Figure 1).  Some 
individuals will carry multiple TDs and swap them out based 
on the environment and task being performed.   

 
The Solution 
 
A dexterous fingertip terminal device, Pointdexter, 

(Figure 2) was designed to optimally combine the advantages 
of multi-articulating prosthetic hands (e.g., conformal grasp) 
and hooks/grippers (e.g., small object manipulation) in a 
single upper-limb terminal device. Pointdexter adds function 
within the form and aesthetics of multi-articulating hands, as 
appearance is often as important as function in adoption of 
the prosthesis by the user [1].  

 
Pointdexter adds an additional, selectable, dexterous 

grasp option focused on manipulating small objects.  In this 
approach, the pointer finger on the hand is replaced with the 
self-contained and retrofittable Pointdexter to provide a 

tonged end-effector at the fingertip.  The current, all-
mechanical design is an add-on to existing multi-articulating 
hands that does not require additional actuators.   

 
Pointdexter is driven with standard control signals.  It is 

activated during ‘trigger’ grip via a selectable mechanical 
mode switch (Figure 3).  When the Pointdexter is locked, the 
jaws are closed and finger is free to flex and extend as it 
normally would.  When Pointdexter is unlocked, the finger 
actuator opens and closes the tines of the gripper instead of 
flexing and extending the finger.   

 
After development of the prototype, functional outcomes 

measures were used to quantify the change in small object 
grasping ability created by Pointdexter and also confirm that 
Pointdexter does not interfere with standard hand function. 

 

 
Figure 1: Commercially available TDs (top) and a feature 
comparison matrix (bottom).   175
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Figure 2: Pointdexter features. 

 

 
 

Figure 3:  The ‘top lock’ mode switching mechanism.  
 
 

METHODS 
 
LTI conducted an initial clinical evaluation of functional 

outcome measures to compare Pointdexter (Liberating 
Technologies), a Bebionic hand (Otto Bock), and a powered 
split-hook ETD (Motion Control) (Figure 4).  The ETD was 
selected to serve as the ‘gold-standard’ for function. IRB 
approval and participant informed consent was obtained.  

 
A first round of testing for protocol development 

included subjects conducting three repetitions of the Jebsen-
Taylor Hand Function (JTHF) test, 9-hole peg test, and 
common bimanual tasks. However, during this testing it was 
discovered that fatigue was substantial and was likely 
affecting the results.  Therefore, the second round of testing 
that is described here focused solely on performing three 
repetitions of the JTHF test.   

 
Figure 4:  The 3 terminal devices used for testing: 
standard Bebionic hand (left), Bebionic with Pointdexter 
(center), and ETD (right).     

 
Subjects 
 
Two persons with transradial limb absence and two able-

bodied subjects using prosthesis simulators (Figure 5) have 
participated in this study to date. Amputee subjects were 
experienced (>6 months) users of myoelectrically controlled 
multi-articulating hands. 

 

 
 

Figure 5:A photograph of the able-bodied simulator.     
 
Procedures 
 
Participants practiced with each device to reduce the 

potential for learning effects. Subjects then conducted three 
timed trials of each sub-task of the Jebsen-Taylor with each 
of the three terminal devices.  The terminal devices were 
presented in random order.  Before the start of each task, 
subjects were allowed to select the desired grasp pattern in 
the standard Bebionic condition.  During the Pointdexter 
condition, the subjects also had the option of selecting to use 
the Pointdexter or not.   The selection of whether or not to use 
Pointdexter was consistent across all subjects.  Every subject 
chose to use Pointdexter for turning cards, lifting light cans, 
stacking checkers, and manipulating small objects, but not 
use it for simulated feeding, writing, and lifting heavy cans 
(Figure 6).   

 
Data Analysis 
 
Mean and variance data of the able-bodied and amputee 

subjects were similar, so the results were pooled.  Full 
statistical analyses were not conducted due to the small 
number of patients in this pilot study.   
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Figure 6:  The subtasks of the Jebsen-Taylor test.  When 
allowed, subjects chose to use the Pointdexter for those in 
green but not for those in teal.  

 
RESULTS 

 
Figure 2 shows the average completion times and 95% 

confidence intervals across test subjects for the Jebsen-
Taylor Small Common Objects functional task conducted 
with each device.  The standard multi-articulating hand was 
the slowest and the ETD the fastest, with the Pointdexter 
being >30 seconds faster (a >35% improvement) than the 
unmodified hand.  As expected, both hand conditions were 
slower than the ETD on the small objects task.  

  

 
Figure 7: Jebsen-Taylor small objects test completion 
times for the tested terminal devices.  Average across 
subjects with 95% confidence intervals.    

 
Performance was found to be similar between the 

Pointdexter and the unmodified Bebionic hand for all other 
subtasks of the JTHF except card turning.  More detail on this 
is provided below.      

 
DISCUSSION 

 
The Pointdexter design aims to combine the best aspects 

of various terminal devices and eliminate the need for users 
to frequently physically transition between terminal devices 
to accomplish various tasks/ADLs requiring dexterity. 

 

As expected, the powered split-hook ETD performed the 
best across tasks and users as it is generally considered the 
most functional device we tested. However, the Pointdexter 
was able to emulate the precision of the split-hook ETD in 
manipulating small objects and improve the performance 
when compared to the standard multi-articulating hand. The 
variability was high and the sample size too small for 
statistical analysis, so further testing is required.  

 
It was interesting the see how many tasks on the Jebsen-

Taylor test individuals voluntarily chose to use Pointdexter.  
We believe that this has to do with the novelty of a new 
device or feature.  For example, all subjects chose to try to 
pick up the large empty cans with the Pointdexter.  However, 
we believe that, after using the device outside of the lab, it is 
likely that subjects would not choose Pointdexter for this 
task.  Similarly, we believe that the increased time to 
complete the card turning task was due to the fact that the 
gripper on the Pointdexter was fairly small and therefore 
required more precise alignment to grip the card, while in 
full-hand mode there is a larger width of opening and 
therefore a larger margin for error.  We believe that real-
world practice would identify which tasks are best suited for 
Pointdexter and optimize its usage.     

 
TAKE-HOME TRIAL 

 
In addition to the in-lab testing described above, we 

conducted a one-month take home trial to identify: 
• Areas of Improvement – more grip strength was the 

primary request. 
• Tasks it was particularly useful for (Figure 8).  
• Potential robustness issues – fortunately there were 

none.   
 

 
 
 

 
Figure 8:  A photograph of in-home use of the Pointdexter.  
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CONCLUSION 
 
Initial functional tests with the Pointdexter are 

encouraging.  Adding Pointdexter to a multi-articulating hand 
improved the user’s ability to grasp small objects while 
retaining normal hand function and anthromorphic shape of 
the hand.  Ideally, this design will increase prosthesis use and 
thus help to decrease overuse injuries in the intact limb from 
the relatively young UL amputee population.   

 
ONGOING / FUTURE WORK 

 
Additional research funding has been acquired to 

continue the project and implement various design changes 
and expand functional testing with human subjects.  
Anecdotal feedback from users highlighted a desire for more 
precise, secure, and strong grip patterns in the multi-
articulating hand. Design efforts are underway to improve 
strength and security of grasp in order to gain even more 
functionality. Several changes have been implemented and 
initial functional tests with the improved design are 
encouraging.  Also, while the Pointdexter was originally 
designed to work with the Bebionic hand, a new version has 
been developed to integrate with another popular multi-
articulating hand, the iLimb from Össur (Figure 9).   
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Figure 9: Photographs of the Pointdexter designed to 
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ABSTRACT 

Grip force sensory feedback is commonly stated as a 

desirable feature for upper-limb myoelectric prosthetics. 

Many techniques for non-invasive grip force feedback are 

being investigated. However, the choice of force sensor, 

feedback location, and experimental apparatus typically vary 

between research studies, making it challenging to compare 

results. A standardized device where individual parameters 

can be adjusted would allow researchers to evaluate the 

impact of each variable on results. An example of such a 

device is a simulated prosthesis. Simulated prosthesis devices 

enable non-disabled individuals to participate in myoelectric 

prosthesis research experiments while ensuring consistency 

in experimental apparatus between participants. We 

developed a lightweight, modular, and inexpensive simulated 

myoelectric prosthesis capable of delivering sensory 

feedback to fingertips and proximal forearm. We integrated 

mechanotactile feedback devices to deliver modality matched 

feedback to the forearm and somatotopically matched 

feedback to the fingertips. We compared a commercial force 

sensor before and after being encapsulated within a compliant 

material under a variety of loading conditions. The 

encapsulated force sensor outperformed the standard sensor 

in all non-ideal loading conditions by a large margin.  The 

use of this encapsulation technique dramatically increases 

accuracy in sensor readings when loading conditions differ 

from calibration conditions. This device will help facilitate 

myoelectric research by providing a consistent experimental 

apparatus between non-disabled participants for various 

control and feedback-oriented studies.  

INTRODUCTION 

Upper limb amputation results in loss of both motor and 

sensory function of the hand, harming an individual's 

economic, psychological, and social well-being [1]. 

Prosthetic technology attempts to mitigate these effects by 

restoring functionality to the lost limb. Current research in the 

upper limb prostheses field focuses on electrically powered 

devices controlled by the muscle signals in the residual limb, 

termed myoelectric prostheses [2]. Myoelectric devices 

utilize the existing neural pathways in an open-loop fashion, 

without specific feedback on the outcome of the action.  

Upper limb myoelectric prostheses users commonly state 

sensory feedback as a desirable feature, with grip force 

ranking as the highest priority sensory input [3]. Many 

methods of non-invasive grip force feedback implementation 

are being investigated with promising results [4]. However, 

parameters such as feedback location, force sensors, and 

experimental apparatus are typically unique to each 

experiment, making comparisons between studies difficult. 

There is an ongoing need for devices capable of adjusting 

these parameters to allow researchers to evaluate each 

variable independently.  

In previous studies, simulated prosthesis devices have 

been used to investigate myoelectric control [5] and sensory 

feedback techniques [6]. An evaluation of a simulated 

prosthesis device showed that it resulted in motion 

kinematics and performance metrics similar to those found in 

myoelectric users [7]. A Simulated Sensory Motor Prosthesis 

previously constructed within our lab allowed for 

somatotopically matched mechanotactile feedback during 

myoelectric control [8]. However, initial testing with the 

device showed various issues that justified a revision. The 

large size, non-modularity and weight of the device (1.3 kg) 

made it difficult to move naturally, causing discomfort over 

long periods.  

The objective of this work was to optimize the size, 

weight, and comfort of the Simulated Sensory-Motor 

Prosthesis while maintaining the ability to provide sensory 

feedback to both the forearm and fingertips. This allows for 

both modality and somatotopically matched feedback to be 

used on the same experimental apparatus. An additional focus 

was placed on modularity to allow for interchangeable 

components for various user sizes or experimental 

conditions. The device was fit with inexpensive compliant 
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force sensors to measure the grip force of the end effector 

reliably. These sensors were evaluated and compared to 

standard sensors under various loading conditions to ensure 

accurate grip force measurement. 

 

Figure 1: The MSP Overview 

MECHANICAL DESIGN 

Figure 1 shows an overview of the Modular Simulated 

Prosthesis (MSP) that was developed. A wrist and thumb 

support brace (MedSpec, USA) restrains the user’s hand to 

ensure isometric contraction during electromyography 

(EMG) control. This commercially available product is 

designed to be comfortable, lightweight, adjustable, and 

leaves adequate space on the proximal forearm for EMG 

sensors and other devices. Additional finger flexion restraints 

were required to prevent the fingertips from colliding with 

the end effector. This was achieved by extending the existing 

metal supports within the brace with 3D printed PLA 

supports. 

In previous simulated prosthesis devices, the prosthetic 

hand is typically mounted with a distal, radial, or ventral 

offset. Any combination of these offsets places the additional 

weight of the prosthetic hand off the axis of the user’s arm, 

resulting in an undesired torque. Because the human hand 

width is much smaller than its length and breadth, this torque 

is minimized by offsetting in the ventral direction. An 

adjustable offset in the radial direction was also added to the 

MSP to resolve any line of sight issues that may arrive for 

specific tasks. An end effector attachment system was 

developed to attach the prosthetic hand to the brace while 

accommodating a variety of arm shapes and sizes. The 

system consists of a 3D printed bracket that rests midline on 

the ventral surface of the wrist brace and a cable tightening 

system (BOA, USA) that rests midline on the dorsal surface 

of the wrist brace. Attached to the bracket is a 3D printed 

wrist adapter for end effector mounting. The bracket is 

temporarily secured to the ventral side of the arm using a 

large Velcro strip. The cable tightening system is then 

wrapped around to the dorsal side, where 3D printed quick-

connect clips are connected, completing the loop around the 

arm. The interlocking cable system is tightened to create a 

snug fit between the end effector and the participant’s 

forearm to minimize the relative movement of the device. 

A 3D printed, anthropometric, single-degree-of-freedom 

end effector was designed (Solidworks, 2018). The hand is 

driven by a Dynamixel MX-64AT servo motor (Robotis, 

Inc.). The fingers and thumb are actuated simultaneously 

using a linked bar mechanism, giving a gripping aperture of 

100 mm. This end effector has a mass of 298 grams with a 

maximum continuous grip force of 11 N. The total mass of 

the MSP is 691 g with the end effector included, can be 

comfortably worn for 3 hours, and costs less than $1000 

CAD. The end effector, feedback devices, and attachment 

system are all independent units creating a highly modular 

design that can be easily customized to fit specific needs. 

SENSORY FEEDBACK DESIGN 

Sensory feedback is integrated into the MSP using small, 

inexpensive mechanotactile tactors modified from our earlier 

work [9]. The tactor devices use a lightweight Dymond D47 

servo motor (Dymond, USA) with a 3D printed rack and 

pinion system to apply force to the user. We developed two 

mounting systems to apply somatotopically accurate 

feedback to the fingertips, or modality matched feedback to 

the forearm. The tactors are secured to the user with Velcro 

straps. Washable foam provides cushioning to prevent 

irritation to the user. The tactor with the fingertip mounting 

system is shown in Figure 2. The tactors can provide up to 12 

N of force with a throw of 14 mm. 

  

(a) (b)     . 

Figure 2: Mechanotactile Tactor Overview: (a) 

Fingertip Mounting System, (b) Motion Illustration 
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SENSORIZATION DESIGN AND EVALUATION 

Measurement of grip force can be done through small 

force sensors placed on the fingertip of the prosthetic hand. 

Capacitive force sensors have previously been shown to 

perform better than commonly used force-sensitive resistors 

for this application [9]. These sensors are designed to be 

attached to a flat surface, with the force loading evenly 

distributed across its surface area. However, prosthetic hands 

undergo a variety of loading conditions that do not represent 

this ideal situation. Prosthetic fingertips with barometric 

pressure sensors embedded in elastomer [10] have previously 

been shown to provide pressure sensitivity in non-ideal 

loading conditions. It was hypothesized that encapsulating a 

capacitive force sensor in a compliant material would 

disperse the force evenly throughout the sensor, allowing for 

more robust measurement to various loading conditions. 

Methods 

A SingleTact S8-10 capacitive based force sensor 

(SingleTact, USA) was compared before and after being 

encased in Dragon Skin 10NV, a compliant silicone rubber 

based material (Smooth-On, USA). The two configurations 

are shown in Figure 2. A load cell (Omega LCM703 

calibrated to a maximum error of 0.1N) was placed in line 

with an HS-35HD servo motor (Hitec RCD, USA) to apply 

force to the sensor through a PLA indenter. The load cell was 

read using Simulink Real-Time (Matlab 2014a) through a 

National Instruments data acquisition system (NI PCI6259). 

A force was applied between 0 and 10 N in a sinusoidal 

pattern for five total periods, similar to earlier work [9]. 

Loading periods of 0.5, 1, and 5 seconds were tested to 

account for dynamic loading effects. Each measurement was 

repeated three times to ensure repeatability between trials, for 

a total of 9 trials for each condition. 

An indenter was made with a circular flat contact surface 

(10 mm diameter) and covered in a 2 mm thick foam to ensure 

even force distribution over the entire surface area of the 

sensor. Loading of this indenter directly aligned with the 

sensor acted as the ideal condition for both the baseline and 

the encapsulated configurations. All other conditions were 

compared to the ideal condition to evaluate the sensor’s 

ability to adapt to various circumstances. An indenter with a 

10 mm diameter curvature was tested to represent grasping a 

curved surface. The indenter position was moved by 4mm in 

both the proximal and distal directions to evaluate the effect 

of a non-central loading condition. For only the encapsulated 

configuration, a centred applied loading condition at a 15-

degree angle was also evaluated. 

 

 

Figure 3: Loading Curve Comparison Between Various 

Conditions 

The baseline and encapsulated sensors voltage to force 

relationship was calibrated using a 5th-degree polynomial 

curve fit to all trials under the ideal condition. This calibration 

curve was used to predict force outputs under all other 

conditions. 

Results 

The results for all conditions are summarized in Table 2. 

In the ideal condition, both sensors performed within the 

manufacturer’s specifications at root mean square error 

(RMSE) of 2.2% and 2.5% of full-scale range (FS) for the 

baseline and encapsulated sensor. The RMSE of the baseline 

sensor was much more sensitive to changing conditions than 

the encapsulated sensor. The curved indenter condition 

produced a substantial decrease in performance for the 

baseline sensor, giving an RMSE of 36.4% FS. The 

encapsulated sensor was relatively unaffected with an RMSE 

of 2.9% of FS. Similarly, when the ideal indenter was shifted 

by 4mm, the RMSE for the baseline rose to 25.5% FS (distal 

offset) and 15.5% FS (proximal offset). The encapsulated 

sensor RMSE increased to 10.5% FS (proximal offset) and 

7.2% FS (distal offset). Finally, the encapsulated sensor 

showed an RMSE error of 7.6% FS during the 15-degree 

angled loading scenario. Figure 3 shows each sensor’s 

loading curve fit with a 5th-degree polynomial curve. The 

baseline sensor’s loading curves are much more varied when 
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contrasted with the encapsulated sensor, illustrating the 

dependency on environmental conditions. For example, at a 

load of 10 N, the baseline sensor voltage output varies by 0.72 

V (50.7% FS over 10 N) depending on the condition, while 

the encapsulated sensor only varies by 0.11 V (14.4% FS over 

10 N). 

Table 1: Summary of Experimental Results for Grip 

Force Sensor Comparison 

Loading Condition Baseline Sensor 

RMSE (N) 

Encapsulated 

Sensor RMSE (N) 

Ideal 0.22 0.25 

Rounded 3.64 0.29 

4 mm Distal Offset 2.55 1.05 

4 mm Proximal Offset 1.55 0.72 

15 Degree Angle 
Offset 

- 0.76 

SOFTWARE DESIGN 

BrachI/Oplexus, an open-source graphical user interface 

(GUI) designed for myoelectric prosthesis control [11], 

enables the EMG signal interpretation and end effector 

motion.  A microcontroller (Arduino Uno, R3) controls the 

mechanotactile tactors and grip force sensors. Data logging 

capability is enabled at a frequency of 50 Hz. A custom GUI 

(Visual Studio, 2015) was created to communicate with the 

microcontroller for quick customization of tactor parameters. 

CONCLUSIONS AND FUTURE WORK 

A lightweight, modular simulated prosthesis was 

developed with integrated modality and somatotopically 

matched mechanotactile feedback. Grip force sensors were 

compared before and after being encapsulated in a compliant 

material under various loading conditions. In all non-standard 

loading conditions, the encapsulated sensors outperformed 

the baseline sensor. This device will help enable researchers 

to study feedback and control techniques in myoelectric 

prosthetics by providing a reliable test apparatus that easily 

allows for the manipulation of various parameters. 

Future work includes evaluating the performance of the 

MSP to ensure that the device is an accurate representation of 

a myoelectric user and evaluate the effectiveness of various 

sensory feedback techniques. More modular components, 

such as alternative feedback devices of various modalities, 

could be designed to fit onto the device. The device is 

currently tethered to a one-meter long power cable, which 

may be restrictive for some studies. A wireless version of the 

MSP would make the device more flexible. 
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ABSTRACT 

The Center for Bionic Medicine conducts research on upper limb prosthetic devices, components, and 

technologies.  In order to maximize the amount of human subject research able to be completed, a universal fitting 

frame for subjects with transradial amputations is needed.  This paper will outline the development of a universal 

transradial fitting frame which has been in use for approximately one year at the Center for Bionic Medicine, Shirley 

Ryan AbilityLab, Chicago.  This device is easy to assemble, easy to use, and allows for testing a wide variety of 

prosthetic wrists and hands.   

INTRODUCTION 

There are approximately 100,000 people living with major upper limb loss in the United States [1].  Loss of a 

hand has been shown to cause great functional loss [1].  A prosthesis can improve functional use as well as quality of 

life for people living with limb loss [2]. Therefore, there is a strong need for research into prosthetic components and 

their effectiveness.   

At the Center for Bionic Medicine (Shirley Ryan AbilityLab, Chicago, IL), research into device development, 

outcome measures, and new technologies are being completed on a yearly basis.  In order to improve feasibility of 

human subject research, having a device to easily test componentry on any transradial limb is necessary.  The current 

process for in-lab testing is to create a custom plastic socket and mock up a temporary prosthesis.  This process requires 

at least two visits for each subject to ensure proper fit of socket.  If this timeline could be reduced, study times could 

be reduced, and devices evaluated at a faster rate ultimately improving clinical knowledge.   

The purpose of this project was to develop a universal fitting frame that would fit the majority of transradial 

residual limbs in order to use any available prosthetic wrist/hand combination for research purposes.  The project had 

five main product scopes that needed to be addressed: 1. It needed to be adjustable to fit most transradial limb lengths, 

2. It needed to be adjustable to fit any girth transradial limb, 3. It needed to be adaptable to a liner integrated with 

electrode domes, 4. It needed to be adaptable to work with the different commercial and research myoelectric 

wrists/hands currently used in experiments, 5. It needed to be able to withstand forces necessary to complete standard 

outcome measures including box and blocks, clothespin test, SHAP, and ACMC.   

 

DEVELOPMENT OF THE FITTING FRAME 

First Prototype 

Based on the above project goals, we proceeded with development of the fitting frame in three main components.  

The first was the structure itself; the structure had to be light weight and adjustable.  A channelled aluminium bar 

(6063 Aluminium Rectangular Tube, 1/16” wall thickness, ½” high, 1” width) was used in conjunction with a piece of 

aluminium bar stock (6061 Aluminium, ¼” thick, ¾” wide).  A series of holes (10/32”) were tapped into the channelled 

bar and two set screws were then used to hold the solid aluminium bar in place inside the channel.  This channel design 

allowed for adjustment in length for different length residual limbs.  Two channelled bars and two solid bars in 

different lengths (short and long) such that they could be interchanged depending on length needs.   

The second component was the suspension.  A flexible cuff made from a combination of flexible and rigid 

lamination (Paceline Nano Matrix Resin) was used to grip the muscle belly just distal to the elbow joint.  Two cuffs 

were made in two sizes to accommodate for small and large limbs.  The cuffs purpose was to provide minimal support 
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for the frame.  The main source of suspension came from an adjustable ratcheting mechanism (Revoflex BOA kit).  A 

BOA ratcheting dial, commonly used in prosthetic and orthotic applications, was embedded into two pieces of 

laminate lined with plastazote to create a sort of clamp system.  This allowed for adjustability depending on the limb 

circumference and provided excellent suspension between the patient’s limb and the posterior bar.  For suspension 

between the liner and the wrist unit, a magnet connection (High-Pull Rare Earth Magnetic Disc with countersunk 

mounting hole, 7/8” diameter) was utilized. One magnet was inlayed to the wrist connector and one was attached to 

the bottom of a locking liner.  Finally, anterior straps were added to act as a counterforce system to offset weight of 

whichever hand/wrist combination was connected.  These components can be seen in Figure 1.   

The last major phase of development was the wrist connection.  Custom 3D printed pieces were created in 

Solidworks and printed with a uPrint SEplus printer using ABS.  The first piece created was a universal connection 

that would connect the structure of the fitting frame to whichever wrist unit was to be utilized.  This piece included an 

extrusion which would fit into the channelled aluminium bar, a space for the magnet, and three wings which would 

be used to connect to all distal componentry.  The second piece was developed to house the specific prosthetic wrist 

unit.  This second piece could be easily altered to different wrist units by changing dimensions.  The only thing that 

needed to stay the same was the three wings which are used to connect to the top connector.  See Figure 2 below for 

a sketch of the completed pieces in Solidworks showing how the two parts mate together. Spacers of various heights 

with the same connection pattern were also fabricated so that the overall length could be extended to match the 

contralateral limb when using a shorter wrist system.  

 

Figure 1: Photograph of assembled fitting frame (first iteration) with BOA clamp design.   

 

 

Figure 2: Solidworks image showing both custom 3D printed pieces as they would work together to connect 

the frame to the prosthetic hand.   
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Second Prototype 

After trial use of the initial prototype, several modifications were made. Originally, the counterforce straps were 

attached using Velcro that attached to the cuff strap.  However, to improve line of pull, the design was altered to a 

buckle attachment.  The second change was the switch from the custom BOA clamp system to an off the shelf BOA 

strap mechanism.  This makes it easier to duplicate the device as well as reduces overall bulk.   

 

 

 

STRENGTHS AND LIMITATIONS  

The biggest strength of this fitting frame is its adaptability.  It is possible to quickly configure the device to fit 

different lengths and shape residual limbs. This allows for ease of set-up for experiments and reduces time to actual 

testing.  The device is lightweight and simple in design.  It is easily replicated from materials that are fairly easy to 

acquire.  The most unique component is the 3D printed wrist connection which does require access to a 3D printer.   

 

Figure 3: Photograph showing all components of the second iteration of the universal transradial fitting frame 

including the new counterforce straps and BOA strap.  In the center is the assembled device with extra 

components surrounding.   

 

Figure 4: Photograph of all components of the second iteration of the universal transradial fitting frame 

broken down to show each part individually.  
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While the fitting frame does work well for most situations, there are a few limitations to this design.  The major 

limitation is that it does not work with very short residual limbs (length under 10cm from lateral epicondyle to distal 

end of residuum).  The second limitation is that it is not ideal for heavy components, especially when on a short 

residual limb.  It relies on dacron straps to act as the counterforce for the wrist and hand componentry.  If the patient 

presents with a short residual limb, the lever arm is shortened and more force is needed from the counterforce straps 

to maintain alignment.   

 

CLINICAL AND RESEARCH IMPLICATIONS 

The universal transradial fitting frame is easy to use, adaptable to fit any residual limb length and shape, and has 

been used to test a variety of current prosthetic wrists and hands.  To date, the fitting frame has been used on seven 

subjects with success.  Four different wrists have been used; two commercial wrists (Ottobock and MotionControl) 

and two research wrist systems. EMG has been connected to the system via Motion Control snap electrodes in the 

locking liner and reliable and consistent signals were obtained.  A sample image of a subject with a transradial 

amputation wearing the fitting frame is shown in Figure 5.  The design is simple and easy to replicate in any research 

or clinical application.   
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Figure 5: Photograph of a transradial subject wearing the fitting frame.   
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BACKGROUND Externally powered prosthetic wrist rotators have been used by individuals with upper 
limb loss for over 20 years [1, 2].  The recent availability of an externally powered prosthetic wrist 
flexion device raises these two questions:  1) what are the functional benefits for individuals with 
upper-limb deficiencies of an externally powered wrist flexion device, and 2) are there advantages to 
externally powered wrist flexion over externally powered wrist rotation?    
 
AIM 
It is the aim of this paper to help physicians and prosthetists to determine when an externally powered 
wrist flexion device might benefit their patients with upper-limb deficiencies. 
 
METHOD  
A wrist flexion device for a remnant limb that has an intact elbow and shoulder was designed and 
evaluated. Three steps in the process were: 1) kinematic analysis comparing the functionality of 
powered flexion versus powered rotation 2) development of design objectives, and 3) obtaining of user 
feedback from individuals using powered flexion prostheses.  
 
A kinematic analysis showed the hand orientations that are possible with different types of wrist. For 
instance, the analysis showed how well a user could use such objects as a flashlight, a fork, or a 
personal cleaning device. We compared the use and viability of a Powered Flexion Wrist system, a 
system with no wrist, a system with a wrist rotator, and a system with both wrist rotator and wrist 
flexion. The analysis was performed using standard joint space calculations.   
 
Following the kinematic analysis, design objectives for the powered flexion unit were developed based 
on input from prosthesis users, industry experts, and the literature. These design objectives drove the 
development of the Powered Flexion Wrist (PFW) unit.  
 
Once designed and developed, two rounds of field trial participants were recruited for PFW evaluation, 
for a total of eight responses.  Participants’ evaluation of the PFW was performed through a 
questionnaire asking the participants to evaluate different aspects of the device on a scale from -2 to 
2, which -2 being highly unsatisfied and 2 being very satisfied.   
 
RESULTS  
 
Kinematic analysis 
The kinematic analysis of the four wrist systems shows that a flexion wrist enables a different type of 
workspace from that of a wrist rotator [3]. The analysis also shows that a system with both wrist 
rotation and wrist flexion enables the most complete workspace (Figure 1).  If the user and prosthetist 
need to choose between either flexion or rotation, they should choose the wrist which aligns most with 
the individual’s desired functional outcomes.  However, a wrist with both flexion and rotation will 
enable more achievable orientations of the hand, and therefore significantly greater and more natural 
functions.  
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Figure 1: Results of kinematic analysis of 4 different wrist systems. 1a shows the workspace of a 
system with no wrist. 1b shows the workspace of a system with a wrist rotator. 1c shows the 
workspace of a system with a wrist flexion device. 1d shows the workspace of a system with both wrist 
rotation and wrist flexion.  Note that the vectors or arrows in 1a, 1b, and 1c show the possible 
orientation of the axis of a cylindrical object, such as a flashlight, grasped transverse in the hand. 
However, in figure 1d, which shows that the user can orient a grasped object in virtually any direction, 
only the end points of the possible vectors are shown for clarity.  
 
 
Design objectives 
The design objectives and achieved results of the PFW are shown in Table 1, along with the 
specifications of the powered flexion for comparison.  Notice that the weight achieved is lower than the 
target, but still higher than the wrist rotator alone.  
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  Target Achieved PFW+ Wrist Rotator 

Length (not including QD) (mm) 57 66 70 

Diameter (mm) 48 48 47 

Weight (grams) 340 259 259 + 143 = 402 

Active Torque Max (Nm) 2.8 2.3 1.7 

Passive Torque Max (Nm) 2 2.3 (1.7) Na 

Rotational Travel (Degrees) 145 153 360 

Rotational Speed (rev/s) 0.5 0.5 0.533 

Bluetooth yes yes yes 

IPX7 tested pass pass pass 
 
Table 1:  Design objectives and results of the Powered Flexion Wrist.  As a reference, the 
specifications of the PFW + Wrist Rotator, also produced by Motion Control, are also shown. 
 
 
Field Trial 
A total of eight individuals, in two cohorts, evaluated the PFW for at least two months. After the first 
trial, the wrist was refined before being tested by the second cohort. At the end of the evaluation 
period, each individual provided feedback through a survey.  Figure 2 shows the results of the survey 
[4,5]. The data shown is the sum of all user responses, separated by cohorts. 
 

 
Figure 2: Field Trial responses of the two cohorts.   
 
The first cohort was dissatisfied with the motorized torque and the manual repositionability of the PFW.  
Between the two field trials, the motor torque and the manual repositionability were improved, as can 
be seen by the second cohort evaluation data.  Overall, prosthesis users evaluated the PFW 
favourably. 
 
In the process of administering the final prosthesis user survey, other factors were discussed by 
individuals which are important to note. Two of the final prosthesis users desired the PFW to be 
shorter. Two of three individuals also mentioned a decrease in system battery life when using the 
PFW, especially with a pattern recognition system. 
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DISCUSSION 
From the kinematic analysis, it is clear that one type of wrist does not fully define the workspace.  The 
data shows that the PFW is beneficial for tasks requiring access to the midline of the body, such as 
eating and dressing, or picking things off the floor or table (Figures 3).  Other tasks, such as 
unscrewing a bottle or turning a key, are more easily accomplished using a wrist rotator.  An ideal 
solution would be to have both a rotator and a PFW, since the workspace is greater.  However, length, 
weight, battery life, and the need to control so many degrees of freedom must be taken into 
consideration for different individuals. 
 

   
 
Figure 3: Individual executing tasks using the Powered Flexion Wrist. 
 
If only one wrist function can be integrated into a prosthetic system, the prosthetist should recommend 
the wrist which best matches the desired functional outcomes of the individual.   
 
Although the weight of the PFW is heavier than the wrist rotator alone, it is interesting that the field trial 
participants did not rate the wrist as being too heavy.  One respondent made the point that if the 
device is functional, the weight is secondary. 
 
The first set of feedback motivated a design change in the transmission, which increased both the 
passive positionability and the active torque of the system.  The second set of feedback indicates that 
the current design is acceptable. 
 
CONCLUSION  
The kinematic analysis and the results from user questionnaires clearly show that a Powered Flexion 
Wrist offers potentially significant functional benefits for individuals with upper-limb loss.  When 
choosing an appropriate wrist, one must consider the types of tasks desired to be performed and the 
person’s functional workspace. 
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Fillauer manufactures externally powered and passive flexion and rotation devices.  
 
REFERENCES  

1. State of the Art in Prosthetic Wrists: Commercial and Research Devices Neil M. Bajaj, Adam J. Spiers 
and Aaron M. Dollar Department of Mechanical Engineering and Materials Science Yale University New 
Haven, CT 06511 

2. Ed Iversen, O-T World, Leipzig, Germany, 2016. 
3. Jeff Christenson, Ed Iversen, Harold Sears, “Kinematic analysis of wrist function on workspace and 

orientation space,” International Symposium on Innocations in amputation Surgery and Prosthetic 
Technologies Symposium, Chicago, IL, USA, 2016 

4. E. Iversen, J. Christenson, H. Sears, G. Jacobs, T. Jacobs, S. Hosie, “Powered Flexion Wrist with 
Electric Terminal Device- Preliminary Clinical Trials” Myoelectric Conference, University of New 
Brunswick, 2017 

5. J. Christenson, E Iversen, G. Jacobs, “Powered Flexion Wrist Field Trial Results” American Orthotic and 
Prosthetic Association Conference, San Diego 2019 
 

ACKNOWLEDGEMENTS  
This work was financed by the Fillauer Corporation (Fillauer makes externally powered and passive flexion and 
rotation devices) and United States Congressionally Directed Medical Research Program (CDMRP). 
  190

MEC20



Improved Prosthetic Functionality Through Advanced Hydraulic Design 

Bjørn Olav Bakka1, MSc and MBA, Norway, bb@hy5.no 
Christian Fredrik Stray1, BSc and MBA, cf@hy5.no   

Jos Poirters1, jp@hy5.no   
Ole Olsen1, MSc, ole@hy5.no   

1Hy5 Pro AS, Bygning 100, Raufoss Industripark, 2830 Raufoss, Norway 

ABSTRACT  

Hy5 met its research objective of designing a hand prosthesis to fill the gap between standard myoelectric grippers and 
premium, bionic-like hand prostheses. Our approach applied state-of-the-art hydraulic actuator technology with functionality 
embedded in advanced 3D printing of titanium and plastics.  As a result, the opening and closing of the hand is myo-electrically 
controlled and compatible with industry standards while the hydraulics enable an adaptive and independent pressure build-up 
on the fingers as they grasp an object. This design mimicking realistic hand gripping without requiring one motor per finger as 
in bionic-like prosthesis. 

Testing concluded that the MyHand prosthetic hand manages all grips (pinch, power, fist, tripod and point) as intended and 
works as a substitute for a missing hand. Users also responded very favourably to the innovative emergency release button, an 
added safety feature. The users were attracted by the simplicity and sturdiness of Hy5, which promises a reliable product with 
low life-cycle cost. 

 

INTRODUCTION 

Advancements in technology can result in overly 
complex designs leading to underutilized features. 
Advanced prosthetic devices are no different, specifically 
with overly complex hand prostheses where highly 
technical designs may lead to increased weight and cost, 
along with reduced reliability and usability. Additionally, 
when a person experiences an amputation, they face 
staggering emotional, practical, and financial lifestyle 
changes.1 Following such an event, the person typically 
requires a lifetime of costly prosthetic device(s) and 
services, reduced physical activity, and difficulty with 
community reintegration and full participation in social 
life. Losing a limb has been found to dramatically change 
a person’s sense of body image and consequently self-
image, which has, in turn, been associated with a person’s 
satisfaction with life.2 An upper-extremity (UE) prosthesis 
is considered among the most challenging prosthetics 
devices to use, both from a functional and a control 
perspective. 

Compared to the typical UE prosthesis, the biological 
human hand is complex device. With 38 muscles3, 27 
bones4, 21 Degrees of Freedom (DOFs), thousands of 
touch sensors, a human hand is direct skeletally-attached 
and weight-bearing, capable of swift movements, and 
designed for life. Alternatively, a typical prosthetic hand 
has few DOFs, no sensors, its distal weight is supported 
only through a socket, it is much slower and imprecise than 
a biological human hand and is regularly in need of service 
and repair. The biological human hand is controlled 
naturally through afferent sensory input and efferent motor 

output signals of the Somatic Nervous System, while a 
myoelectric prosthetic hand is controlled through learned 
intentional, yet often unintuitive muscle contraction.  

The human hand is used as an indispensable tool in 
daily life. There are several reasons why the human hand 
should not or cannot be copied in order to produce effective 
end effectors and terminal devices2 as current state of the 
art in engineered systems cannot achieve a comparable 
level of complexity and performance in the same size 
package. Due to the many reasons the full spectrum of 
human hand capabilities cannot be practically achieved in 
a prosthetic hand, some smaller subset of those must be 
chosen. Several studies have concluded that a small 
number of grasp types comprise the majority of those 
used.2 Other studies have shown that weight, cost and 
reliability is a concern with higher preference by users over 
independently moving fingers.5 

First demonstrated in the 1940s, myoelectric prosthetic 
hands rely on electrodes applied to the skin to detect and 
translate muscle pulses drive a device actuator. The 
actuator can be hydraulic (i.e. pump and cylinders), 
electromechanical (i.e. motor and gears) or pneumatic (i.e. 
compressed gas). The DOF is usually limited to only one – 
open or close hand. The 1940s myoelectric control 
technology is still the most widely-used control method, 
while technology achievements have made the components 
lighter, cheaper and more reliable.   

Several anthropomorphic multiarticulate prosthetic 
hands have been developed and introduced onto the 
international market in the previous two decades.6 
Common to all of them is a complex design with high 
number of DOF and actuators that still rely on two-sensor 
myoelectric control with the basic “open” and “close” 
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commands. This is a clear example of overdesign by 
applying new technology indiscriminately, and often 
requiring the user to switch between hand operation modes 
by means of buttons, apps or muscle co-contractions. This 
complicates operation by increasing cognitive stress and 
training needs and results in underutilization of the 
capabilities of the prosthetic hand. Additionally, most of 
these advanced prosthetic hands still bear the cost of 
increased weight, reduced reliability, and reduced 
affordability. 

The situation is that the current prosthetic technology 
provides limited options for amputees: patients are 
provided with either standard utilitarian myoelectric 
grippers with limited functionality, or advanced and 
expensive bionic-like hand prostheses. Each of these 
choices results in underutilization or inadequate 
functionality, or both.  

Hy5 has integrated a simple design with lightweight 
materials and advanced motion control and flexibility, 
resulting in a prosthetic hand that improves utilization and 
functionality for daily life. The MyHand design addresses 
the critical functional and economic gap that exists 
between body-powered and relatively simple myoelectric 
devices, and high-cost anthropomorphic multiarticulate 
prosthetic hands. 

METHODS 

The technology that led to Hy5’s “Improved Prosthetic 
Functionality Through Advanced Hydraulic Design” was 
initiated more than 15 years ago. Our development path 
began with the idea to replace error-prone electric motor 
actuators with hydraulic actuators in dolls in an amusement 
park. Since then, the work has evolved, inspiring us to 
make a better life for people living with upper extremity 
amputation, with the vision of “Giving the World a Helping 
Hand”.  

 

    
Figure 1: Hy5’s vision of “Giving the World a Helping 
Hand” - MyHand testing with newly amputee. 

 
Hy5’s design employs a hydraulic actuator, which is 

one of several possible actuators, or “muscles”, that can be 
used in prosthetic limbs. In 1985 it was stated that “electro-

hydraulic systems may be used in the future because they 
have the potential advantage of developing high torque in 
small actuators” 7. Hydraulics is well-proven technology 
with documented benefits for prosthetic lower-limbs. 
Several research projects have resulted in hydraulic 
actuated prosthetic hand prototypes. Examples include the 
“Fluidhand” developed in Karlsruhe, Germany and a 
mesofluidic hand developed in Oak Ridge, USA.8 
However, Hy5 is the first company that is designing, 
producing, and selling a hydraulic prosthetic hand.  

The MyHand prosthetic hand integrates several 
innovative features, some of which are patented. The palm 
unit integrates the electrical motor, hydraulic pump,9 
cylinders and piping and is 3D printed for low weight, low 
cost, high flexibility and high complexity. The hydraulic 
pump is a single high-volume and high-pressure integrated 
pump.10 The high-volume pump provides the high non-
resistance opening and closing speed, while the high-
pressure pump provides the high gripping force. The digits 
are closed by wires being actuated by the palm cylinders. 
The digit mechanism is a force balancing mechanism11 
enabling the digits to close on objects regardless of their 
shape. Major parts of the digits are 3D printed in titanium 
for low weight and high durability. 

 
Figure 2: MyHand Advanced Hydraulic Design 
 
The opening and closing functions of the MyHand 

prosthesis are myoelectrically controlled. The prosthesis 
uses a single motor to control three hydraulic cylinders. 
Each hydraulic cylinder controls the digits of the thumb, 
index, and middle finger by means of the mechanical wire 
solution in their respective knuckle joints. This enables an 
adaptive and independent pressure build-up on the thumb, 
index and middle fingers while the ring and pinkie fingers 
move together with middle finger as they grasp an object, 
thus mimicking realistic hand gripping without requiring 
one motor per finger.  
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Figure 3: MyHand Production Testing 
 
The MyHand device design specifications demonstrate 

its impressive performance: a maximum power grip of 
120N, maximum tripod grip of 60N, maximum static load 
of 40kg, the maximum time to close is 1.2 seconds and 
weight is 580g. 

 
Table 1: MyHand Specifications 

 

RESULTS 

The Southampton Hand Assessment Procedure 
(SHAP)12 is designed to measure a hand’s functional range. 
The procedure was developed in 2002 at the University of 
Southampton to assess the effectiveness of upper limb 
prostheses. The SHAP test consists of a series of 
manipulations of both lightweight and heavyweight 
abstract objects intended to directly reflect specific grip 
patterns while also assessing the strength and compliance 
of the grip, followed by 14 Average Daily Life (ADL) 
tasks.  

 
Figure 4: SHAP briefcase with gloved MyHand  
 
In late 2017 the SHAP was conducted internally with 

the MyHand prosthetic hand used by 21 subjects 
comprising 20 males, and 1 female users, ages 27 to 6513,14. 
The testing revealed some variations in how the users 
managed to control the device. Users with limb-difference 
from birth generally have longer experience with handling 
a prosthesis and managed to control the MyHand hand 
quicker than users amputated later in life. Some managed 
to control MyHand instantly, others needed more time to 
get accustomed to it. An orthopedic specialist observed the 
testing together with Hy5 employees. Both the orthopedic 
specialist and the user were interviewed after testing. 

 
Figure 5: MyHand SHAP testing 
 
The SHAP testing concluded that the MyHand device 

manages all grips (pinch, power, fist, tripod and point) as 
intended and works as a substitute for a missing hand. 
General user feedback and specific results from the SHAP 
testing have been positive.   

 
Figure 6: MyHand Grip Patterns 
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The users expressed specific satisfaction about the 
ability of the MyHand to adopt to and grip complex objects. 
All users were very positive to the extra safety, 
accomplished with the emergency release button on the 
Hy5. The emergency release button releases all hydraulic 
pressure on the fingers, which will then open by themselves 
or may easily be forced open. The emergency button may 
prevent the hand from breaking when the locked around an 
object, or the battery is empty, and the hand is forced open 
by breaking it. None of the users have seen this feature on 
any other hand prosthesis today. The users were attracted 
by the simplicity and sturdiness of MyHand promising a 
reliable product. 

DISCUSSION 

Analysis of the SHAP testing shows that the grip 
patterns of the MyHand prosthesis allow recovery of up to 
30% of total gripping functionality required for activities 
of daily life (ADL’s) compared to standard grippers. This 
is an important part of the MyHand value proposition.  

                                        
  

Figure 7: MyHand Power Grip and Fist Grip 

 
Further analysis showed that user functionality 

achieved with the MyHand prosthesis is comparable to that 
of most advanced bionic-like prosthesis users. 
Functionality in the advanced bionic-like hand requires 
significant training, cognitive attention and risk of faulty 
functionality. Access to MyHand gripping patterns is 
intuitive with less training and cognitive attention. 

One benefit of the MyHand is the simplicity and 
sturdiness of the hand which supports a reliable product 
resulting in low life-cycle costs. For users this translates 
into less time lost to breakage or servicing, minimizing 
time spent without the use of the hand. Being rugged, the 
MyHand hand can be employed in activities and 
environments where other hands will break, improving 
quality of life by enabling new lifestyles. Whether the user 
pays for the device personally, or with the use of insurance, 
low life-cycle cost simply means fewer budget restraints 
and the ability to service more people. 

The MyHand prosthetic hand has received regulatory 
approval in Europe, US, Australia and Canada. 

CONCLUSIONS 

Hy5 has designed a prosthesis to fill the gap between 
standard myoelectric grippers, and premium, bionic-like 
hand prostheses.  This technology offers cost-effective 
advanced motion control and flexibility with critical 
functionality.  Hy5 will break critical barriers for user 
comfort, directly addressing the existing needs for lighter 
and faster hand prostheses.  Providing the general public 
with a wider variety of options allows individuals the best 
fit to their lifestyle, and an improving quality of life.   
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ABSTRACT 

There are many complex factors that contribute to 

whether a child with a congenital limb difference will use or 

abandon their prosthetic limb. When compared to adults with 

traumatic amputations, children with limb deficiencies are 

less likely to use a prosthesis, and many of their challenges 

are unique to being a child. Ultimately, for a child to adopt 

their device, it must facilitate the effective performance of 

daily activities and allow the child to be treated the same as 

their peers. Although numerous pediatric devices are 

available, they often fall short of these criteria by offering a 

single open-close grasp and/or non-anthropomorphic 

appearances. However, when looking to the field of adult 

prosthetics, multi-articulating myoelectric hands can provide 

multiple grasping configurations and have the benefit of a 

more ‘hand-like’ appearance. If these designs are adapted for 

pediatric users, their advantages have the potential to improve 

device acceptance. In this paper we provide a critical 

assessment of the state of upper limb prostheses for pediatric 

populations. Furthermore, we suggest ways that we may 

leverage recent advances in adult myoelectric devices to 

begin removing the barriers to pediatric device adoption.  

Finally, we discuss how current challenges in the adult 

myoelectric field must be considered to effectively translate 

this technology.  

INTRODUCTION 

It has been estimated that congenital transverse below 

elbow deficiencies occur in approximately 1 of every 10,000 

live births [1]. For these children, a passive prosthesis may be 

prescribed as young as 6 months of age and active devices as 

early as 18 months [2]. The use (and/or abandonment) of 

these prescribed devices is a multi-dimensional challenge. 

Parents play a vital role in the decision-making processes that 

influence use and adoption while their child is too young to 

make these decisions for themselves. It is common for 

guardians to view their child’s limb difference as a deficiency 

that needs to be addressed with an artificial limb [3]. 

However, when the child comes of age to make their own 

decisions, prosthetic abandonment quickly become more 

common [4].  

Much like adult upper limb (UL) prosthetic users, device 

abandonment is a common occurrence; however, in pediatric 

populations it is a more prevalent and pervasive issue [5,6]. 

In 2007, Biddis and Chau reviewed 25 years of literature and 

suggested that adult prosthetic abandonment rates varied 

from 26% for body-powered devices to 23% for electric [5]. 

They further suggested that children face far more 

complexity in the prosthetic arena, resulting in abandonment 

rates for body-powered and electric prothesis at 45% and 

35%, respectively [5]. Regardless of age, the key factors that 

ultimately impact use and acceptance of prostheses can be 

placed into three categories: social, prosthetic/technical, and 

clinical/personal factors [5]. Appearance, functionality, and 

weight can be further isolated as being particularly relevant 

to children [4,7], and prosthesis usage is ultimately 

contingent on providing sufficient functionality and cosmesis 

to allow the child to be treated the same as their peers (social 

integration) [8]. 

In this paper, we critically assess the state of UL 

prostheses for pediatric populations with congenital limb 

differences. Furthermore, we summarize the prevailing 

technical and social challenges that prevent the wider spread 

adoption of these devices. Finally, we suggest ways that we 

may leverage recent advances in adult myoelectric prostheses 

to begin removing the barriers to prosthetic acceptance and 

reduced abandonment rates in pediatric populations.       

CURRENT PEDIATRIC PROSTHESES OPTIONS  

Current pediatric prosthetic devices will either be 

passive (cosmetic), body powered, or myoelectric devices. 

Although passive devices may often appear more life-like or 

anthropomorphic in appearance, they lack critical 

functionality as they do not provide the ability to actively 

grasp. Body powered prostheses may offer many attractive 

qualities including minimal weight, cost, ease of control, and 

robustness. However, most of these devices are limited to a 

simple open-close grasp which inherently requires the user to 

employ compensatory strategies to achieve many daily 

grasping tasks. When coupled with their often-non-

anthropomorphic appearances, body powered devices simply 

do not meet the functional and cosmetic demands to promote 

social integration. Current pediatric myoelectric devices 
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typically offer a single degree of freedom (open-close) 

terminal device and in some cases wrist rotation. They 

provide the benefit of control using the muscles native to the 

affected limb which may remove the need for additional 

cables and harnessing as well as body/shoulder movements 

to control the terminal device. However, myoelectric devices 

come with a number of practical challenges including 

increased weight, often reduced robustness [7], slower 

actuation of the grasper, and challenges achieving consistent 

control. 

Presently, body-powered prostheses are often preferred 

to myoelectric devices when performing functional tasks [9]. 

Crandall et al. surveyed the satisfaction of pediatric patients 

and their parents in relation to using their prosthetic device 

during daily activities. In their cohort of 34 users between the 

ages of 1 to 12 ½ years, body-powered devices were able to 

achieve more functional tasks to the users’ satisfaction when 

compared to passive and electric devices.  Surprisingly, in a 

long-term follow up more than a decade later, most of these 

same patients were using a passive device [9], suggesting that 

the current single degree of freedom grasping function 

provided by an active prosthesis offers limited benefit relative 

to no-grasping function at all. As a result, these patients 

opted to use a passive device that, although less functional, 

may provide improved cosmesis to help facilitate social 

integration. Further empathizing the magnitude of these 

challenges, in a survey-based study of 489 children with a 

unilateral congenital below-the-elbow deficiency (321 

prosthesis users and 168 non-users), James et al. found no 

clinically relevant differences between prosthesis users and 

non-users in validated measures of functional outcomes and 

quality of life [10]. Furthermore, when investigating the 

performance of various daily tasks, they found non-users 

scored themselves higher than prosthetic users. This guided 

their conclusion that pediatric prostheses may provide 

cosmetic benefit for social acceptance or may be useful tools 

for specialized activities, but at present, they do not appear to 

improve patient function or quality of life [10].  

GRASPING PATTERNS AND DAILY FUNCTION 

Unlike the single degree of freedom grasping function 

offered by current active pediatric prostheses, healthy intact 

hands are incredibly dexterous with 27 degrees of freedom 

[11]. Although it is possible to achieve a multitude of 

complex postures with this available dexterity, most activities 

of daily living are performed using a limited number of 

common hand grasp configurations [12,13]. In fact, it has 

been suggested that nearly 80% of common daily tasks can 

be accomplished with as few as 6-9 standard grasp 

configurations [12]. Therefore, we suggest that a significant 

functional benefit may be provided to pediatric prosthetic 

users if their devices offer multiple grasping configurations 

to more effectively accommodate the performance of daily 

activities. This challenge is not unique to pediatric prosthetic 

users and closely parallels a very active body of work being 

performed with adult amputee populations.  

LOOKING TO ADULTS 

In recent years, multi-articulating adult myoelectric 

prosthetic hands have become increasingly available. There 

are now numerous commercially available options with 

individually actuating digits that can achieve a multitude of 

common grasping configurations [14]. Table 1 adapts data 

from a metanalysis of hand grasp literature [12]. Here, we list 

the top 6 most frequently used grasp configurations by intact 

hands in daily activities and compare them to the capabilities 

listed in manufacturers’ literature of prevalent adult multi-

articulating myoelectric hands [15–20]. Nearly all the top 6 

hand grasp patterns are capable of being achieved with these 

current adult devices. Beyond their added function, an 

additional advantage inherent to their hand-like designs is 

that these prosthetic devices also appear more 

anthropomorphic or life-like than many of their body-

powered hook-and-cable counterparts.  

Together the added function of multiple grasp patterns 

and the improved cosmesis of adult myoelectric hands has the 

potential to address two crucial factors that influence 

pediatric prosthetic use. In fact, multi-articulating prosthetic 

hands are beginning to emerge in the pediatric field. For 

example, the Vincent Young 3 (Vincent Systems, Karlsruhe, 

Germany) is sized for children age 8 and up, is capable of 13 

individual grasp patterns, has four wrist options, and is made 

of lightweight materials. However, these devices have only 

started to become available and have yet to see widespread 

adoption. There are a number of practical and clinical 

challenges that will likely first need to be addressed.  

MOVING FORWARD WITH PEDIATRIC 

PROSTHESES 

There are many considerations and barriers to multi-

articulating myoelectric devices that may be both common 

and unique to pediatric and adult populations. Device cost is 

a significant and prohibitive barrier for both populations. 

However, it is a distinct obstacle for pediatric patients as their 

limbs and body are ever-growing. Therefore, unlike adults 

where purchasing a single terminal device may be a long-

term investment, the cost of children’s devices must reflect 

the fact that a child will likely outgrow a device in a few short 

years and multiple devices will be purchased over their 

childhood.  
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Furthermore, the growth of a child also poses a unique 

barrier to achieving consistent myoelectric control. As 

affected limb proportions changes so will socket fit and the 

contact of electrodes over muscle control sites. This may 

result in diminished, inconsistent, or intermittent device 

control. In addition, most pediatric patients are born with 

their limb difference. Effective contraction of muscles on the 

affected side will inevitably require structured training and 

learning prior to being used for prosthesis control. However, 

here again we may look to advancement in the adult 

prosthetic field to mitigate some of these barriers. 

Commercially available control systems that employ 

myoelectric pattern recognition may be a viable option in 

alleviating some of these control challenges and facilitating 

intuitive control over multiple grasp configurations. 

Similarly, emerging experimental techniques that leverage 

ultrasound-based control or force-myography may also 

provide avenues for further investigation [21].  

Finally, robustness and ‘bulk’ of a myoelectric hand 

have unique and interconnected implications to pediatric 

prosthesis use. When comparing activities of daily living 

between adults and children, we suggest that children will 

likely require a more robust device to facilitate the physical 

nature of childhood play. Robustness typically comes at the 

cost of a more rugged design with increased weight. Children 

are more affected by the weight of the device [22] as they are 

smaller and do not possess the same strength as a grown 

adult. Furthermore, multi-articulating prosthetic hands are 

innately heavier as they require motors and additional 

mechatronics to actuate digits. This additional componentry 

must also be housed within the device which may impact its 

overall size.  Therefore, as multi-articulating pediatric 

prosthetic hands continue to emerge, significant attention 

must be dedicated to developing devices that incorporate 

lightweight materials and creative ‘low-bulk’ design 

principles.   

CONCLUSIONS 

The factors that contribute to the use and acceptance of 

pediatric UL prostheses are complex and abandonment is 

highly prevalent. There have been many advancements in 

adult UL prostheses that have yet to be leveraged which may 

positively impact the pediatric arena. By adapting the 

capabilities of adult multi-articulating myoelectric 

prostheses, we can begin addressing some of the crucial 

factors that are contributing to the disuse of pediatric devices. 

However, there are numerous challenges that are unique to 

this patient population that must be carefully considered to 

inform and shape the development of future multi-

articulating pediatric prosthetic limbs.    

                      Grasps 

      Prostheses
Power Grip Precision Pinch Key Grip Tripod Precision Disk Prismatic 2 Finger

BeBionic ✓ ✓ ✓ ✓ ✗ ✓

i-Limb* ✓ ✓ ✓ ✓ ✗ ✓

Michalangelo Hand ✓ ✗ ✓ ✓ ✗ ✓

Vincent Evolution 3 ✓ ✓ ✓ ✓ ✗ ✓

Luke Arm ✓ ✓ ✓ ✓ ✗ ✓

Taska Hand* ✓ ✓ ✓ ✓ ✗ ✓

Table 1: Commercially Available Adult Multi-Articulating Adult Prostheses and Most Frequent Grasp Configurations used 

in Daily Activities.   

Note: Prosthesis grasp data derived from available manufacturers’ literature Activities [15–20], and Grasp configurations adapted from 
Feix et al. [12].   

*prostheses allow for custom grasps to be programmed. 
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ABSTRACT 

This work discusses the hardware implementation details of a three degree of freedom prosthetic wrist device. To 

address some issues in current state of the art wrist design, we employ a hybrid mechanism architecture, consisting of 

a serial and parallel mechanism. This requires a combined view of both theoretical and practical physical 

considerations when designing such a device. We discuss kinematic analysis of the device, simulation methods and 

metrics that lead to informative physical implementation details, and actual physical implementations of the prosthetic 

wrist device. We show that these implementation characteristics can make different physical designs with the same 

nominal kinematics more suitable for different types of amputees. 

INTRODUCTION 

In activities of daily living, the human wrist may contribute as much to successful and timely completion of tasks 

as the fully dexterous, unaffected human hand [1]. Despite this, the design of prosthetic wrist devices has typically 

lagged behind that of prosthetic hands [2], though recently, more attention has been paid to wrist design, e.g. [3]–[7].  

While the space of serial type wrist designs (i.e. joints placed in series) has been the standard for design of many 

wrist prostheses, borrowing ideas from parallel mechanism design has allowed for more freedom in wrist design. This 

additional freedom may be quite beneficial for prosthetic devices, for example, by allowing actuators to be placed 

proximal to the elbow (reducing elbow torque) and reducing the overall length of the wrist (making devices more 

suitable for amputees with long residual limbs). While these characteristics are obviously desirable in prosthetic wrist 

devices, designing parallel mechanisms to be incorporated into them can be quite challenging, particularly because of 

kinematics, actuation, and sensing considerations, combined with the small size scale of prosthetic devices. 

We discuss the kinematic and physical design considerations in our proposed 3 DOF powered wrist prosthesis. 

The proposed device utilizes a hybrid (parallel and series) mechanism topology. Simulation of the kinematics is used 

to optimize the geometric parameters to improve the quality of motion and uniformity of torque production over the 

desired range of motion. Furthermore, we pay attention to key geometric metrics that would greatly affect the physical 

implementation of the prosthetic wrist, such as interference of the links of the mechanism on the structure, and range 

of motion of passive joints in the mechanism. We discuss further considerations that allow simple sensing schemes to 

be used, reducing the amount of hardware and cost of sensors required to provide closed loop feedback on the wrist. 

METHODS 

Kinematic Considerations 

The proposed wrist design herein is composed of a hybrid mechanism, which is composed of a serial and parallel 

mechanism combined. Specifically, it is a RU serial mechanism a 2DOF parallel U, PRUR, PSSR mechanism, where 

the underlined joints correspond to the actuated joints in each chain.  The kinematic architecture and the methods of 

actuation can be seen in Fig. 1. The mechanism may be further broken into a flexion mechanism comprising the PRUR 

portion, a deviation mechanism comprising the PSSR portion, and the pronation mechanism comprising the RU chain. 

This architecture creates spherical 3 DOF motion about the center of rotation, which is the passive Universal joint. As 

it can roll, a 2 DOF Universal joint becomes a 3 DOF Spherical joint, creating spherical motion emulating wrist 

motion. 
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This mechanism has a total of 7 geometric design parameters which may be changed to alter the motion and 

torque profiles of the overall mechanism. Moreover, an advantage of this mechanism architecture is that it partially 

decouples flexion, deviation, and pronation, meaning that only a single motor is largely responsible for each of the 

aforementioned wrist angles. This allows the flexion mechanism, deviation mechanism, and pronation mechanism to 

be simulated and optimized separately, and then the actual physical actuator may be changed to further alter the torque 

or speed characteristics, potentially to emulate anthropomorphic values. The kinematics are further described in [8]. 

To optimize each mechanism, we vary the geometric design parameters and then average the torque production 

capacity over a fixed range of motion (100º for flexion and deviation, 360º for pronation). Furthermore, we also track 

quantities relevant to the physical implementation. Namely, these are the minimum and maximum distance of any of 

the links from the central longitudinal axis of the wrist, and the range of motion required for each passive joint. Both 

of these factors are exceedingly important in the physical implementation and are often neglected in mechanism 

design, which hinders the transition from kinematic representation to physical prototype. 

The minimum and maximum distance of the links from the central axis are important because they determine 

what the overall size scale of the mechanism will be when used in a wrist prosthesis. As this architecture can place 

actuators remotely, in a prosthetic device, they may be placed around the residual limb and socket. However, the 

mobile links of the mechanism must therefore not intersect or contact the socket during motion. The minimum distance 

metric therefore informs the designer of how much a mechanism with fixed geometric parameters would have to be 

scaled up to accommodate a residual limb of a fixed radius to avoid contact issues. The maximum distance is then 

related to this, as it then described how far from the central axis any link will need to be given this fixed radius. This 

tells a designer what the overall envelope of a particular design would be, and how “bulky” a mechanism would be 

compared to the residual limb.  

Often, there will be loosely defined requirements on the minimum and maximum distance that would rule out 

some kinematic designs, especially when considering anthropomorphic proportions. These metrics are also closely 

related to the reversed workspace [9], and thus are related to the physical limitations of a wrist due to form factor.  

Secondly, the range of motion of the passive joints is critical in being able to implement a particular design. 

Generally, passive joints (except revolute joints) have bounded ranges of motion that may often be exceeded in 

kinematic simulation. This is especially true for spherical and universal joints, though some work has been done to 

study and enlarge the range of motion of these joints [10]. Without considering their range of motion, during normal 

actuation of a mechanism, a passive joint will contact its physical joint limit, and large contact forces will arise on the 

links. Thus, it is critical that one constrain designs to those that have physically realizable passive joints. 

 

Figure 1: (Top left) kinematic representation of the 3 DOF prosthetic wrist device. (Top right) Actuating the PRUR flexion 

mechanism by actuating the blue prismatic joint. (Bottom left) Actuating the PSSR deviation mechanism about the indicated 

axis by actuating the red prismatic joint. (Bottom right) Actuating the RU pronation mechanism by actuating the pronation 

motor, creating roll about the indicated dashed axis. 
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Physical Implementation 

To verify and explore the importance and accuracy of the different metrics explored, we designed a series of 

physical representations of the optimal kinematic design. These designs correspond to 1) the minimal packaging 

required for the wrist, as if it would be placed directly on the end of the residual limb on the socket, 2) the design 

which would minimize the additional length required for the prosthetic wrist by placing as much of the wrist around 

an average prosthetic socket, and 3) a compromise design. Design 1 corresponds to the smallest maximum distance 

possible, design 2 corresponds to the smallest minimum distance that would accommodate a long residual limb socket, 

and design 3 corresponds to a short residual limb. 

RESULTS 

We present the physical implementations of the optimized design of the wrist device. All implementations share 

similar kinematic parameters with some overall scaling and translating of the actuators, though a comprehensive 

discussion of the allowable changes to facilitate comparison is too exhaustive for this paper. We also implemented the 

most size reducing actuator and drivetrain configuration possible (given a number of commercial and packaging 

constraints). 

Figure 2 shows the three separate design implementations of the optimized prosthetic wrist prototype. The designs 

clearly show the effect of packaging requirements on the resulting physical design, where the actuators may be placed 

and what type of actuators and drivetrains must be used to accommodate the constraints on size. Design 1 allows for 

use of off the shelf linear servo motors, and package the pronation shaft about the center. The resulting design is 

discussed more in [5], but the overall size of 8.6cm length and a circumscribing radius of 4cm. Design 2 has an overall 

additional length on the end of the residual limb of 4.5cm, and a radius of 6.2cm. Moreover, the design can utilize a 

dc motor, gear reduction, and lead screw drive train for the actuated P joints, potentially increasing the mechanism 

torque and speed, though at the expense of complexity due to additional load bearing components. Finally, design 3 

has an additional length on the residual limb of 5.6cm, with a cylindrical radius of 4.9cm. Note that this design could 

not fit linear servo motors or lead screw based drivetrains within its packaging limits while maintaining comparable 

torque to the other designs, so noncaptive linear stepper motors were used instead. 

These designs also have a variety of different spherical joint range of motion requirements. We note that designs 

1 and 2 require a large range of motion (130º conical range of motion), whereas design 3 requires a much smaller 

range of motion (70º conical range of motion). This affects the physical implementation of the spherical joints from 

the slot type design in design 1 and 2, and a symmetric standard ball and socket spherical joint in design 3. Moreover, 

the required passive hardware in design 1 and 2 may lead to much thicker components, affecting the necessary 

clearance to avoid collision.  

To examine the validity of our simulations, the physical implementation of design 1 was tested for its torque and 

speed. Initial results are shown in figure 3. We characterize how quickly the wrist may actuate to different points in 

 

Figure 2: (Left) Minimum overall size implementation, compatible with a very short residual forearm or transhumeral 

prosthesis (no forearm remaining). (Center) Surrounding socket design, socket shown in transparency. (Right) Compromised 

design, compatible with short residual limb socket. Note that all wrists share the same size scale, with the central ball shown in 

each as a 1 inch (2.54cm) diameter sphere. 
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its circumduction workspace. Through the use of electric motors, the speed of any point in the workspace is inversely 

proportional to the maximum torque at that point as well. 

DISCUSSION 

In this paper, we present practical implementation details of a 3DOF prosthetic wrist device, and show how under 

some constraints, this vastly affects the resulting physical implementation. We note that clearance and packaging 

constraints may influence the type of actuators used in a particular design, but more importantly, affect the type of 

residual limb geometry that is compatible with each design, potentially making different implementations of the same 

kinematics required for different amputees. 
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Figure 3: Time to actuate to the center speed over the range of motion of design 1. The distance between the contours is 

proportional to the maximum speed near that particular area, and is thus inversely proportional to the torque capacity of the 

mechanism. 
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ABSTRACT 

Novel multi-modal and closed-loop myoelectric control 

strategies may yield more robust, capable prostheses which 

improve quality of life for those affected by upper-limb loss. 

However, the translation of such systems from an 

experimental setting towards daily use by persons with limb 

loss is limited by the cost and complexity of assessing all the 

possible sensor and feedback configurations. The comparison 

of different control strategies is further complicated by the 

use of disparate prosthetic socket and simulated prosthesis 

designs across experiments. This study aims to address these 

issues through the development and preliminary assessment 

of a Modular-Adaptable Prosthetic Platform (MAPP) system 

for use in experimental control strategy evaluation. The 

MAPP system is compatible with a variety of commercially 

available control and feedback devices and can be used in 

experiments involving participants with either intact or 

amputated limbs. The modular design enables compatibility 

with novel devices and quick reconfiguration of components. 

We compared EMG and FMG data acquired with the MAPP 

system to a previously characterized transradial simulated 

prosthesis, using able-bodied subjects. The MAPP was 

shown to match or exceed the control accuracy achieved 

using a rigid simulated prosthesis, while providing the added 

benefits of modularity. This device shows promise as a 

research tool which can catalyze the deployment of advanced 

control strategies by enabling comprehensive and 

standardized assessment of control and feedback strategies. 

INTRODUCTION 

Recent developments in robotic prostheses have yielded 

many advancements including multi-articulated hands [1], 

[2], machine learning based controllers [3]–[5] and sensory 

feedback systems [6]–[8]. However, translating these 

improvements to wearable prosthetic devices remains 

challenging. Before translating these advancements to 

clinical use, thorough assessment and validation of the 

potential benefits are required. A significant bottleneck for 

assessment arises due to the tradeoff between experiment 

scale, representativeness of real-world conditions, and 

time/resource costs [9]. Numerous factors besides the control 

strategy itself, including end-effector loading, sweat, limb-

position, and acceleration can affect the performance of a 

prosthetic system, and these conditions must be recreated 

during the experimental assessment to provide accurate 

insights into real-world performance [8], [10]. Simulating a 

realistic physical limb-socket interface within a participant- 

and control strategy-specific prosthesis requires a custom-

designed and manufactured socket [10], [11], which is not 

easily adapted for various control and feedback systems. 

An alternate strategy to custom-designing prosthetic 

sockets for testing persons with amputation is often pursued 

by having able-bodied persons wear a simulated prosthesis 

with or without an end-effector attached. Researchers have 

used various versions of simulated prostheses to investigate 

performance of commercial prosthetic hands [12], 

performance of novel control strategies [13], [14], kinematic 

movement trajectories when using prosthetic hands [15], and 

the effect of providing sensory feedback to users on 

performance in functional tasks [7]. There is, however, an 

incomplete understanding of how well results collected from 

these studies translate to daily use in a prosthesis by a person 

with limb loss. Furthermore, comparisons across studies are 

limited due to the disparate versions of the prostheses 

utilized. There is thus a need for a modular platform that 

accommodates multiple sensors and feedback systems and 

can be worn by both able-bodied persons and persons with 

amputations to facilitate these crucial comparisons. This 

study aims to address this gap through the design and 

assessment of an inexpensive and easy-to-use 3D-printed 

transradial Modular-Adaptable Prosthetic Platform (MAPP). 

 

Figure 1: Overview of the 3D-printable MAPP with a 

HANDI-hand attached to it [2]. 
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MATERIALS AND METHODS 

Socket Design Requirements 

 Critical features were identified through consultation 

with prosthetists from the Glenrose Rehabilitation Hospital. 

Table 1 summarizes the design requirements and 

specifications for the developed socket. Unless otherwise 

stated, all components were 3D-printed using Ultimaker 2+ 

(Ultimaker BV) and Makerbot Replicator 2 (MakerBot 

Industries, LLC). Rigid components were printed using PLA 

and flexible components using Ninjaflex Cheetah filament 

(Ninjatek, Inc.). Figure 1 shows the design of the MAPP 

platform as a prosthetic socket for a person with transradial 

amputation. The developed socket consists of rigid panels 

supported by stainless steel M4 threaded rods with flexible 

cushions attached via Velcro® (Velcro BVBA). All panels are 

connected to a ring at the distal end of the socket. 

Suspension 

Suspension is achieved through radial compression 

generated by tightening the circumferential straps threaded 

through each rigid panel. Alternating regions of soft tissue 

compression and release are created by the cushions and 

spaces between them, distributed both radially and axially 

along the limb. This design choice improves translation of 

motion between bone and socket as described in [16]. 

Adaptability 

To accommodate different limb lengths, the spacing 

between each 3D-printed panel can be adjusted and fixed by 

adjusting the position of the nuts embedded in each panel 

along the rods attached to the adjacent panel. A panel can also 

be removed entirely by unscrewing the rods which anchor it 

to the adjacent panel. This combination of modularity and 

adjustability enables the socket to accommodate residual 

limbs extending beyond 5 cm (the length of one panel) from 

the cubital fossa and up to 5 cm proximal to the wrist. 

Different limb thicknesses are accommodated by 

interchangeable inner rings with different diameters. As 

forearms are not cylindrical in nature, the channels in each 

panel through which the rod substructure passes are 

purposely made loose-fitting such that the slope between each 

panel can be adjusted. Furthermore, the interfacing cushions 

are made slightly compliant and convex such that they can 

match the profile of the limb surface without causing pinch 

points. When the circumferential straps are tightened, the 

socket profile is maintained due to opposing pressure exerted 

between each of the straps, cushion infill material, and limb 

surface (Figure 1). Able-bodied participants can be 

accommodated by replacing the connecting ring and distal 

support cushion with a hollow connecting ring. An optional 

hand mount can be screwed to that ring, thereby restraining 

the hand and fingers if isometric contractions are necessary. 

The hand mount, offset in the radial direction, directly fits 

with the Quick-Connect Wrist (Otto Bock, Inc.) to connect 

commercial end effectors. Custom 3D-printed adapters 

enable compatibility with other end-effectors. 

Modularity and Socket Structure 

The MAPP enables user input and sensory feedback 

devices to interface directly with a user’s limb across a range 

of positions. Such devices can be embedded in each interior 

panel (Figure 2), providing a direct interface with the user’s 

limb through which suspension loads are transferred. Rigid 

inserts provide a stable base for various actuators, which can 

be interchanged to accommodate other devices. Sensors can 

also be mounted in the spaces between regions with panels 

via the Velcro-backed circumferential straps. Velcro-backed 

modules prevent slip relative to the circumferential straps, 

and radial compression from the straps provides a stable 

interface with the user’s limb. The interchangeable outer-

panels add to the stability of this mounting method by 

securing the position of the circumferential straps relative to 

the rest of the socket structure with a Velcro-backed surface. 

Further, these outer panels provide an interchangeable 

platform for mounting devices (see Figure 1) on the socket’s 

surface. A final method of modular device mounting is 

provided by the rails connecting the main panels. 3D-printed 

Table 1: Design specifications for MAPP system 

Item Design Specification Achieved Specification 

Length 

adjustability 

10 – 40 cm Achievable with multiple 

exterior panels 

Fit intact 

limbs 

Achieve Target Target met 

Prosthesis 

interface 

Compatibility with 

iLimb, BeBionic, and 

HANDi Hand 

Target met; expand 

modularity with new 

components 

User input 

sensor 

integration 

6 sites; compatible 

with commercially- 

available electrodes 

10 sites; compatible with 

FSRs, MyoBock (Ottobock 
Inc.), and Bagnoli (Delsys, 

Inc.) electrodes 

Context 

detection & 

sensory 

feedback  

Accommodate 2 

sensory-feedback 

modalities & IMU 

Compatible with 

mechanotactile & 

vibrotactile feedback and 

IMU 

Cost $500 < $200 

Fitting time < 15 minutes 10 min initial fitting; 2-4 

min re-donning 

Socket 

weight 

500 g 450 g 

Shear/ axial 

load 

2 kg 5 kg 

Comfort Comfortable over the 
course of an 

experiment (3 hrs) 

Comfortable for 3 hrs (user-

reported) 

Sanitation Non-porous, 
cleanable interface 

surface with limb 

All contact surfaces lined 

with closed-cell neoprene 
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mounts can be threaded onto these rods providing a rigid 

platform which provides direct access to the user’s limb via 

the spaces between exterior panels. 

The interchangeable in-cushion sensor modules were 

designed to fit FSRs as described in [17]. Myobock 13E200 

Electrodes (Ottobock Inc.) and Bagnoli Electrodes (Delsys, 

Inc.) were also made compatible with the initial prototype, 

enabling a mixed method of user-input detection. C2 and C3 

vibrotactors (Engineering Acoustics Inc.) were similarly 

embedded into the interior cushion via interchangeable 

inserts, providing vibrotactile feedback in any cushion. 3D-

printed mechanotactile tactor modules, the design of which is 

described in [8], were integrated into both the removable 

panels and substructure. The modularity of this socket system 

enables the integration of Inertial Measurement Units (IMU) 

(BNO055, Adafruit Industries) that could be used to detect 

forearm orientation and acceleration with respect to an 

inertial reference frame. 

The structural rod segments were selected to support a 

2 kg end effector load in both the transverse (ie. weight of 2 

kg end load with residual limb parallel to ground) and axial 

(ie. 2 kg end load with residual limb perpendicular to ground). 

Using ASME Elliptic Failure Criteria and a life of at least 

10,000 cycles of fully reversed loading, M4 rods were 

selected, leading to a minimum factor of safety of 2.5. The 

3D-printed exterior panels were tested using both 

SolidWorks FEA (Dassault Systems, Inc.) and mechanical 

loading in the aforementioned configurations. These tests 

demonstrated that the overall minimum factor of safety was 

still limited by fatigue or bending of the rods; therefore, the 

socket system was capable of safely supporting up to a 2 kg 

end-effector or payload. 

Socket Interface Validation Study 

Participants: Eight able-bodied, right-handed, male 

participants (mean and standard deviation of age: 28.8 ± 8.2 

years) volunteered to participate in this study. Written 

informed consent according to the University of Alberta 

Research Ethics Board (Pro00077893) and the German 

Aerospace Center’s internal committee for personal data 

protection (DLR authorization 3.7.2017) was obtained.  

Experimental setup: Participants conducted the 

experiment while wearing the developed MAPP (Figure 3a) 

and while using a version of an orthotic splint commonly used 

to simulate a prosthesis (Figure 3b). Participants were 

randomly assigned to start with one condition or the other. 

For each simulated prosthesis, a band of five evenly-spaced 

Myobock electrodes and a concentric band of five FSRs as 

described in [17] were placed on the participant’s right 

forearm [18]. Signals from both bands were processed using 

the same hardware as [17], with a 3rd-order low-pass 

Butterworth filter and cut-off frequency of 1 Hz to remove 

high-frequency disturbances. Mean absolute value for each 

channel was extracted and used to train a linear-discriminant 

analysis (LDA) classifier, representative of commercially 

available classifier-based controllers [3]. An i-LIMB Ultra 

prosthetic hand was attached to simulate the effects of normal 

prosthesis loading on each socket (Figure 3). Participants 

were asked to match seven gestures (rest, index point, power 

grip, wrist flexion, wrist extension, forearm pronation, 

forearm supination) shown on a computer screen for two-

second intervals, three times each. 

 

 

Figure 2: Exploded view of a) FSR and b) surface EMG 

electrode into panel system via removable inserts.  

 

Figure 3: A participant wearing a) the Modular-

Adaptable Prosthetic Platform as a simulated prosthesis 

and b) the orthotic splint. 

a) b) c) 

   

Figure 4.  Offline performance was assessed for each participant using a three-fold cross validation using a) EMG only, b) 

FMG only, and c) mixed-modality based on a sequential forward search (SFS) 
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Data Acquisition: Offline performance was assessed for 

each participant using a three-fold cross validation (one for 

each repetition of a gesture). Assessment was performed 

using data from a) EMG only, b) FMG only, and c) mixed-

modality based on a sequential forward search (SFS) to select 

the best-performance from 5 channels for each participant.  

Results: Figure 4 shows that collecting data when using 

the MAPP enabled similar accuracy results as when using the 

orthotic splint across all sensor modalities. 

DISCUSSION AND FUTURE WORK  

Here, we developed a low-cost modular transradial socket 

system, which can accommodate multiple geometries of the 

forearm, along with multiple configurations of user-input, 

context detection, and sensory feedback devices. We tested 

the developed system with sEMG and FMG and a pattern 

recognition control strategy for seven gestures. Offline 

performance of participants using MAPP was similar to their 

performance when using the orthotic splint. 

Future work will include comparison of online 

performance between the MAPP, orthotic splint, and socket 

systems. Using machine learning strategies to map input to 

action may reveal whether functional performance using a 

splint, or the MAPP provides a better prediction of clinical 

performance when deployed within a prosthetic socket. The 

effects of variables like end-effector loading, limb position, 

and acceleration are not well-characterized in control 

strategies. Therefore, paired assessment of the MAPP with a 

suction socket incorporating identical control strategies in 

different contexts may demonstrate the extent to which each 

platform captures these contextual changes. In conclusion, 

the cost time- and resource-savings, and flexibility to test a 

variety of novel prosthetic control strategies in a common 

platform, such as the one developed here, may accelerate the 

throughput of prosthetic control strategy validation. 

ACKNOWLEDGEMENTS 

This work was funded by the Alberta Machine 

Intelligence Institute (Amii). 

REFERENCES 

[1] L. Resnik, S. L. Klinger, and K. Etter, “The DEKA Arm: Its 

features, functionality, and evolution during the Veterans Affairs 

Study to optimize the DEKA Arm.,” Prosthet. Orthot. Int., 2013. 

[2] D. J. A. Brenneis, M. R. Dawson, and P. M. Pilarski, 

“Development of the Handi Hand: An Inexpensive, Multi-
Articulating, Sensorized Hand for Machine Learning Reseearch in 

Myoelectric Control.” 

[3] C. Castellini et al., “Proceedings of the first workshop on 
peripheral machine interfaces: Going beyond traditional surface 

electromyography,” Frontiers in Neurorobotics, vol. 8, no. AUG. 

Frontiers Research Foundation, 2014. 

[4] M. F. Lucas, A. Gaufriau, S. Pascual, C. Doncarli, and D. Farina, 
“Multi-channel surface EMG classification using support vector 

machines and signal-based wavelet optimization,” Biomed. Signal 

Process. Control, vol. 3, no. 2, pp. 169–174, Apr. 2008. 

[5] A. L. Edwards, M. R. Dawson, J. S. Hebert, and C. Sherstan, 

“Application of real-time machine learning to myoelectric 

prosthesis control: A case series in adaptive switching Lower 
Extremity Prosthetics View project Reinforcement Learning 

Models View project.” 

[6] F. Clemente, S. Dosen, L. Lonini, M. Markovic, D. Farina, and C. 
Cipriani, “Humans Can Integrate Augmented Reality Feedback in 

Their Sensorimotor Control of a Robotic Hand,” IEEE Trans. 

HUMAN-MACHINE Syst. Tech., pp. 1–7, 2016. 

[7] L. F. Engels, A. W. Shehata, E. J. Scheme, J. W. Sensinger, and C. 

Cipriani, “When Less Is More – Discrete Tactile Feedback 

Dominates Continuous Audio Biofeedback in the Integrated 
Percept While Controlling a Myoelectric Prosthetic Hand,” Front. 

Neurosci., vol. 13, p. 578, 2019. 

[8] K. R. Schoepp, M. R. Dawson, J. S. Schofield, J. P. Carey, and J. 
S. Hebert, “Design and Integration of an Inexpensive Wearable 

Mechanotactile Feedback System for Myoelectric Prostheses,” 

IEEE J. Transl. Eng. Heal. Med., vol. 6, 2018. 

[9] B. W. Hallworth, J. A. Austin, H. E. Williams, M. Rehani, A. W. 

Shehata, and J. S. Hebert, “A Modular Adaptable Transhumeral 

Prosthetic Socket for Evaluating Myoelectric Control,” Under Rev. 

IEEE Transl. Eng. Heal. Med., 2020. 

[10] I. Vujaklija et al., “Translating research on myoelectric control into 
clinics-are the performance assessment methods adequate?,” 

Front. Neurorobot., vol. 11, no. FEB, pp. 1–7, 2017. 

[11] A. Belyea, K. Englehart, and E. Scheme, “FMG Versus EMG: A 
Comparison of Usability for Real-Time Pattern Recognition Based 

Control,” IEEE Trans. Biomed. Eng., vol. 66, no. 11, pp. 3098–

3104, 2019. 

[12] P. J. Kyberd, “The influence of control format and hand design in 

single axis myoelectric hands: assessment of functionality of 

prosthetic hands using the Southampton Hand Assessment 

Procedure,” Prosthet. Orthot. Int., vol. 35, pp. 285–293, 2011. 

[13] D. Johansen, C. Cipriani, D. B. Popovic, and L. N. S. A. Struijk, 

“Control of a Robotic Hand Using a Tongue Control System-A 
Prosthesis Application,” IEEE Trans. Biomed. Eng., vol. 63, no. 7, 

pp. 1368–1376, 2016. 

[14] A. W. Shehata, L. F. Engels, M. Controzzi, C. Cipriani, E. J. 
Scheme, and J. W. Sensinger, “Improving Internal Model Strength 

and Performance of Prosthetic Hands Using Augmented 

Feedback,” J. Neuroeng. Rehabil., vol. 15, no. 70, 2018. 

[15] H. E. Williams, Q. A. Boser, P. M. Pilarski, C. S. Chapman, A. H. 

Vette, and J. S. Hebert, “Hand Function Kinematics when using a 

Simulated Myoelectric Prosthesis.,” IEEE Int. Conf. Rehabil. 

Robot., vol. 2019, pp. 169–174, Jun. 2019. 

[16] R. D. Alley, T. Walley Williams III, M. J. Albuquerque, and D. E. 

Altobelli, “Prosthetic sockets stabilized by alternating areas of 

tissue compression and release,” vol. 48, no. 6, pp. 679–696, 2011. 

[17] M. Connan, E. Ruiz Ramírez, B. Vodermayer, and C. Castellini, 

“Assessment of a Wearable Force- and Electromyography Device 
and Comparison of the Related Signals for Myocontrol,” Front. 

Neurorobot., vol. 10, Nov. 2016. 

[18] M. Nowak, T. Eiband, and C. Castellini, “Multi-modal 
myocontrol: testing combined force-and electromyography,” in 

IEEE International Conference on Rehabilitation Robotics, 2017. 

 

206

MEC20



UPPER LIMB PROSTHESES – FUTURE PERSPECTIVES FOR BODY-POWERED 

PROSTHESES 

 

Dick H. Plettenburg 

Delft Institute of Prosthetics and Orthotics, Delft University of Technology,  The Netherlands 

d.h.plettenburg@tudelft.nl; www.dipo.3me.tudelft.nl 
 

ABSTRACT 

Body powered upper-limb prostheses (bpp) have many 

advantages over EMG-controlled, electrically actuated ones 

(myo’s), including mass, reliability, and proprioceptive 
feedback. Despite these advantages, bpp are rejected as 

often as myo’s. Reasons mentioned include mass (despite 

being lower than myo’s), and comfort (especially of the 

harness). In addition, recent research has shown the 

operating forces of bpp being too high. As a result the main 

advantage of bpp – feedback – is overshadowed, and the 

high operating forces negatively influence the comfort.  

Current research at the Delft Institute of Prosthetics and 

Orthotics aims at improving the performance of upper-limb 

prostheses. First results show a promising future for 

prostheses controlled and/or powered by body movements, 

while satisfying the basic requirements for upper limb 
prostheses. 

INTRODUCTION 

For centuries mankind has tried to provide people with 

an arm defect with some kind of a replacement for the limb 

parts missing [1]. One of the oldest examples known, dating 

back to 330 B.C, is a prosthetic hand found on an Egyptian 

mummy. This device is a cosmetic hand prosthesis, i.e. 

without moving parts, primarily aiming at the restoration of 

the wearer's outward appearance. Dating from mediaeval 

times and some later ages, several examples of passive 

hands remain. Some of them with a moveable thumb only, 
some with the four fingers moving together in one finger 

block, and others with passive, individually adaptable, 

fingers. In these hands the thumb and finger configuration 

can be locked in a chosen position by the activation of a 

knob. A few examples are the famous hands of Götz von 

Berlichingen [2, 3] and the hands made by Ambroise Paré 

[1].  

The beginning of the 19th 
 

century brings about a 

tentative start with actively operated prostheses. Harnessing 

gross movements of other body segments operates these 

prostheses. Hence, this type of prostheses is called body-

powered (bpp). Examples include prostheses designed by 
Ballif in 1818 [2], by Van Peetersen in 1844 [2], and by the 

Count de Beaufort in 1860 [1]. Around 1900 the first 

attempts to power prostheses from an external energy 

source, most likely to relieve the user from the relatively 

high operating forces in body powered prostheses, can be 

seen. Examples include electrically powered prostheses [2, 
4], or pneumatically powered ones [2, 5]. 

During WWII the idea of using myo-electric signals for the 

control of prostheses was conceived [6]. After extensive 

research and development myo-control evolved into the 

present day EMG-controlled, electrically actuated 

prostheses (myo’s) and is still the subject for many 

researches to try and improve this control method. 

At the Delft Institute of Prosthetics and Orthotics 

[DIPO] three basic requirements for upper limb prostheses 

were established: cosmesis, comfort, and control [7]. 

Judging bpp and myo’s against these requirements it can be 

seen that bpp have many advantages over myo’s, including 
mass, reliability, and proprioceptive feedback. Despite these 

advantages, bpp are rejected as often as myo’s. Reasons 

mentioned include mass (despite being lower than myo’s), 

and comfort (especially of the harness) [8]. Moreover, the 

functionality of myo’s still lacks behind bpp (with the result 

of the Cybathlon 2016 as an example). 

Recent research has shed even more light into why bpp are 

rejected: the operating forces are too high [9-11]. As a result 

the main advantage of bpp – feedback – is secluded, and the 

high operating forces negatively influence the comfort.  

At the Delft Institute of Prosthetics and Orthotics 
(DIPO) current research aims at improving the performance 

of upper-limb prostheses. 

METHODS 

Within several ongoing projects DIPO tries to improve 

different aspects of upper-limb prostheses. Four of these 

projects will be highlighted here: 

 

• Natural grasping  

Within this project a body-powered voluntary closing hand 

prosthesis with adaptive fingers, a high pinch force to 

operating force ratio, and a low mass will be designed. 

 
• Self-grasping hand 

The goal of this study is to design a next generation 

adjustable prosthetic hand. This prosthetic hand must be 
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able to grasp objects without the help of the sound hand, and 

without the need of a harness or batteries. 

 

• Haptic interface for prostheses control  

This project aims to combine the advantages of externally 
powered prostheses (low operating effort, high pinch force) 

with the advantages of body-control (feedback). The idea is 

to measure movements of the body to control the aperture of 

the terminal device, and to measure pinch forces in the 

terminal device and feed them back to the body. 

 

• Servo mechanisms  

This project aims to enable prosthesis operation with low 

operating efforts. The envisioned servo mechanism uses 

pneumatic energy, as electro-mechanical servo mechanisms 

suffer from a high mass, and are sensitive for water and dirt. 

RESULTS 

The current status of the above mentioned project is 

discussed below. 

 

• Natural grasping  

A prototype hand was developed [12]. It has four adaptive, 

under-actuated fingers and a stationary thumb, Figure 1. The 

hand requires less energy (50-160%) of the user compared 

to current bpp-hands, while its mass is only 152 grams. 

Clinical test are ongoing. 

 

 
 
Figure 1 - The prototype of the Delft Cylinder Hand. It has four 
adaptive fingers actuated with two hydraulic cylinders in each 
finger, except for the little finger which has only one hydraulic 
actuator. The springs return the fingers to the open position at 
rest, and partly compensate for the counteracting forces of the 
cosmetic glove (not shown in the picture) as well. The cylinders in 
the hand receive the pressurized hydraulic fluid from a master 
cylinder incorporated in a shoulder harness. 

 

 

 

 

• Self-grasping hand 

Among the users of a hand prosthesis, about one-third uses 

a passive device. Nonetheless, little research is performed 

on improving passive hand prostheses [13]. At DIPO an 

innovative passive hand mechanism was designed. This 
hand has articulating fingers and can perform the hook grip, 

power grip and pinch grip. The gripping function is 

controlled indirectly by pushing an object to the hand, or 

directly by pushing the prosthetic thumb against a fixed 

object. The grip force is proportional to the applied push 

force. By releasing the push force, the grip force is locked 

and the object is being held. In order to release the object, a 

button has to be pushed after which the object can be 

released by pushing the object slightly into the hand. The 

hand, Figure 2, has a mass of 130 grams. A commercial 

version of this hand is almost ready for release. 

 

 
 
Figure 2 – The Self-grasping hand, shown without the cosmetic 

glove. In the right picture, the button to unlock the hand is visible 
on the dorsal side of the hand. 
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• Haptic interface for prostheses control  

The designed interface utilizes skin anchors [14], Figure 3, 

connected by sensors and an actuator to record 

force/displacement and to provide feedback from sensors in 

the terminal device.  
 

 
 
Figure 3 – The skin anchors placed on the body of a test subject. 
The cables are connected to the experimental set-up used verify the 
idea behind the haptic interface. 

 

An experimental set-up, Figure 4, showed that the system 

indeed is able to provide input to the terminal device and 

gives proper feedback to the user [15]. Current activities 

include the design of a wearable actuator system. 

 

 
 
Figure 4 – The experimental set-up. On the left the prosthetic 
simulator; in the middle and right part of the figure the master-
slave unit is shown. Also visible are the cables and on the 
foreground, the skin anchors. 

 

• Servo mechanisms  

A hybrid system was designed that closes a voluntary 

closing terminal device by a Bowden cable as usual, and 

automatically activates a pneumatic servo as soon as an 

object is grasped. The output of the servo is proportional to 

the cable force, with a three-fold amplification.  
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Figure 8 - An overview of the experimental setup. A cable 
(excursion cable) is connected to the force demand valve (FDV). 
The sliding bar will move when the excursion cable is pulled, this 
movement will cause the lever, which mimics a finger of the hand 
prosthesis, to rotate. Once the lever reaches the pinch load cell, 
representing the object to be grasped, the force in the excursion 

cable will rise. This increase in force will cause the FDV to start 
increasing its output pressure, which is connected to the pneumatic 
piston. This will cause the pneumatic piston to start applying force 
on the lever. The same force locks the sliding bar. 

DISCUSSION AND CONCLUSION 

The current projects at DIPO all show the future 

promises for upper-limb prostheses. The Delft Cylinder Hand 

is the first hand prosthesis that fulfils most requirements of 

the user: low mass, low operating effort, and proprioceptive 

feedback. The haptic interface shows a promising way of 
avoiding the harness, while maintaining the proprioceptive 

feedback. In combination with the pneumatic servo 

mechanism a prosthesis that combines body-control with a 

low operating effort comes within reach.  
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ABSTRACT 
 

About half of upper-limb (UL) amputees do not wear a 
prosthesis.  This is, in part, related to an inability to take full 
functional advantage of the prosthesis.  To help address this 
issue, we have developed the Voice Activated Prosthesis 
Interface (VAPI) to allow individuals to supplement their 
conventional control with voice commands.  Specifically, 
this study targeted accessing multiple grip patterns in multi-
articulating hands.  Data from amputee test subjects is 
reported showing an improvement in the time to complete 
tasks, more accurate grip selection, and reduced frustration 
with the prosthesis when using the voice recognition 
technology compared to standard myoelectric control.   

 
INTRODUCTION 

 
It is generally agreed that only about half of upper-limb 

(UL) amputees wear a prosthesis [1,2].  This is often because 
the prosthesis does not return enough function for the burdens 
of weight, discomfort, non-cosmetic appearance, lack of 
durability, etc. [3].    One primary reason for the lack of 
prosthesis acceptance is the inability to control the device 
effectively.  Difficulties with control result because multiple 
prosthetic joints are being controlled with a limited number 
of inputs from the user.  The issue becomes even greater with 
more proximal amputation as there are even more joints to 
control with even fewer inputs available.   

 
Current input options for UL amputees are limited and 

include switches, electromyographic (EMG) inputs from 
residual musculature, force sensitive resistors, linear 
transducers, etc. In addition, many amputees don’t have the 
ability to use these inputs effectively (e.g., muscle atrophy 
can lead to unusable EMG signals).  Also, conditions such as 
traumatic brain injury or other cognitive deficits can make it 
difficult to understand and produce reliable input signals. 
Even for proficient users, most current control strategies 
often require sequential control of the various system joints. 

 
The lack of independent and intuitive control inputs also 

leads to existing complex prosthetic mechanisms being 
underutilized. For example, in recent years there have been 
substantial advancements in prosthetic mechanisms such as 
multi-articulating hands (Figure 1). These hands have the 

ability to produce dozens of different grip patterns that can be 
selected based upon the task being performed. However, 
grasp pattern selection can be complex and difficult to 
understand. Therefore, most users only utilize a maximum of 
four hand grasps due to the difficulty in reliably switching 
between grip patterns.   
 

VOICE ACTIVATED PROSTHESIS INTERFACE 
 

Upper limb amputees are looking for solutions that allow 
them to regain the function they lost after their amputation. 
To address this need, Liberating Technologies, Inc. (LTI) has 
developed the Voice Activated Prosthesis Interface (VAPI) 
controller which incorporates the ability for the amputee to 
use their voice to generate control signals for their prosthesis.  

 
Speech is the most natural and highest bandwidth mode 

of communication for humans [4].  Therefore, we aim to 
augment users current control schemes with the addition of 
their voice as a new input modality. Using this approach, 
VAPI has the ability to access larger numbers of grip patterns 
within multi-articulating hands as well as fluidly perform 
tasks that require coordinated sequential movements of 
multiple prosthetic joints, such as opening a door.   

 

 
Figure 1: Prototype VAPI with iLimb Hand 

 
LTI has prototyped a fully embedded and stand-alone 

VAPI controller (Figure 1) to demonstrate feasibility of the 
concept.  The current phase of  research has been focused on 
developing three major components of the VAPI system: (1) 
the ‘command interpreter’ which interprets the commands 
through  the  voice  recognition  engine;  (2)  the  ‘command 
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Figure 2: Voice Activated Prosthesis Interface (VAPI) quick disconnect controller architecture. 

sequencer’ which determines what control signals to generate 
based on the voice command; and (3) at the output controller 
to drive the terminal device (Figure 2). 

 
As demonstrated in Figure 2 the VAPI is used in addition 

to the user’s standard EMG signals, with the control 
sequencer determining if the EMG or voice inputs will 
control the terminal device.  The VAPI system uses a trigger 
word to ‘wake up’ the voice recognition module (e.g., 
‘Alexa…’) which then listens for the command word.  This 
helps to reduce accidental activation of the prosthesis.  After 
receiving the voice command, the VAPI produces the 
necessary command signal to elicit a grip change in the hand. 
Control is then relinquished back to the EMG sensors for the 
user to open or close the hand after the correct grasp pattern 
has been achieved. 

 
VOICE COMMANDS AND RECOGNITION 

ACCURACY 
 
With our partners at eSoftThings and Sensory, Inc., we 

developed a series of phonetically distinct command sets to 
test to determine which would produce the highest 
classification accuracy.  Preliminary tests had six subjects 
perform five trials of each word in eleven different command 
sets.  Figure 3 demonstrates that we were able to elicit up to 
98% recognition accuracy for two of the command sets 
(#2&#8).  The command set that was selected for future 
testing included the command words: “finger pinch,” “power 
grip,” “tripod,” “key grip,” “hand,” and “wrist,” with the 

latter two being used to toggle between hand and wrist 
control.          

 
FUNCTIONAL OUTCOMES TESTING  

 
Methods 

 
We performed a set of standardized functional outcomes 

measures including the University of New Brunswick (UNB) 
Test of Prosthesis Function. While this test was originally 
intended for children, there has been shown to have 
acceptable reliability and preliminary evidence of validity for 
adults [5]. In addition to the UNB, we worked with our study 
Occupation Therapist  (OT), Dr. Debra Latour, to develop a 
set of  custom tasks that represent activities of daily living 
(ADL) where multiple grasp patterns may be useful.  These 
included pouring and drinking, dressing tasks (put on sock, 
tie shoelaces, zip vest), turn doorknob, wrap a package and 
add written address label, etc.    
 

Ultimately the user needs to generate the appropriate 
control signals to make the desired grip change.  However, 
users will not always be able to switch into the desired grip 
pattern at the desired time.  This could be due to imprecise 
muscle coordination (e.g., producing a double impulse when 
a triple impulse is required, not holding ‘hold open’ long 
enough, etc.), fatigue, misinterpreted voice commands, etc. 
Therefore, in addition to scoring the tests described above, 
we also tracked how often the subjects were not able to switch 
into the desired grip (i.e., ‘Missed Grips’).   

 
Each subject completes the battery of tests either using 

EMG-only control or EMG with Voice Recognition (VR) 
control.  Each subject was provided with an iLimb Ultra hand 
and VAPI for testing.  In EMG-only mode, the hand was 
programmed to have four different mode switching 
commands used to access four different grip patterns within 
the iLimb (i.e., lateral, 3 jaw chuck closed, cylindrical, and 
precision pinch closed) via standard EMG switching 
commands including hold open, double pulse, triple pulse, 
and co-contraction.  To ensure the length and weight of the  

Figure 3:  Recognition accuracy results over 30 trials for 
each command set.  Our goal was 95% (red dotted line). 

212

MEC20



prostheses were the same in both test conditions, the VAPI 
was installed, but disabled, during EMG-only control.   

 
The subjects were trained on the VAPI and EMG 

switching and allowed to practice with each until they 
indicated they were comfortable with the control.  Each 
subject then completed three trials of each task including both 
the UNB and custom tasks to simulate activities of daily 
living (ADLs).  
 
Results 
  

We have tested two subjects with limb loss thus far and 
testing is currently ongoing.  We will have more subjects 
(both amputee and able-bodied) completed by the conclusion 
of the research funding in June of 2020. One subject with 
limb loss was an experienced two-site EMG user with a 
Touch Bionics iLimb multi-articulating hand. The other was 
a novice two-site EMG user with a Steeper beBionic multi-
articulating hand. The experienced user was able to complete 
the full set of tasks three times. Due to fatigue, the novice 
user was unable to complete the full set of tasks. The novice 
user fatigued, in part, because the hand used for testing was 
significantly larger than their usual hand and the subject was 
unaccustomed to the additional weight. 

 
UNB:  Traditionally the UNB focuses on scoring spontaneity 
and skill. The measure of spontaneity defines a person’s 
tendency and impulse to use their prosthesis effectively when 
attempting a two-handed task. In determining a person’s level 
of skill, it may be evident that the person is able to perform 
the requested task but demonstrates the need for additional 
training or motivation to refine their abilities when using their 
prosthesis [6]. Scoring results from the UNB did not show a 
substantial improvement in spontaneity or skill for VR.   

 
Timing:  One of our original hypotheses was that voice 
recognition control would allow the user to complete their 
tasks faster.  Our experienced user demonstrated that they 
were able to complete the tasks 35% faster (13.3 seconds to 
8.6 seconds) when using voice recognition (Figure 4). 
 
Missed Grips:  The experienced two-site myoelectric user 
that completed the full three rounds of testing was observed 
to have made 2.8 times more grip switching mistakes when 
using EMG-only control than when they used voice control 
(Table 1).  These results were consistent across both the UNB 
and custom tasks.  In addition, with EMG-only control, each 
missed grip would require an additional muscle exertion to 
achieve the desired grip. 
 
Anecdotal Feedback:  Missed grip changes were a substantial 
source of frustration for both control methods. Survey results 
demonstrated that both subjects preferred the voice control 
and had lower frustration levels with VR due to fewer grip 
transition mistakes.  One user reported reduced exertion when 

using the voice control.  Both subjects also reported 
frustration with the length and weight of the prototype 
system.     
 

 
Figure 4: Average task completion time with 95% 

confidence intervals with EMG Only grasp selection or 
EMG with voice control grasp switching. 

 
 
     Table 1: Number of Missed Grips per control condition. 

 
 

DISCUSSION / CONCLUSION 
 

Preliminary data indicates that voice recognition control 
of an upper limb prosthesis demonstrated more accurate 
multi-articulating hand grip selection than standard EMG-
control methods. These data also indicated that it is possible 
to complete tasks more rapidly with voice control.    

 
We believe that as individuals are able to easily and 

reliably access a greater number of grip patterns, they will be 
more likely to select the grip pattern that is ideal for the task 
at hand.  With proper grip selection, it is likely that 
individuals will be able to reduce compensatory movements, 
which have been shown to lead to long term overuse injuries 
and joint damage [7].  

 
It should be noted that there are other methods that can 

be used for selecting grip patterns that were not investigated 
in this study.  These include the use of pattern recognition 
systems as well as the gesture control built into the iLimb 
Quantum.  While these alternative methods are promising, 
there is a ceiling to the number of grasps that can be accessed 
through these methods.  It has been reported anecdotally that 
pattern recognition can reliably access three to four grip 

 
Control Method Ratio  

(EMG only/ 
EMG+Voice) 

EMG-
only 

Control 

EMG + 
Voice 

Control 
Missed Grips 51 18 2.8 
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patterns and the gesture control adds four patterns.  We plan 
to compare voice recognition control to these methods in 
future trials. 

 
FUTURE WORK 

 
Testing of the VAPI system is currently ongoing with 

three additional amputee subjects and several able-bodied 
subjects to be completed by June 2020.   

 
In addition to testing the current system, we are 

continuing to make further technical enhancements to the 
VAPI system with our current funding.  One enhancement is 
to implement remote microphones, such as lapel or in-ear 
microphones, to detect and wirelessly transmit the voice 
commands to the VAPI for processing.  This will move the 
microphone from its current location in the wrist, which has 
the potential to be interfered with if the individual were to 
choose to wear clothing such as a heavy, long-sleeved jacket.   
We will also investigate communicating directly with a 
multi-articulating hand itself over Bluetooth to be able to 
access an even larger number of grip patterns.   

 
Finally, we are in the process of developing a new 

outcome measure specifically designed to assess the ability 
of individuals to access different grip patterns.  We refer to 
this test at the Grip Switch Assessment (GSA). The GSA was 
inspired by the Box and Block Test, a commonly used 
measure to assess unilateral gross manual dexterity. The GSA 
was designed to measure a user’s ability to efficiently switch 
between multi-articulating hand grips while manipulating 
simple objects. The assessment involves measuring the time 
it takes for a user to switch into the proper grip and carry a 
set of objects over a short obstacle (Figure 5). If the patient 
takes longer than 30 seconds to achieve the proper grip the 
test administrator will have the patient move onto the next 
item. This cut-off reduces the continued frustration of the 
patient and keeps the GSA trial time to under two minutes.  
The order of the objects is randomized with each trial.   
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Figure 5: A - An able-bodied participant manipulating 
the first object during a GSA trial. B - A diagram of the 
table arrangement to administer the GSA for a patient 

affected in the right arm.  
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ABSTRACT 

Prosthetic hand operation often results in high levels of cognitive burden on the user which can lead to fatigue, 

frustration and device rejection. Some previous work that quantified this cognitive load relied on subjective 

questionnaires or distraction tasks. We have adapted a protocol capable of real-time, objective, non-distracting 

assessment of cognitive load for use with individuals controlling a prosthesis. Here we present this platform to assess 

cortical dynamics during prosthesis use. We describe a custom-built lightweight prosthesis simulator and an 

electroencephalography (EEG) assessment. We also present pilot work that shows how alpha inhibitory activity 

recorded with a wireless EEG system can be used to assess cognitive load. 

INTRODUCTION 

 

Efforts to improve upper-limb myoelectric prostheses often aim to provide a high degree of functionality to those 

living with limb-loss [1]. Despite technological advancement, these devices provide limited capabilities compared to 

intact limbs and impose a high cognitive load that results in fatigue and frustration [2], which can lead to device 

rejection [3]. Measurements to directly evaluate cognitive load are needed in order to further understand how efficient 

visuomotor behaviors develop during prosthesis use. For this, electroencephalography (EEG) is ideally suited as it 

allows the measurement of ongoing neural activity with high temporal resolution. Active processing in engaged and 

task-relevant areas of the brain is reflected by a suppression in the magnitude (power) of oscillations in the alpha range 

(8-12 Hz) [4], [5]. The development of skilled motor performance is characterized by the efficient allocation of 

processing resources to task-relevant areas of the brain [6]. Recently, this approach was used to demonstrate a decrease 

in alpha power detected across the scalp during prosthesis use compared to an anatomical hand, reflecting more 

conscious control [7]. Based on this work, we present a platform to assess brain dynamics during prosthesis use. The 

first section describes a customizable, lightweight myoelectric prosthesis simulator created for the platform. The 

second section describes the wireless EEG equipment and the analysis used in the platform. The project was approved 

by the Research Ethics Board of the University of New Brunswick (REB #2019-098) and all pilot testing was 

performed according to the REB guidelines. We conclude by showing pilot data of the alpha distribution on the cortex 

reflecting functional inhibition which can be indicative of high cognitive load. 

METHODS AND PILOT RESULTS 

Prosthesis simulator  

A novel, custom built, lightweight (approx. 900 g) 3D-printed myoelectric prosthesis simulator was built (Figure 

1). This device allows for people with intact limbs to control a prosthesis. The University of Alberta’s Handi Hand 

[8] was mounted to a wrist brace with a medial offset, a position chosen to minimize the effect on modulating arm 

kinematics [9] and to reduce visual occlusion of the prosthesis [10]. Two electrodes (Myoware, Advancer 

Technologies) placed on the dorsal and ventral surfaces of the forearm record electromyographic (EMG) activity from 

wrist extensors and flexors to be used for hand control. Force sensitive resistors (Interlink Electronics®, CA USA) 

(FSRs) embedded in the fingertips of the index and thumb of the prosthetic hand detect pressure changes normal to 

the sensor that drive vibrating resonant motors providing haptic feedback to the user.  
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Control 

Signals from the two EMG channels are amplified, 

high pass filtered at 20 Hz and notch filtered at 60 Hz. 

Signals are then rectified and integrated to drive a 

proportional open-close controller. Proportional control of 

the closing and opening velocity of the hand is done by 

mapping the maximal and minimal velocities to the 

maximal and minimal EMG activity recorded. To 

normalize the controller for each participant, they are asked 

to perform wrist flexion and extension maximal voluntary 

contractions (MVCs) for 5 seconds at the beginning of the 

session to determine the maximal amplitude for each of the 

electrodes. Similarly, the minimal activity for flexors and 

extensors is experimentally determined by recording the 

baseline EMG activity of each sensor during a period of 5 

seconds while the arm is resting in the simulated prosthesis. 

The minimal activity is set to a value three standard 

deviations above the mean recorded activity to reduce 

unintentional activation of the channels. 

Feedback 

Changes in resistance captured by the FSRs at the 

fingertips control two haptic motor drivers (DRV265L, Adafruit Industries, New York, NY) that activate two 

corresponding linear resonant actuators (C10-100, Precision Microdrives, London, UK). These coin motors are in the 

inside lining of the forearm cuff and in direct contact with the skin of the forearm. The amplitude of the vibration of 

the haptic motors is mapped proportionally to the resistance change of the FSRs to represent the force detected at the 

fingertips. The magnitude of the minimally detectable vibration is determined individually for each participant and 

used as the lower edge of the mapping with the FSR signal.  

EEG recordings 

Cortical activity is recorded using EEG sampling at 1000 Hz. The electrodes are positioned on the head based on 

the standard 10/20 Channel system, with all referenced to the left and right earlobe. Data are transmitted wirelessly 

via Bluetooth from the cap directly to a PC and recorded using the software provided by the system manufacturer 

(Cognionics Data Acquisition, Version 3.6). 

Blink and eye artifacts are removed using Principal Component Analysis and visual assessment [11]. EEG signals 

are then band-pass filtered from 0.1 to 100 Hz. Time-frequency decomposition of the signal is performed through 

short-time FFT on Hanning-tapered and zero-padded (up to 2000ms) overlapping segments (50% overlap) of 500 ms. 

These windows are recorded from 1000 ms before and after initial contact with the object to assess grasping force 

modulation (total time window of 2000 ms). Alpha power of EEG spectra has been previously used as a proxy to 

quantify functional inhibition of cortical areas [5], [7], [12], [13]. With this model, a greater level of alpha activity 

reflects a higher level of functional inhibition [5]. After the FFT transformation, power (μV2) in the alpha range (8-12 

Hz) is averaged across overlapping FFT segments for each channel and trial. Channels on the scalp are divided in 7 

functional regions of interest (RoI); left temporal (T7), left central (C3), frontal (Fz), right central (C4), right temporal 

(T8), parietal (Pz) and occipital (O1, O2). Power is then averaged across these channels to yield values for each region. 

Finally, the values are divided by the average baseline value obtained during the resting state to obtain an index of 

change in activity from the resting state [14].  

Using this method, we have been able to qualitatively identify high levels of alpha power reflective of functional 

inhibition of the occipital lobe during an eyes-closed recording. The occipital lobe is responsible for the processing of 

incoming visual information [15]. A sample recording from one participant is presented in Figure 2. This increase in 

Figure 1. Experimental set-up displaying the custom prosthesis 

simulator and the dry-wireless EEG system. During experiments, 

the user’s hand and arm are visually occluded. 
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alpha activity in posterior regions of the brain indicating low cortical activation has been well described since the late 

1920’s [15]. The wireless EEG setup presented here can identify alpha activity changes across the scalp.

 

DISCUSSION 

A common goal in developing new myoelectric 

technology is to increase the clinical effectiveness of 

prostheses [3]. Despite advances in technology, most devices 

impose a high cognitive burden that can result in fatigue and 

frustration [2], and eventual prosthesis rejection [3], [16], [17]. 

Here, we present a platform to assess cognitive load during 

prosthesis use. The development of our prosthesis simulator 

facilitates experimentation with individuals not affected by 

limb-loss, allowing us to increase the statistical power of our 

studies. Furthermore, this system was manufactured using 

light-weight 3D printed parts, allowing for less constrained 

movements compared to previous simulators requiring 

suspension systems to offset the weight [10].  

 Previous work has sought to assess cognitive load during prosthesis use using EEG [18], [19], however, only one 

previous study has attempted to directly evaluate the functional cortical dynamics using alpha level inhibition [7]. 

This work was able to demonstrate an overall reduction on alpha activity across the scalp during prosthesis use, 

indicating higher levels of cognitive load compared to the use of the anatomical hand. Based on this work, we present 

a platform aimed to help researchers and prosthesis developers investigate the effects of their prosthetic 

implementations on cognitive load. The advantage of our platform lies in the wireless EEG system utilized, as it does 

not restrict the movement of the user and avoids having large cable artifacts [20]. Furthermore, unlike the previous 

study using EEG to assess alpha activity [7], our protocol also includes a baseline normalization step, in which the 

relative differences in alpha activity between resting state and prosthesis use allows for the analysis of alpha changes 

exclusively due to prosthesis use, and allows for normalization across multiple assessment days [21].  

From a practical perspective, it is important to understand how prosthesis users develop efficient control of a 

prosthesis. Adaptive learning processes rely on the engagement of appropriate mental resources during practice and 

performance [14], [22], [23], and high levels of cognitive load have been shown to hinder them [22], [24]. We hope 

to utilize this platform in the future to provide a method of assessing cognitive load during real time and move away 

from subjective or performance-based assessments of cognitive load as these are prone to subjective interpretations, 

distractions, and ceiling effects to tasks with high success rates [13]. Furthermore, EEG based assessments can provide 

insights about the cortical mechanisms responsible for the high levels of cognitive load, and drive evidence-based 

interventions on how to address them. Currently, we are conducting work using this EEG based approach to investigate 

the effects of adding augmented feedback on the cognitive load required to operate a myoelectric prosthesis, as 

augmented feedback could potentially reduce the visual attention and cognitive burden required to operate a prosthesis 

[18]. 
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ABSTRACT 

Background: We recently provided a comprehensive overview of factors that could determine prosthesis 

choice for persons with major unilateral upper limb defects by performing a qualitative meta-synthesis of literature 

combined with results from a focus group among end-users. However, this overview did not contain any user 

experiences about pattern recognition (PR) control. Therefore, the aim of the current paper was to validate the 

overview for PR controlled prostheses.  

Methods & Materials: A literature search, in which we searched for qualitative contributions about PR 

controlled prostheses from the users’ perspective, was performed. The relevant text in the results sections of 

retrieved papers was extracted and entered into Atlas.ti for a qualitative analysis. The coding framework was based 

on the overview of our recent meta-synthesis and focus group study. The overview consists of six main themes 

(‘physical’, ‘activities and participation’, ‘mental’, ‘social’, ‘rehabilitation, costs and prosthetist services’, and 

‘prosthesis related factors’) and 86 subthemes.  

Results: Three articles were included. Out of the 43 subthemes that were mentioned in the data, 41 were 

already included in the coding framework. The subthemes ‘intuitiveness’ and ‘calibration’ were added (both within 

the main theme ‘prosthesis related factors’). Furthermore, results showed that PR control was experienced as 

intuitive, but also as unreliable, difficult and requiring extensive training and high mental effort.  

Conclusion: An up-to-date overview with factors that could affect prosthesis choice, which consists of six main 

themes and 88 subthemes, that was also applicable to the choice for PR controlled prostheses was created. The up-

to-date overview may help persons with upper limb defects to identify factors that really matter for them when 

selecting a prosthesis. However, since only three studies were included and only a limited literature search was 

performed, more qualitative studies about user experiences with PR controlled prostheses are needed to further 

validate the results of this paper. 

INTRODUCTION 

Considering the high rejection rates of upper limb prostheses, it is important to determine which prosthesis 

characteristics best suit the preferences of a user [1]. Therefore, we recently performed a study in which we 

identified user opinions about factors determining prosthesis choice for persons with major unilateral upper limb 

defects [2]. The study existed of two parts: a qualitative meta-synthesis of the literature and a validation of those 

results in a focus group with end-users [2]. Based on these results a well-arranged overview of 86 factors that could 

affect prosthesis choice was created [2]. Potential prosthesis users can use the overview, provided by the clinician, to 

identify what really matters to them. Users and clinicians can discuss those factors and select a prosthesis that best 

fits the needs of the user. However, one of the limitations of this study was that we did not include any user 

experiences with pattern recognition (PR) controlled prostheses [2]. Since prostheses with PR control have recently 
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become commercially available, it would be beneficial for clinical practice to extent the overview for PR controlled 

prostheses.  

In contrast to direct control (DC), which uses electromyography (EMG) signals of two muscles to control 

opening and closing, PR control uses algorithms that learn to recognize patterns from EMG of six to eight muscles 

[3,4]. In PR control, switching between different modes of the prosthesis by using a trigger signal (e.g. co-

contraction) is not needed anymore. The appropriate grip is automatically selected based on the recognition of 

associated EMG patterns. In this way PR control aims to provide more intuitive control of the prosthesis. However, 

also disadvantages of PR controlled prostheses have been reported: they seem to be unreliable and require extensive 

training [5]. The aim of this paper was to validate the overview of factors contributing to prosthesis choice for PR 

controlled prostheses [2].  

METHODS & MATERIALS 

Coding framework 

Our recently performed study existed of two parts [2]. In the first part a qualitative meta-synthesis using a ‘best-

fit framework’ approach was performed [2]. For this meta-synthesis a systematic search of literature was done, in 

which studies were considered eligible if they contained qualitative content about adults with major unilateral upper 

limb defects experienced in using commercially available prostheses. Out of 6247 articles, 19 were included. In the 

second part of this study, results of the meta-synthesis were validated with end-users in a focus group [2]. The focus 

group included 11 persons with an upper limb defect, of which three used a standard myoelectric hand, three a 

multi-articulated myoelectric hand, one a standard and a multi-articulated myoelectric hand, two a cosmetic/passive 

hand and two did not use any prosthesis. The result of the study was a well-arranged overview of factors that could 

determine prosthesis choice for persons with major unilateral upper limb defects [2]. The overview contained 86 

subthemes that were divided into six main themes: ‘physical’, ‘activities and participation’, ‘mental’, ‘social’, 

‘rehabilitation, costs and prosthetist services’ and ‘prosthesis related factors’ [2]. Since we aimed to extend this 

overview for PR controlled prostheses, we applied the coding system used to create this overview as a coding 

framework in the current paper [2].  

Data collection and analysis 

A literature search, in which we searched for studies reporting on qualitative contributions about PR controlled 

prostheses from the users’ perspective, was performed (search date: 27-02-2020). PubMed was searched using the 

following search terms: ‘prosthesis’ AND 'upper limb' AND ‘qualitative’ AND 'pattern recognition'. Text was 

considered relevant if it was qualitative and described user experiences of persons with major unilateral upper limb 

defects with PR controlled prostheses. General information, such as participant demographics and analysis methods, 

were extracted and all relevant text in the results sections of the articles were extracted and entered into the Atlas.ti 

software. Relevant text included both quotes of participants and interpretations of the authors of the included 

studies. The data-extraction and analysis was performed by one coder (NK). If data did not fit within the existing 

themes and subthemes of the coding framework, new themes or subthemes were added. After a new theme or 

subtheme was added, the previously coded text was checked for the presence of this new theme or subtheme. 

RESULTS  

Study and participant characteristics 

The electronic search resulted in three articles, which were included in this paper [5–7]. Those articles were not 

included in our recently performed meta-synthesis because in two studies non-commercially available prosthesis 

were used [5,7], in one study the focus on user opinions was not recognizable in the title or study aims [6], and one 

of the studies was published after the search we performed for the meta-synthesis [5]. A total of 24 adult participants 

were included in this synthesis (Table 1) [5,7]. In the study of Resnik et al. (2018) 12 adult participants used a PR 

controlled DEKA arm prototype in which the Coapt PR-control system was integrated with the DEKA-arm [7]. In 

the study of Franzke et al. (2019) four adult participants used a non-commercially available PR controlled prosthesis 

from Ottobock [5]. All 8 participants from the study of Hargrove et al. (2017) used a Boston digital elbow with a 

Motion Control wrist rotator and a single degree-of-freedom terminal device of their choice [6]. With exception of 

one participant, all participants were experienced with another prostheses [5–7].  
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Table 1: Summary of patient and study characteristics. 

Study Sample 

size 

Gender Origin 

of limb 

loss 

Level of 

limb 

loss 

Type of PR 

prosthesis 

Other 

prosthesis 

Country 

(ISO-

code) 

Data 

collection 

technique 

Data 

analysis 

Resnik et 

al. [7]A 

12 10 M;  

2 F 

1 CO 

11 AA 

10 TR; 

2 THB 

3 EMG-PR-DEKA 

prototype 1;  

6 EMG-PR-DEKA 
prototype 2; 

3 both prototypes 1 

and 2 

11 personal 

prosthesis 

(type not 
specified); 

1 none 

USA Open-ended 

questions in a 

survey and 
semi-

structured 

interviews 

Qualitative 

case series 

design with 
a constant 

comparison 

approach 

Franzke et 
al. [5]C 

4 4 M 4 AA 4 TR 4 Michelangelo 
hands with non-

commercially 

available PR control 
(Ottobock) 

4 myoelectric 
prosthesis 

with DC 

control 

AUT Semi-
structured 

interviews 

Five-step 
framework 

approach 

Hargrove 

et al. [6] 

8 8 M 8 AA 8 THB 8 Boston digital 

elbow with a motion 
control wrist rotator 

and a single degree-

of-freedom terminal 
device of their 

choiceD 

8 myoelectric 

prosthesis 
(control type 

not specified) 

USA Open-ended 

question and 
an activities 

journal 

Not clearly 

mentioned 

A Study possibly also included persons with bilateral upper limb defects, however, this was not further described. 
B All participants of those studies with limb loss at TH level also had TMR.  
C Only participant demographics of the users with a PR controlled prostheses are shown in this table.  
D Participants could choose between a powered split-hook (electric terminal device or electric Greifer terminal device) or a single degree-of-
freedom hand. 

ISO-code = country code assigned by the International Organisation for Standards; M = male; F = female; CO = congenital; AA = acquired 

amputation; TR = transradial; TH = transhumeral; TMR = targeted muscle reinnervation; EMG-PR-DEKA = a DEKA arm controlled by pattern 
recognition based on electromyography; DC = direct control; PR = pattern recognition control; USA = United States; AUT = Austria.  

Findings 

The data of current paper supported the six main themes of the coding framework. From the 86 subthemes of the 

coding framework, 41 were mentioned in the data. Most of these subthemes could be categorized within the main 

themes ‘prosthesis related factors’. Two new subthemes were added to the coding framework. The first subtheme 

was ‘calibration’ (main theme: ‘prosthesis related factors’), which was often experienced as inconsistent and 

unreliable. Since this issue was only mentioned in the study of Resnik et al. (2018), this might be explained by the 

prosthesis type with the PR control system that was used in this study [7]. Second, the subtheme ‘intuitiveness’ 

(main theme: ‘prosthesis related factors’) was added to the framework. PR was, if it worked well, often experienced 

as more intuitive compared to DC. 

 

 “Well, the PatRec [the pattern recognition control] surely is . . . with regard to how the control 

feels. . . more like it was before with the [intact] hand.” – Quote of a participant [5]. 

 

On the other hand, regarding the subthemes ‘ease in controlling’ and ‘reliability’ (main theme both: ‘prosthesis 

related factors’), participants indicated that PR control was sometimes difficult and unreliable. 

 

 “. . .moving my arm in any way confuses it, I think, to where it thinks that I’m asking it to 

change the grip and it does when I don’t want it to.” – Quote of a participant [7]. 

 

Additionally, with regard to the subthemes ‘prosthesis training’ (main theme: ‘rehabilitation, costs and prosthetist 

services’) and ‘mental effort needed to control’ (main theme: ‘mental’), participants said that extensive training and 

relatively high mental effort were needed for PR control.  

 

“. . .it takes a lot more thought and a lot more training I feel, to, and not just like strength 

training and stuff, but just thinking of what muscles or what movements you want to make” – Quote of a 

participant [7]. 
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“First of all, pattern recognition requires a lot of training before it works properly.” – Quote of a participant 

[5]. 

DISCUSSION 

This paper examined whether the overview of all factors that could determine prosthesis choice, that was 

created in our recent study based on results of a meta-synthesis and focus group, was also applicable to PR 

controlled prostheses [2]. Therefore, three studies that contained qualitative contributions about user experiences 

with PR controlled prostheses were synthesized using the overview of our recent study as a coding framework [5,7]. 

The subthemes ‘calibration’ and intuitiveness’ were added to the framework. This resulted in an up-to-date 

overview, which consists of six main themes and 88 subthemes, that was also applicable for the choice of PR 

controlled prostheses. Since PR controlled prostheses are already on the market, this up-to-date overview could be 

used in clinical practice to inform clinicians and prosthesis users about factors that may matter when selecting a 

prosthesis. 

Results suggest that PR control was often experienced as more intuitive, but also as difficult to control, 

unreliable and requiring extensive training and high mental effort to control. These matters should be discussed 

between potential prosthesis users and clinicians when considering a PR controlled prosthesis. However, it should be 

noted that not all participants included in the synthesis of this paper used a commercially available PR controlled 

prosthesis. In addition, the participants of included studies were from a quite homogeneous sample (e.g. mainly 

males with an acquired amputation). Possibly, a different, more heterogeneous group of participants might have 

different experiences with PR controlled prostheses, and perhaps might have required further adjustments of the 

coding framework. Furthermore, the participants with an upper limb defect at transhumeral level had undergone 

targeted muscle reinnervation (TMR) [6,7], and in the study of Resnik et al. (2018) it was unclear whether 

participants with bilateral upper limb defects were included too [7], which may have influenced our results. Another 

limitation of this paper was that a limited search with only a few search terms in one database was performed. For 

this reason, we may have missed relevant information.  

To conclude, this paper provides the first step in the understanding of factors that could influence the choice for 

a PR controlled prosthesis. The overview with factors that could affect prosthesis choice controlled by DC was 

updated for the use of PR controlled prostheses. However, since only three studies were included and a limited 

literature search was performed in this paper, more qualitative studies about user experiences with commercially 

available PR controlled prostheses are needed to further validate the created overview. We think that the updated 

overview of all factors that affect prosthesis choice, may help persons with upper limb defects to identify factors that 

really matter for them. Ultimately, we hope that this will facilitate a better match between user and prosthesis, 

resulting in a decrease of prosthesis abandonment. 

ACKNOWLEDGEMENTS 

REFERENCES 

[1]  E. Biddiss, T. Chau, "Upper limb prosthesis use and abandonment: A survey of the last 25 years," Prosthet Orthot Int., vol. 31, pp. 236-

257, 2007. 

[2]  N. Kerver, S. van Twillert, B. Maas, C.K. van der Sluis, "User-relevant factors determining prosthesis choice in persons with major 

unilateral upper limb defects: a meta-synthesis of qualitative literature and focus group results," Submitted, 2020. 

[3]  T.A. Kuiken, L.A. Miller, K. Turner, L.J. Hagrove, "A comparison of pattern recognition control and direct control of a multiple 
degree-of-freedom transradial prosthesis," IEEE Journal of Translational Engineering in Health and Medicine, vol. 4, pp. 1-8, 2016. 

[4]  A.M. Simon, K.L. Turner, L.A. Miller, L.J. Hargrove, T.A. Kuiken, "Pattern recognition and direct control home use of a multi-

articulating hand prosthesis," IEEE Int Conf Rehabil Robot, vol. 2019-June, pp. 386–391, 2019. 

[5]  A.W. Franzke, M.B. Kristoffersen, R.M. Bongers, A. Murgia, B. Pobatschnig, F. Unglaube, et al. "Users’ and therapists’ perceptions of 

myoelectric multi-function upper limb prostheses with conventional and pattern recognition control," PLoS ONE, vol. 14, pp. 1-13, 

2019. 

[6]  L.J. Hargrove, L.A. Miller, K. Turner, T.A. Kuiken, "Myoelectric pattern recognition outperforms direct control for transhumeral 

amputees with targeted muscle reinnervation: a randomized clinical trial," Sci Rep, vol. 7, pp. 1-9, 2017. 

[7]  L.J. Resnik, F. Acluche, S.L. Klinger, "User experience of controlling the DEKA Arm with EMG pattern recognition," PLoS ONE, vol. 
13, pp. 1-31, 2018. 

223

MEC20



Track: Other

224

MEC20



CASE STUDIES: FITTING PATIENTS WITH HEAVY DUTY RATCHETING 
MECHANICAL THUMB PROSTHESES FOR METOCARPOPHALANGEAL LEVEL 

AMPUTATIONS 
 
1Ben Pulver, MS, 2Mac Lang, CPO, FAAOP, 2Rob Dodson, CPO, FAAOP, 1,3Stephen Huddle, MS, 

1,3Richard Weir, PhD 1,4Jacob Segil, PhD, 1Levin Sliker, PhD 
1Point Designs 

2Arm Dynamics 
3University of Colorado Denver | Anschutz Medical Campus 

4University of Colorado Boulder   
 

ABSTRACT 

Thumb amputation presents a significant challenge for 
people due to the thumb’s importance in creating stable 
functional grasps. Most thumb amputations are a result of 
trauma and most people with these amputations work in 
heavy manual labor occupations. The lack of many durable 
and functional prosthetic devices has caused many of these 
people to change or lose their jobs. This can lead to 
significant psychological and quality of life issues. 

Here we present three different case studies of patients 
with metacarpophalangeal (MP) joint level thumb 
amputations being fit with a heavy duty ratcheting 
mechanical thumb prosthesis, the Point Thumb. The Point 
Thumb features anatomical flexion at both the MP and 
interphalangeal (IP) joints, a virtual MP joint center for better 
anatomical joint alignment, heavy duty metal construction, 
10 different lockable positions, and the two methods of 
unlocking to allow for unilateral use. The first case is a 
patient with multiple digit amputations who desired to return 
to a manual labor job. The second case is a patient with an 
amputation of his dominant thumb who desired to improve 
effectiveness performing activities of daily living (ADLs). 
The third case is a patient with a left thumb amputation who 
desired to lift heavy objects to continue his hobbies and work. 
This patient had previous prosthesis experience and found the 
Point Thumb to be more functional than a cosmetic 
restoration or the TITAN Thumb. In all cases, the Point 
Thumb allowed patients to achieve their functional goals. 
These cases highlight the unique challenges present with 
thumb amputation and demonstrate the potential of the Point 
Thumb to provide users with a robust prosthetic thumb 
capable of handling heavy manual labor occupations. 

INTRODUCTION 

Approximately 500,000 people in the United States are 
currently living with an upper limb amputation [1]. About 
92% of upper limb amputations are of the hand, finger, or 
thumb [1] and an estimated 45,000 new hand and finger 

amputations occur every year [2]. About 83% of these 
amputations are a result of trauma [1], [3]. The majority of 
these amputations are of fingers, 73%, with thumb 
amputations making up only 16% [4]. However, the loss of a 
thumb is far more significant than the loss of a finger; an 
amputation of the thumb at the MP joint leads to 40% 
impairment of hand function and 22% whole body 
impairment [5]. Additionally, the thumb is required to 
perform all but one of the most common grasps used to 
perform activities of daily living (ADLs) (Figure 1) [6]. Not 
only does the loss of a thumb create tremendous functional 
challenges, it can also create psychological challenges 
including depression, anxiety, social isolation, and low self-
esteem [7], [8]. Despite the obvious importance of the thumb, 
recent studies have shown that the replantation rate for thumb 
amputations is declining [9] and patients are rarely fit with a 
prosthetic device of any kind [10].  

 
Figure 1: Most common grasps used to perform ADLs [6] 

BACKGROUND 

Clinical Significance 

The thumb plays a critical role in hand function as it 
provides the primary source of opposition in nearly every 
functional grasp [6]. Thus, the nearly 74,000 people in the US 
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with thumb amputations face significant functional 
challenges [1], [4]. For the thumb, an amputation at the MP 
joint leads to 22% of whole body impairment [5]. This degree 
of functional impairment can lead to job displacement as 
many of these amputations occur in heavy manual labor 
occupations which can no longer be performed after the 
amputation (Figure 2).  

 
Figure 2: (Top) Work performed prior to partial hand amputation. 
(Bottom) Job status after receiving partial hand amputation [11] 

Prosthetic Options 

There are several prosthetic options currently available 
for people with thumb amputations. In general, they can be 
sorted into four categories: cosmetic, body-powered, 
passive/positional, and externally powered (Figure 3).  

 
Figure 3: Overview of prosthetic solutions for thumb amputations. 
(a) custom silicone thumb (stamos and braun prothesenwerk) (b) 

livingskinTM (Ossur) (c) X-Thumb (Didrick Medical) (d) 
ThumbDriver (Naked Prosthetics) (e) VINCENTpartial passive 

(Vincent Systems) (f) TITAN Thumb (Partial Hand Solutions) (g) i-
Digits Access (Ossur) (h) VINCENTpartial active (Vincent 

Systems) 

Cosmetic devices, such as livingskinTM (Ossur), are 
mostly an aesthetic option and provide limited functionality. 
Body-powered devices, such as the X-Finger (Didrick 
Medical) and the ThumbDriver (Naked Prosthetics), are more 
functional by providing active flexion and opposition. These 
devices are limited, however, by their reliance on a custom 
fit and limited grip force. Passive/positional devices, such as 
the VINCENTpartial passive (Vincent Systems) and TITAN 
Thumb (Partial Hand Solutions), provide adjustable flexion 
and opposition so are generally more functional than 
cosmetic solutions. These devices, however, often require the 
use of the user’s contralateral hand to position the device. 
Externally powered devices, such as the VINCENTpartial 
active (Vincent Systems) and i-Digits Access (Ossur), are 
controlled using myoelectric signals and provide active 
flexion, manual or active adduction, and active opposition. 

Durability and intuitive control systems are generally a 
challenge with these types of devices.  

Table 1 provides a comparison of the different prosthetic 
options available in terms of their range of motion. The 
impairment values are calculated using the American 
Medical Association (AMA) guide for evaluating upper 
extremity impairment [5]. This comparison does not factor in 
issues like loss of sensation, device durability, and device 
ease of use, all of which have a significant role in device 
adoption and retention. Even so, this shows that large 
functional gains can be made by simply including flexion at 
one or two joints.   

Table 1: Thumb prosthesis functional comparison from the 
perspective of digit and hand impairment remaining after fitting 
the prosthesis. 

Prosthesis Examples Impairment* 
Digit Hand 

No Device --- 100% 40% 
Static Opposition Post livingskinTM 55% 22% 

MP Flexion TITAN Thumb 37% 15% 
MP and IP Flexion Point Thumb 31% 12% 

MP Flexion and 
Radial Abduction 

VINCENTpartial 
passive 27% 11% 

MP Flexion and 
Adduction 

i-Digits Access1 
VINCENTpartial active2 17% 7% 

1Adduction is passive, 2Adduction is active 
*Does not include impairment due to lack of sensory information 

As durability is a key issue for people desiring to return 
to work in heavy manual labor jobs, body-powered and 
passive/positional devices are generally preferred. Despite 
this preference, there are still limited options for heavy-duty 
devices and thus new devices must be developed. 

Point Thumb 

The Point Thumb, by Point Designs, is a new heavy-duty 
passive/positional device with 10 different lockable positions 
in flexion and two degrees of freedom (DoFs) (Figure 4).  It 
is the only device that features motion at the IP joint to 
achieve anatomical flexion as well as the only device to 
feature a virtual MP joint center to achieve anatomical joint 
alignment. With two methods of unlocking the ratchet 
mechanism, it is also able to be used unilaterally. 

Figure 4: (a) Rendering of Point Thumb prototype with design 
features highlighted. (b) Physical Point Thumb prototype 

68%

32%
Heavy
Manual
Non-
Manual

26%

48%

26%
Same

Changed

Retired

Passive/Positional Externally Powered 

Body Powered Cosmetic 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(a) (b) 

Anatomical flexion 
Virtual MCP joint 

center 

Metal construction, 
150lb load capacity 

10 lockable 
positions 

Release button & 
auto spring back 

226

MEC20



CASE STUDY 1 

Presentation 

The first patient is a 49-year-old male who sustained a 
workplace injury resulting in a partial hand amputation of the 
left 1st-3rd digits at MP joint and 4th digit distal to IP joint.  At 
the time of the initial clinical evaluation he and his wife were 
caring for 7 foster children including 2 infants. He has 
seasonal work as a firefighter which he aims to return to.  He 
is also considering returning to his previous job as a laborer 
which requires handling tools, lumber and heavy bags of 
supplies.   

 
Figure 5: (Left) Patient’s presentation and prosthesis with Point 
Thumb, two Point Digits, and one Point Partial. (Right) Patient 

lifting a weight with prosthesis. 

Treatment 

Due to the ruggedness of his occupational goals, 
passively positionable digits were recommended to improve 
grasp security.  The intended use of the prosthesis was for 
work and ADLs including his hobby of logging.   Externally 
powered options were contraindicated for his reported goals. 
The Point Thumb was considered a good option due to its 
robustness and ability to flex at the IP joint, which in this case 
was critical for achieving opposition with digits 1 and 2. 

The patient was fit with a partial hand custom high 
temperature vulcanized (HTV) silicone socket and carbon 
fiber frame.  The Point Thumb was used for the 1st digit and 
two full length Point Digits (Point Designs) were used for the 
2nd and 3rd digits.   Additionally, a partial finger prosthesis, 
the Point Partial (Point Designs), was used for the 4th digit by 
creating a separate custom HTV thimble style socket. 

Outcome 

The patient was able to securely hold long handled tools 
and cylindrical items. Pinch grip was made possible by the 
attachment of the Point Thumb mounting bracket to the 
silicone socket rather than the carbon frame. This flexibility 
allowed for some adduction to improve opposition, 
particularly active opposition between the Point Thumb and 
the 4th and 5th digits. 

The patient adapted to use of the prosthesis quickly.  
Within one month the patient reported using the device to 
assist in chainsaw operation as well as use of an axe.  He 
reported wear of the prosthesis up to 12 hours per day without 
issue but with an average of 4 to 6 hours.  

The Disabilities of the Arm, Shoulder, and Hand 
(DASH) standardized outcome measure was used to assess 

prosthesis effectiveness. The patient experienced a reduction 
in DASH score from 22 to 15, which while not meeting the 
minimum clinically important difference demonstrates 
important functional gains from the Point Thumb. 

CASE STUDY 2 

Presentation 

The second patient is a 36-year-old male who sustained 
a right dominant thumb amputation secondary to a workplace 
accident.  He previously worked in corrections and at the time 
of the initial clinical evaluation was considering alternate 
career options.  He did, however, express a desire to return to 
his prior employer in some capacity and for some time.   

While recovering from his injury, he is the primary 
caregiver for his children, while his wife works full time.  He 
has difficulty with numerous ADLs given decreased ability 
to pinch and grasp with his previously dominant hand.  
Measurements taken during hand therapy indicated an 85% 
reduction in hand strength of his dominant hand compared to 
his non-dominant hand.   

 
Figure 6: Patient’s socket with Point Thumb prothesis 

Treatment 

The patient’s goals dictated a digit for opposition that 
would be durable and very strong. His occupation 
necessitated a variety of thumb positions to provide pinch of 
flat lumber as well as grasp of round handles and tools. This 
requirement indicated he would benefit from the Point 
Thumb as it has motion at both the MP and IP joints. 

Outcome 

The patient was fit with a partial hand custom HTV 
silicone socket and carbon fiber frame.  The Point Thumb was 
integrated rigidly into the carbon frame with alignment 
allowing for precision pinch, tripod pinch, as well as 
cylindrical and spherical grasps. More quantitative outcome 
measures will be reported after the patient has used the new 
device for an extended period. 

CASE STUDY 3 

Presentation 

The third trial patient is a 57-year-old male who 
sustained a workplace injury resulting in the MP level 
amputation of the left thumb (Figure 7). At the time of the 
initial clinical evaluation he was working in a construction 
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environment, mainly in carpentry. His main functional goal 
was the ability to grasp objects such as tools and materials 
such as lumber to perform his daily tasks at work, continue 
working on cars as a hobby, and perform ADLs at home.   

 
Figure 7: (Left) Patient's presentation. (Right) Patient using Point 

Thumb to hold a spray bottle 

Treatment 

The patient was initially fit with a custom silicone 
restoration and a passively positional thumb, the TITAN 
Thumb, attached to a dynamic muscle contoured interface.  
An externally powered thumb was contraindicated due to the 
patient’s bulbus distal presentation as well as a dirty and 
possibly wet working environment.   

The patient found that the cosmetic restoration did not 
allow him to grasp heavy objects.  While the TITAN Thumb 
gave the patient increased ability to grasp heavy objects, the 
patient found the need to use his contralateral hand to unlock 
it unacceptable. The Point Thumb was then fit as a 
replacement to the TITAN Thumb and found to correct this 
issue by allowing unilateral use. 

The patient was ultimately fit with a partial hand custom 
HTV silicone socket and carbon fiber frame.  The Point 
Thumb was integrated into a carbon fiber thumb cap that was 
glued to the HTV silicone underneath and allowed for grasp 
of both large and small objects.   

Outcome 

The patient reported increased satisfaction with the Point 
Thumb due to the novel spring back mechanism. This trial 
fitting was very recent and thus the collection of standardized 
outcome measures data is ongoing. Further results will be 
reported after the patient has used the new device for an 
extended period.   

CONCLUSION 

Thumb amputations present a variety of complicated 
functional, psychological, and occupational challenges. Most 
people with thumb amputations work in heavy manual labor 
occupations and the lack of robust prosthetic options up to 

this point prevents many of them from returning to work. The 
Point Thumb is a new robust passively positionable 
ratcheting prosthetic thumb with flexion at the MP and IP 
joints designed for use in heavy-duty work environments. 
The three case studies presented here illustrate the 
complexity of thumb amputation cases and demonstrate the 
viability of the Point Thumb as a robust prosthetic thumb for 
heavy manual labor occupations. In all cases, use of the Point 
Thumb allowed patients to achieve their functional goals, 
ranging from using a chainsaw to carrying lumber. These 
positive early trial fittings indicate that the Point Thumb has 
strong potential and warrants further study. 
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ABSTRACT 
 

This paper is the first-of-a-three-part series that examines changes in technologies and meanings of upper limb 
prosthetics from ancient Egypt to the present.  Contemporary design of powered upper-limbs shares a number of 
continuities with older methods of limb making. Both cosmetic and functional prostheses have been in production for 
at least the last 3,000 years. Wars have long been a spur to technological innovation in artificial limbs. Prostheses 
making has sought to return soldier-amputees to combat, whether on horseback or in tanks. Technological innovation 
in other fields has provided materials for improvement in artificial limbs, such as the replacement of wood by iron, 
iron by steel, or plastic by composites. Since the early modern period, the development of new artificial limbs has 
been mistaken as a specialty of medical doctors. The making of artificial limbs has since at least Ancient Egypt been 
as much about technological innovation as the creation of new meanings of prostheses, whether the design of arms 
for the underworld of the Duat or hands as industrial tools. 
 

INTRODUCTION 
 

The management scholar Roberto Verganti has both combined and expanded our definitions of innovation and 
design through the concept of design-driven innovation. In his definition of design, it not only includes design as a 
form of product, e.g. bringing visions of beauty to products, or design as creative problem solving, e.g. human 
centered-design anchored in user discovery, but a third meaning of design as “making sense of things [1].” In this 
third meaning, design contributes new meanings, whether combined with radical or incremental technological 
innovation.  In this paper we examine how multiple meanings of powered upper prostheses have emerged in the design 
of these limbs, including “prosthesis as afterlife limb”, “prothesis as battle tool” and “prothesis as natural limb”. 

 
ANCIENT UPPER LIMB PROSTHESES 

 
Recent studies are revising accounts of ancient Greece and Rome as the source of the first prostheses, and 

medieval Europe as a dark age of heavy, crude prostheses for battle and hiding amputations [2]. There is evidence 
from ancient Egypt that artificial body parts were used to reinstate the physical body for its reanimation and continued 
existence in the next life. As well, functional prostheses were designed and used for mobility [3]. Artificial big toes 
found with Egyptian mummies and dated to the 11th to 7th centuries BCE show both a realistic appearance and 
functional performance in contemporary walking tests with replicas [4]. The inference is that a “nascent prosthetic 
science may have been emerging in the Nile Valley as early as 950 to 710 BC”, perhaps demonstrating ancient 
Egyptian knowledge of human anatomy [5]. Upper-limb prostheses, in contrast, were rarely used in ancient Egypt, 
and then only by the rich. The oldest Egyptian cosmetic hand found on a mummy dates to 2000 BCE [6]. Another 
cosmetic hand has been dated to 200 BCE [7]. 

 Beyond Egypt, there is evidence of prostheses in ancient Greece, Rome, Peru and China. In Greek mythology, 
the god Hephaestus, sometimes shown with shriveled foot, is skilled in the technical arts and making of prostheses [8] 
Other written records include Herodotus’ description of the wooden foot and an iron arm prosthesis of the 3rd century 
BCE Roman general, Marcus Sergius Silus [9]. 

 Although archaeological evidence for amputations before 1000 is uncommon, there are reports of artificial limbs 
during the first millennium. Artificial feet have been found in burials in Bonaduz, Switzerland from the 5th to 7th 
century and Griesheim, France, dated to the 7th to 8th century. A male from Longobard, Italy during the 6th to 8th 
century was found with a forelimb amputation and prosthetic device [10]. The historian Reed Benhamou in a 
Technology and Culture article on the history of the artificial limb in preindustrial France wrote that “Artificial hands 
capable of at least the palmar pinch required to hold a pen may have been made as early as the 10th century [11].” 

 
EARLY MODERN LIMB PROSTHESES 

 

229

MEC20



 As with amputations before the year 1000, there is little historical, archaeological or iconographic evidence of 
artificial limbs before the 16th century [12]. Most amputations may have been lethal, as techniques to stop extensive 
bleeding only became widely known in the 17th century. As well, there was a lack of knowledge of how to avoid 
infection. In the sixteenth century, doctors cauterized gunshot wounds with boiling oil. It was only after the French 
army barber-surgeon Ambroise Paré (1510–90) ran out of oil in a battle that he began using ointments and dressing 
as an alternative. Seeing improvement in his patients, Paré discovered that ligation of blood vessels controlled bleeding 
during amputation [13]. However, even in those rare cases in which severe upper limb trauma did not result in deadly 
hemorrhage and infection, only the wealthy could afford customized prosthetic upper limbs. 

 The growing affluence in the early modern period is evidenced by the holdings of artificial upper limbs in the 
London Science Museum. It has five upper, artificial limbs dating from the 16th to 18th centuries [14]. The lack of 
lower limbs in the collection, despite being more numerous than upper limbs both then and now, is likely attributable 
to the use of wood and leather in artificial legs (excepting for knights on horseback), versus iron or steel for upper 
limbs. Among the most famous prosthesis of the early modern period is the iron hand of German knight Götz von 
Berlichingen (1480-1562). An artisan made the prosthesis battle armour for him after he lost his hand during the Siege 
of Landshut (circa 1505) in Bavaria. It featured five digits that were capable of a fingertip pinch, could be flexed and 
locked so he could to hold reins, grasp and swing his sword and return to battle with disability concealed. The iron 
upper limb of a Turkish pirate, Horuk Barbarossa, was discovered in an Alsatian tomb dated to 1564. He lost his hand 
in the Battle of Bugia (circa 1517) against Spain, and, like Götz von Berlichingen, received an iron replacement so he 
could fight again in battle. The Barbarossa upper limb also featured a movable wrist joint, elbow joint and fingers. 
Following a similar theme, Duke Christian of Brunswick lost his left hand in the Battle of Fleury (circa 1622) and 
received an iron hand from a Dutch craftsman. The only account of a non-combative hand prosthesis from the period 
comes from outside of Europe. It is attributed to the Italian surgeon Giovanni Tommaso Minadoi, who in 1512 “while 
travelling in Asia recorded observations of an upper limb amputee who was able to remove his hat, open his purse, 
and sign his name [15].” 

 According to numerous accounts, the first prosthetic device “that demonstrated a sound understanding of basic 
biomechanical functions” was designed by Paré [16]. It was a mechanical hand operated by catches and springs. It 
sought to copy with metal the motion and appearance of the missing hand, as well as offer beauty and ornament to 
wealthy patrons. In some reports, the hand met with limited success. In others, it was heavy but “successfully restored 
a knight’s ability to hold a shield or weapon in battle” and “were carefully crafted with the shape and appearance of 
human hands, rather than simply inanimate tools to hold objects [17].” It was not, however, designed by Paré, but 
obtained from a locksmith living in Paris, known as “le petit Lorrain.” [18] According to Heidi Hausse, it provides 
evidence of “ongoing practices of creating prosthetic technology in this period” within the domain of locksmiths, 
gunsmiths, clockmakers, and armorers in the early modern period. Neither Paré nor the surgeons who read his Oeuvres 
could fabricate the prosthesis or understand design, as opposed to the master craftsmen, who were capable of both. 
Rather it was the surgeons of wealthy patients who could afford these luxury items containing expensive materials 
and new technology. 

 A similar division between surgeons and master craftsmen is seen during the English Civil War (1642–51). “The 
Hospital of the Savoy in London treated amputee soldiers whose prosthetic requirements survive in credit bills 
submitted by William Bradley, hospital carpenter, indicating he supplied wooden legs and their attachments, made 
repairs, and provided crutches of various lengths [19].” This also presents evidence of the beginning of the 
institutionalization of prosthetic device design and manufacturing within hospitals. 

 
EIGHTEENTH CENTURY LIMB PROSTHESES 

 
 The eighteenth century saw the refinement of early modern upper limbs, the expansion of craft businesses into 

advertising, the beginning rehabilitation programs in hospitals and new ideas of politeness that led to expressions of 
uneasiness with visible disability. The refinements included body powered upper limbs. In 1732, the Académie Royale 
des Sciences reviewed a below elbow artificial arm designed by a clockmaker named Kreigseissen. It was made from 
sheets of copper and had joints at the wrist and at the first and second knuckles. These joints also offered lateral 
movement of the thumb to accomplish a palmar pinch were accomplished with pulleys activated by bending the elbow. 
There was also reduction in the weight of upper limbs. The Götz von Berlichingen artificial hand weighed about 1.5 
kilograms, a little less than the average male hand and forearm. By 1792, an artificial arm made in Switzerland had 
less than a third of the weight due to the use of steel instead of iron for the springs, barrel casings, cables, and triggers, 
papier-mâché and parchment for the forearm, and cork for the wrist and hand rather than metal or wood. As evidence 
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of the continuing role of master craftsman in the design of prostheses, Reed Benhamou wrote that “It is no coincidence 
that these are the same materials used in 18th-century automatons, for several of the clockmakers, locksmiths, and 
mécaniciens who used the lightweight materials and miniaturization techniques required by these devices also 
produced artificial limbs. Indeed, some 18th-century prostheses may be called spin-offs of technology [20].” 

 Shaping the response to wartime limb loss were Enlightenment values and a new culture of politeness. In early 
the early eighteenth century visible “‘deformity’ made others uneasy and threatened the virtuous social interaction or 
‘conversation’ that lay at the core of notions of politeness [21].” Moreover, in Britain, many “condemned the use of 
prosthetic technologies as deceitful, prideful and impious [22].” By the late eighteenth century, prostheses came to be 
associated with Enlightenment visions of scientific discovery of the mechanics of the human body and technological 
progress in replicating nature. In this cultural shift the association of prosthesis with the sin of pride and Puritan ideals 
of unadorned purity was reformulated as artificial improvement. Prosthesis use came to be seen as restoring wholeness 
and normalcy and practicing polite behaviour in putting others at social ease. In this way prostheses users were meeting 
their moral duties of a sociable society. With this context the advertisement of prostheses as devices of scientific 
improvement further influenced the growth of this idea of politeness, with as much emphasis on agreeableness, 
decorum and taste, as it did with the medical marketplace. Toward the end of the 18th century, the French 
Revolutionary Wars (1792-1802) led to new opportunities for sales of protheses. In addition to tailoring prostheses 
for individual amputees, “craftsmen solicited endorsements, advertised their products in the popular press, and, in 
general, attempted to sell prostheses as they might any other commodity [23].” 

 These themes are present in the eighteenth-century invention of rehabilitation. The rehabilitation physicians 
Reuben Eldar, and Miroslav Jelić write that the “true spirit of rehabilitation…started in Europe in the 18th century 
[24].” One of the sources for the new medical discipline of rehabilitation was orthopaedics. The French physician, 
Nicolas Andry (1658-1742) in setting out the principles of the new field wrote in his Orthopédie, translated into 
English in 1743, that “We are born for one another, and ought to shun having any thing about us that is shocking [25].” 
As such, orthopaedics was in its origins “defined primarily in terms of aesthetic improvement rather than restoration 
of functional ability [26].” These ideas found incorporation in new institutes and clinics, including the first orthopaedic 
institute, founded in Orbe Switzerland in 1780, followed by the orthopaedic hospitals in Wurzburg, Germany in 1812, 
Paris in 1826 and London in 1837. It would be another hundred years before the “scientific and technological 
transformation of orthopaedics” occurred during the twentieth century interwar period with the rise in interest in 
research and development [27]. 

 The concept of physical normalcy gained further momentum in the nineteenth century with the emergence of 
bodily statistics [28]. It was accompanied by increasing public awareness of prosthetic devices in marketplaces. The 
forces behind this growth in social consciousness of artificial parts as aesthetic improvement included the use of 
advertising by the prosthesis industry [29]. With the rise in social awareness there were also increases in demand for 
functional devices, especially for industrial workers who sought to return to work after limb loss [30]. This meant the 
emergence of a new market for industrial workers and new meanings for their devices, versus middle class and 
aristocratic amputees who wished to maintain social distinction through limbs which were presentable in polite society 
[31]. One of the new technologies that allowed for maintenance of social distinction was a body-powered upper limb 
prosthesis designed by German dental surgeon Peter Baliff in 1818 [32]. It used leather straps connected to the trunk 
and shoulder girdle to flex fingers and extend the forearm prostheses. It offered to amputees for the first time a means 
to operate prosthesis with fluid body motions. It also provided the basis for subsequent improvement and adaptation 
throughout the nineteenth century. It was applied to above-elbow prostheses by a Dutch sculptor, Von Peterssen, in 
1844. In 1867 the Comte de Beaufort redesigned it for lower cost production for use by the poor and amputee veterans 
of the Crimean War (1853-56). There followed numerous redesigns, including a double spring hook for holding 
objects, similar to that of the well-known split hook of today 
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ABSTRACT 

The loss of digits from the hand is the most common upper limb amputation but there is a lack of commercially 

available prosthetic digits to replace what was lost.  The lack of prosthetic options is especially severe for small adults 

of children with hand sizes that are too small for existing prosthetic componentry.  Here we describe the design of a 

miniature ratcheting prosthetic digit for small adults and children with partial hand amputation.  The design features 

are discussed and mechanical testing of the digits was performed.  The results indicate that the miniature digit can 

withstand heavy-duty loads and has a failure strength of over 275 lbs while sized for a 5th percentile female hand or 

an 8-year old child.  Soon, this miniature digit will hopefully serve a population of people with partial hand amputation 

that have been underserved up to this point in time.   

INTRODUCTION 

There are approximately 500,000 people living with minor 

upper limb loss in the USA [1], [2].  Minor upper limb loss (also 

partial hand amputation) is defined as the amputation of the 

bones distal to the wrist joint.  While the field refers to these 

types of amputation as ‘minor,’ it can be a severe disability, 

especially if the amputation involves the thumb and/or multiple 

digits.  In fact, partial hand amputees self-report a higher level of 

disability compared to other major unilateral upper limb 

amputees [3].  Furthermore, it was reported that fewer than half 

of partial hand amputees were able to return to the same job after 

amputation and most found that the prosthetic devices were 

insufficient to meet the demands of their work [4]. Amputation 

can cause physical, psychosocial, and economic damage to an 

individual and can lead to depression, anxiety, loss of self-

esteem, and social isolation [5], [6]. While the number of 

individuals with partial hand amputation is 10 times more than 

all other categories of upper limb amputation combined, the state 

of available technology for this underserved patient population 

is relatively poor [7]. 

Current partial hand prostheses are limited in several ways. 

First, they generally lack robustness, and there are frequent 

reports of devices breaking under normal use. Second, most 

current options offer a one-size-fits-all approach, which limits 

the acceptance by people who want a prosthesis that matches their original finger size. A complete lack of prosthetic 

finger options can occur for men and women with smaller anatomical size. Third, rotation of the finger about the 

anatomical center of rotation of the metacarpophalangeal (MCP) joint is not possible with current options resulting in 

a prosthesis that is frequently too long. Fourth, current prostheses require the use of the opposite hand to operate the 

 

Figure 1: A depiction of the miniature 

digits spanning lengths of 55mm (little finger) 

to 75mm (middle finger) on a full hand model. 
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device. There is a need for a durable, scalable, single-handedly operable prosthetic finger which is anatomically 

suitable for small adults or children. 

The lack of prosthetic limb systems for small adults and children with upper limb amputation is a problem within 

our field.  Even data concerning the prevalence of upper limb loss among women in particular is lacking [7].  Ziegler 

et al. estimated limb loss in the United States in 2008 and determined that women comprised 35% of all persons with 

upper and lower limb loss [1].  More specifically, Atkins et al performed a thorough survey of persons with upper-

limb loss in 1996 and found that women comprised 22% of persons with upper limb loss [8].  Based on this percentage 

(22% women) while the majority of people with upper limb amputation are male, there is still a large population of 

women, approximately 110,000 women [1], [2] who are in need of better prosthetic options at the finger level.   

The differences between male and female hand anatomy are great; a 50th percentile female middle finger length 

(101mm) is equivalent to the 1st percentile male middle finger length (102mm) [9].  Also, the 1st percentile male 

middle finger length (102mm) is 13mm longer than the 1st percentile female middle finger length (89mm).  These 

differences essentially preclude the use of most current partial hand prosthetic devices for women who are not in the 

5th percentile or greater.  With this effort, we sought to design a miniature prosthetic finger with 55mm length that 

would provide a valuable device for 5th percentile women and 5-year-old children (Figure 1) [10].   

DESIGN METHODS 

The design of the miniature digit was based upon our prior work on the Point Digit now commercialized by Point 

Designs LLC (Lafayette, CO).  The miniaturization of the digit affects the function of the mechanical systems within 

it.  Multiple mechanisms within the current design were scaled with the size of the finger including 1) the ratchetting 

mechanism, 2) the bump release mechanism, and 3) the push-button release mechanism.  The tolerances involved 

were redefined for the miniature mechanisms to provide the same amount of reliability and function using a repeatable 

manufacturing method.  The bump release unlocks the ratchetting mechanism allowing the spring to bring the finger 

to full extension.  The “props” within the bump release mechanism are used to unlock the ratchetting mechanism 

bringing the finger to full extension.  

The current, full-sized Point Digit weight specification is no more than 70 g (1/8 lb.) based on an estimate of 

anatomical weight where the hand makes up 0.75% of body weight [11]. In the case of a 175 lbs. male whose hand 

would weigh about 1.25 lb., and assuming the palm makes up 50% of that weight, each finger and thumb would be 

1/8 lb. (~66 g). The Point Digit prototype weighs between 45 g (80 mm length) to 55 g (120 mm length), satisfying 

the weight requirement for male hands.  We sought to reduce the weight of the Point Digit by 50% to a weight of 25g 

in order to fit women with body weight as little as 90 lbs. To achieve this, we will print the finger in titanium as well 

as light-weighting the componentry using direct metal laser sintering techniques. 

EXPERIMENTAL METHODS 

We evaluated each finger on a bench-top material-testing machines (MTS) and custom finger cyclers to establish 

if the design meets specifications. To create a clinically-ready prosthetic finger, we need the miniature digit to be 

durable, robust, and able to withstand high forces.  The mechanical testing spanned static loading conditions, dynamic 

loading conditions, and dynamic unloaded conditions.  Each test was conducted with loads applied to the palmar 

surface of the distal phalange, the palmar surface of the medial phalange, and lateral surface of the distal phalange.  

The static loading test applied loads of 66N on the palmar and lateral surface of the  distal phalange as this is the 

minimum a prosthetic hand should be able to generate [12] and loads of 98N on the palmar surface of the medial 

phalange as this is approximately the weight of a bag of groceries (10kg).  After achieving this minimum specification, 

each finger was tested to failure with loads applied to each finger surface. The dynamic loading test applied a repetitive 

fatigue load of the same magnitude of the static loading testing at a rate of 1Hz for 10,000 cycles.  The dynamic 

unloaded test cycled the digit through 250,000 flexion and extension cycles.  This simulated the unloaded use of the 

digit over 3 years of use assuming ~30 grip changes per hour, 8 hours of wear time per day, and 365 days of use per 

year.  A custom made cycle testing machine used an actuator to flex the digit into full-flexion and then relied on the 

spring-back mechanism within the digit to fully extend the digit.  This test ensured the mechanism can withstand long-

term use while maintaining the ratcheting and spring-back functions.  The successful completion of these 

specifications will match the mechanical specifications of the Point Digit.     
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RESULTS 

A battery of verification tests was performed to ensure 

that all design specifications of the miniature prosthetic 

digit had been met. In all tests, the digit met or exceeded 

the specification (Table 1). In some cases, the digit 

exceeded the specification by several factors. The 

miniature digit met the mass and length requirements of a 

5th percentile female as well as a 5-year old child.  In the 

most demanding test, the static load test at the distal tip of 

the finger, the static strength of the Point Digit at the distal 

fingertip exceeded the specification by 18 times (1,242 N 

compared to 66 N, 279 lb compared to 15 lb).  The 

dynamic load tests were all successful in that the digits did 

not show any visible signs of wear, damage, or loss of 

function.  The dynamic cycle test was not completed at the 

time of this publication, but has proceeded without adverse 

events at this time.  These results indicate that the 

miniaturization of the digit did not cause a decrease in 

mechanical performance of the mechanisms involved in 

the ratcheting prosthetic digit.    

 

 

 

Table 1. Mechanical Testing Results 

 Mass Length Dynamic 

Cycle 

Test 

Dynamic Load Testing 

(10,000 cycles @ 1Hz) 

Static Load Testing 

(Load to failure) 

Specification 25g – 

35g 

55mm – 

75mm 

250,000 

cycles 

Distal Medial Lateral Distal Medial Lateral 

66 N 98 N 66 N ≥66 N ≥98 N ≥66 N 

Testing 

Result 
30g 

55mm – 

75mm 
N/A 

10,000 

cycles 

at 66 N 

10,000 

cycles 

at 98 N 

10,000 

cycles 

at 98 

N 

1,242 N 
≥200 

N 

≥200 

N 

Meets 

Specification 

  
--    +++ + + 

Exceeds 

Specification 

by 

-- -- -- 1x 1x 1x 18.8x 2x 2x 

 

DISCUSSION 

The mechanical design of miniature prosthetic fingers for small adults and children with partial hand amputation 

requires a great reduction in size of the internal mechanisms involved in the devices.  This work details the creation 

of a robust device which can withstand heavy-duty use for these under-served patient populations.  A battery of 

mechanical tests confirmed that the miniature digit could withstand clinically-relevant loads and cycles of use.  The 

success of this mechanical design was accomplished using rapid-manufacturing technology like direct-metal laser 

sintering 3D printing.  This manufacturing method enables complex componentry to be created with internal 

geometries and in-situ functions that are not possible with other manufacturing techniques.  Furthermore, the 3D 

printing technology allows for the digit to be easily scaled between 55mm – 75mm and thereby produce appropriate 

 

Figure 2: Exemplary data from the dynamic load 

test applied to the medial phalange.  500 loading 

cycles are shown out of the 10,000 cycles performed. 
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lengths for a variety of patients.  Future work will produce miniature digits for small adults in a laboratory testing 

session as well as a take-home clinical trial.  Then, relevant outcome measures will be produced in order to detail the 

utility of the miniature digit during activities of daily living.      
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