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ABSTRACT 

We present a novel method for controlling a myoelectric prosthetic wrist. Five multiple degree-of-freedom (DOF) 

wrist trajectories are obtained from healthy participants that performed tasks that span the range of Activities of Daily 

Living (ADL) using dimensionality reduction and unsupervised machine learning techniques. The efficacy of these 

motions is tested as part of a pilot study where a participant used a simulated wrist device controlled using two-site 

surface electromyography (sEMG); two trajectories were tested in an immersive virtual reality. Novel wrist control 

has been demonstrated to be more intuitive to use and appears more natural while limiting the amount of body 

compensation. 

INTRODUCTION 

Orienting the hand has been shown to be as important as finger dexterity in aiding us perform Activities of Daily 
Living (ADL) [1]. Prosthetic devices featuring a wrist, however, have either only 1 or 2 degrees-of-freedom (DOF), 

largely due to a lack of intuitive control associated with orienting a hand in 3-DOF rotation space while operating each 

orthogonal DOF independently. Our work focuses on developing an intuitive control strategy for a 3-DOF prosthetic 

wrist device by taking advantage of joint angle synergies and identifying predefined wrist orientation trajectories that 

do not require users to independently control each DOF. 

Synergies have been identified across different joints in the human body [2], and have been demonstrated to be 

effective in prosthesis use [3]. Some joints are also predictably coupled [4]. We found inspiration in these findings 

and identified sets of predefined full arm shoulder-elbow-wrist trajectories using unsupervised machine learning 

techniques that clustered whole wrist movements into defined sets [5]. The arm movements corresponded to healthy 

individuals performing a comprehensive set of activities of daily living (ADL). We implement a similar approach to 

identifying clusters of wrist movements, following with an averaging algorithm to obtain a small, yet representative, 
set of wrist trajectories. 

Virtual Reality (VR) has been used across many domains dealing with the human hand. It can be a valuable tool 

for training the use of myoelectric prosthesis [6], and can be truly immersive; demonstrated through its capability to 

treat phantom limb [7]. We make use of advances made in VR technology to demonstrate the capacity of the proposed 

wrist trajectory control to be a practical approach to operating all 3-DOF of a prosthetic wrist. 

METHODS 

Wrist Trajectories 

We obtained a set of representative wrist trajectories through a series of dimensionality reduction techniques. We 

first collected 12 healthy subjects (age 24-71) performing ADL using motion capture; 12 Bonita Vicon cameras 

tracked markers placed around the subjects’ forearm and hand. The set of ADL were inspired by work done on upper-

limb rehabilitation and prosthesis use evaluation [8], and include the following: drinking from cup or mug placed in 

various locations, transferring a suitcase or a box, reaching to a can overhead, pouring from a cup, eating with a fork 
or spoon, reaching to the axilla, and reaching to the back pocket; listed in more detail in our previous work [5]. 

Joint angles were extracted from marker data and clustered using Hierarchical Clustering with Ward’s Distance 

measure, using dynamic time warping (DTW) to measure the similarity between motions. The number of clusters was 



identified using the L method. Each cluster was averaged using DTW barycenter averaging (DBA) to distil the large 

set of motions to a small set of representative wrist trajectories. This study protocol was approved by Yale University 

Institutional Review Board, HSC# 1610018511. 

Control Modes 

Participants completed the series of tasks using two types of wrist control: sequential control, and the proposed 

novel trajectory control. Sequential control interpreted the flexion sensor as driving the wrist along the positive angle 
direction while the other sensor drove the wrist in the opposite direction at constant speed. A co-contraction cycled 

the mode from pronation-supination to flexion-extension to ulnar-radial deviation, with pronation, flexion, and ulnar 

deviation being the positive directions. 

The identified wrist trajectories are implemented in our proposed trajectory control. In this setup, the flexion 

sEMG sensor drove the wrist forward along a selected trajectory, while the extension sensor drove the wrist backwards 

along the trajectory at a constant speed. A co-contraction results in the cycling between the five trajectories. Each of 

the trajectory control modes have a defined start and end point. Therefore, even for sequential control conditions, the 

wrist began in the same orientation as the trajectory control. 

Control Input 

We used HTC Vive for both the head tracking and for the head mounted display (HMD). The participant’s forearm 

was tracked and displayed within the virtual environment (VE), implemented in Unity, to provide a point of reference 

for the hand orientation. This was done using Vicon to track markers placed around the forearm and streamed to Unity. 
To control the virtual hand, the participant’s forearm was also outfitted with two surface electromyography (sEMG) 

sensors, placed on the flexor and extensor muscle groups (see Figure 1), connected to an Arduino Uno. Sensor readings 

were translated to either on or off according to a calibrated threshold value. 

Pilot Study Procedure 

In this pilot study, one healthy right-handed participant (male, age 28) performed two tasks related to ADL in VR 
by attempting to align the end effector with the desired goal. The subject did not have any visual or motion impairment 

and was comfortable using VR. Tasks included in this pilot study are described in more detail in Table A. Because 

each trajectory control mode corresponds to a specific task, these were included in the table for reference. Only two 

tasks were tested in this pilot, therefore only trajectories (4) and (3) (see Figure 2 for detail) were used, for reaching 

to the cup and pouring with the cup, respectively. Prior to each task, the participant was given ample time to practice 

and develop a strategy that they’re comfortable with using during the task recording; the purpose was simulate the 

performance likely achieved by an experienced user. For tasks involving object transfer, objects were automatically 

placed within the hand. 

 

 

(a)     (b)   

Figure 1: (a) Marker set used to collect healthy arms motions that were then used to generate the wrist 

trajectories. (b) The elbow brace was used to maintain the reflective marker arrangement, such that the virtual 

forearm and humerus segments are automatically detected and displayed within VR. The brace’s range of motion 

was set to maximum and was not used to limit the elbow motion itself. sEMG sensors placed over the skin around 

the forearm can be seen underneath the elbow brace. 



Table 1: Pilot tasks 

 

 

 

Evaluation 

The participant’s performance can be assessed in various ways. Because the goal is to improve prosthesis use in 

the real world, we wanted to focus on the time it takes to complete a task and the motion cosmesis. The participant 

also provided feedback and helped guide our interpretation of his performance. While cognitive effort to control the 

prosthesis was not directly measured, it may be inferred from the time measurements. 

RESULTS 

Wrist trajectories were obtained through averaging each of the motion clusters. Although each consists of a 3-
DOF wrist rotation, they can be better described according to the dominant DOFs as follows: (1) supination/ulnar 

deviation (2) flexion/ulnar deviation (3) supination/flexion (4) supination/extension (5) extension-ulnar deviation, as 

seen in Figure 2. Two of these wrist trajectories, (3) and (4), were used in the pilot study. 

Recorded wrist joint motion trajectories for each of the trials are displayed in Figure 3. Motions were segmented 
according to when the participant’s hand began to move and when the target end effector position and orientation, was 

reached. 

The participant was able to complete both tasks faster using trajectory control. Sequential control for the cup 

pouring task took significantly longer than when using trajectory control, while the times were much closer for the 
cup reaching task. This is likely because the task required switching between the different joint angles, which can be 

challenging, or even confusing, for the user. The cup reaching task did not require switching between the different 

DOF, and supination alone was sufficient. 

Task Task description Corresponding wrist trajectory 

Reach to cup Standing, starting with the hand by the 
side, reach to the cup on the table 

(4) supination/extension 

Pour from cup Sitting, transfer the cup from the table to 

the pouring location and orientation 

(3) supination/flexion 

 

Figure 2: Hierarchical clustering results. A horizontal cut segmented the dendrogram into five clusters of 

motion. A descriptive label is included for each cluster. 

 

Figure 3: The 3-DOF wrist joint angle trajectories are displayed for each trial. θ1, θ2, and θ3 correspond to 

pronation, flexion, and ulnar deviation respectively. The left two plots correspond to the cup pouring task under 

the two different control strategies, sequential and trajectory control, while the right two images correspond to the 

cup reaching task. Wrist rotation did not necessarily begin when the hand started to move. 



Wrist motions appeared more naturally under trajectory control. This is largely due to the lack of access to all 3-

DOF of the wrist during sequential control, as is evident in Figure 3. Without haptic feedback, the user appeared to be 

looking down at their simulated device. This was exacerbated when multiple mode switching was required, such as 

for the cup pouring task with sequential control. Trajectory control for both tasks did not require mode switching, 

since a single mode, corresponding to the respective task, was sufficient. 

DISCUSSION 

In this study we were able to gain significant insight into our proposed wrist trajectory control that encourages 

further investigation. In this preliminary study, trajectory control has been demonstrated to be a superior alternative 

to sequential control, despite limiting users to specific wrist orientations. Findings further demonstrate the capacity of 

joint synergies to simplify control.  Trajectories appeared to generalize well to the tasks, without requiring the user to 

compensate with their residual limb or torso. 

During the experiment, when using sequential control, the participant generally relied on fewer DOF than were 

available. This was likely the easiest way to control the wrist without having to repetitively switch between DOF. This 

showcases the benefits of trajectory control whereby all 3-DOF of the wrist are at use while maintain a simple and 

intuitive control strategy. 

We must also acknowledge that there were learning differences between the two control strategies. While 

sequential control would task users to learn the correct order of rotations, trajectory control requires a memorization 

of which tasks belong to which motion control. In the future, training time and cognitive load will be addressed. 

Using state of the art motion tracking, HMD, and control input, we believe this is the closest a simulation can get 

to testing prosthesis without using the actual prosthetic device. Innovations in this field have the potential to streamline 

prosthesis design iterations, prosthesis training, and rehabilitation [9], [10]. However, there are certain drawbacks that 

need to be addressed in the future in order to fully bridge the gap between simulation and reality. These include adding 

haptic feedback, inertia, wider field of view and resolution in the HMD, and improving the realism of the virtual 

environment design. 

In future iterations of this experiment we will recruit additional subjects and expand on the tasks. We will also 

include alternative state of the art control strategies, such as enabling participants to simultaneously control DOF. 

Positive and negative controls will be included as well, corresponding to tracking the users’ hand while unrestricted 

and fully restricted, respectively. 
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