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Abstract—Despite decades of research and development of pat-
tern recognition approaches, the clinical usability of myoelectric-
controlled prostheses is still limited. One of the main issues is the
high inter-subject variability that necessitates long and frequent
user-specific training. Cross-user models present an opportunity
to improve clinical viability of myoelectric control systems by
leveraging existing data to shorten training.However, due to the
difficulty of obtaining large sets of data from amputee popula-
tions, data from intact-limbed subjects are often supplemented
when building cross-user models; which may not translate well
to clinical usability. In this preliminary study, the differences
between intact-limbed and amputee cross-user electromyography
(EMG) patterns were examined.Previously collected EMG data
from 20 intact-limbed and 10 amputee subjects for different
wrist, finger, and grasping gestures were analysed. Results using
unsupervised clustering showed that amputees were consistently
grouped into a different cluster than intact-limbed subjects and
that additional clustering into more subgroups found larger
differences between amputees than able-bodied subjects. Further-
more, a simple linear classifier was able to discriminate between
able-bodied and amputee subjects using EMG from multiple
gestures with 90% accuracy.These results suggest that using
able-bodied subject data alone may be insufficient to capture
the necessary inter-subject variance when designing cross-user
myoelectric control systems for prosthesis control.

I. INTRODUCTION

Although many applications of myoelectric control have been
proposed in the literature since the 1990s, prosthesis control
may still be considered as the predominant, and only commer-
cial, application [1]. Nevertheless, despite many laboratory-
based advances in pattern recognition-based myoelectric con-
trol (¿90% classification accuracy) [1], myoelectric-controlled
prostheses still make a relatively limited clinical and com-
mercial impact (e.g., only a quarter of patients with upper
extremity amputations chose to use a myoelectric prosthesis
[2]). This may be due to a gap between the academic state-of-
the-art in myoelectric control and industry, which has been ac-
knowledged and highlighted within the academic community
[3]–[5]. One major limitation is high inter-subject variability,
which limits the generalization of findings and necessitates
frequent user-specific training and custom calibration [6], [7].

The main assumption of pattern recognition-based myo-
electric control is that different types of muscle contractions
exhibit distinguishable and repeatable signal patterns. Al-
though distinguishable activation patterns are routinely found
within a single user, there remain large differences between
subjects. Most research studies, therefore, have adopted single-
user (or subject-dependent) classification models, i.e., every
user must train a system before his/her gestures can be
recognized [1]. Few studies have investigated cross-user (or

subject-independent) models and results have shown a marked
decrease from the state-of-the-art (from ¿90% to 40%-60%)
[8], [9]. Moreover, due to difficulties with access to persons
with upper extremity limb deficiencies, most research studies
have developed and investigated pattern recognition-based
myoelectric control systems using intact-limbed subjects. Al-
though relatively consistent algorithmic trends exist between
the intact-limbed and amputee populations, an overall decrease
in performance has typically been reported for the latter [5],
[10].

In order to facilitate the development of cross-user models,
particularly for clinical applications of myoelectric control,
more information about subject-related differences in elec-
tromyography (EMG) patterns is required. The purpose of this
preliminary study was, therefore, to examine the differences
in surface EMG patterns between intact-limbed and amputee
subjects across a large set of hand and finger gestures. Results
are explored using data visualization and cluster analysis
techniques.

II. METHODS

A. EMG Data and Pre-Processing
Surface EMG data used in this study were taken from two

NinaPro (Non-Invasive Adaptive Prosthetics) databases (3 and
7) [11], [12], which include data acquired from 20 intact-
limbed subjects and 10 trans-radial amputated subjects. All
subjects provided informed consent, and secondary consent
was obtained for use of the dataset in this study. Additional
details about the nature of the amputee subject data are shown
in Table 1.

In these data sets, subjects performed a series of motions,
including various individual-finger, hand, wrist, grasping, and
functional movements. Databases 3 and 7 contain 52 and
40 total gestures, respectively, but the 38 common motions
between the two databases were used for the present study.
Each motion lasted 5 s, interrupted by 3-s rest time, and was
repeated six times. Surface EMG data were collected using
twelve Delsys Trigno Wireless electrodes; eight electrodes
were equally spaced around the forearm (at the height of
the radio-humeral joint), two electrodes were placed on the
flexor and extensor digitorum superficialis muscles, and the
remaining two electrodes were placed on the biceps and triceps
brachii muscles. The sampling frequency was set to 2000 Hz.
The data were cleaned of 50 Hz (and its harmonics) power-
line interference using a Hampel filter. Erroneous movement
labels were corrected by applying a generalized likelihood
ratio algorithm [11].
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TABLE I: Clinical characteristics of the amputee subjects (A1 and A2 from NinaPro Database 7 and A3-A10 from NinaPro Database 3). ‘n/a’ denotes data
not available.

Subject Amputated Hand Years Since Amputation Remaining Forearm (%) Cause of Amputation

A1 Right 6 n/a Accident
A2 Right 18 n/a Cancer
A3 Left 6 70 Accident
A4 Right 5 30 Accident
A5 Right & Left 1 40 Accident
A6 Right 7 0 Accident
A7 Right 5 50 Accident
A8 Right 14 90 Accident
A9 Right 2 50 Accident
A10 Right 5 90 Cancer

III. PROCESSING AND EVALUATION

The pre-processed EMG data were segmented for feature
extraction using a window size of 200 ms and an increment of
100 ms. The commonly used Hudgins’ time domain features
[13]; mean absolute value (MAV), waveform length (WL),
zero crossing (ZC), and slope sign change (SSC), were ex-
tracted from each window. A feature vector was then created
from a series of the overlapped windows for further analyses.

Hierarchical cluster analysis (HCA) was used to create a
dendrogram that identified homogeneous myoelectric patterns
across the entire participant group (30 subjects). Briefly, HCA
builds a hierarchical tree by combining a pair of clusters that
leads to the minimum increase in total within-cluster variance
after merging (Ward’s criterion [14]), where the increase
is a weighted squared Euclidean distance between cluster
centers. Subjects in the same group have higher similarity
(on average across 38 gestures, 12 muscles, and 6 repetitions)
than the subjects in the other groups. Clusters in the data
are determined by considering the height (or the distance) of
each link in the cluster tree compared to the heights of the
lower level links in the tree. If a link has a small increase in
the height relative to the links below, it means that there are
less distinct patterns differentiating the subjects joined at that
level. Conversely, if a link height significantly differs from
the links below, it means that there are more distinct patterns
between them. This measure is referred to as the inconsistency
coefficient.

Data visualization using principal component analysis
(PCA), a commonly used feature projection method, was
performed to better understand these complex myoelectric pat-
terns. The main purpose of PCA is to summarize the important
variance information in the data into the first few principal
components (PCs), to facilitate visualization of distance and
relatedness between populations in a reduced dimension. The
identified PCs are linear combinations of the original features
that can be used to express the data in a reduced form.

Finally, classification accuracies were computed using a
linear discriminant analysis (LDA) classifier and a leave-one-
out cross-validation technique to measure the performance
of classification models in discriminating between gestures
and between subjects. For gesture recognition, six clinically
relevant motions were evaluated: wrist flexion, wrist exten-
sion, forearm pronation, forearm supination, power grip, and

pinch grip. Classical within-subject gesture recognition was
performed using leave-one-repetition-out cross-validation. For
subject recognition, overall signal patterns were used (combin-
ing features from all repetitions of motions) in a leave-one-
subject-out cross-validation approach. The goal of this task
was to evaluate whether data could be classified as being from
an able-bodied or amputee subject. This classification task was
also repeated using each individual 200ms window of EMG
data, again in a leave-one-subject-out cross-validation.

IV. RESULTS

To validate previously reported results for intact-limbed and
amputee subjects, the conventional gesture classification per-
formance was computed for each group (Fig. 1). In keeping
with previous findings, classification accuracies for the group
of 20 intact-limbed subjects were significantly higher than the
group 10 amputees (90.54% ± 3.6% > 80.58% ± 9.8%; p <
0.01).

The results of the subject cluster analysis are shown in Fig.
2. It can be seen that the difference between the height of
the links that connect the clusters (amputee and intact-limbed
groups) and the mean height of the two links directly below
is largest. In addition, the differences between the height of
the links decreased as the number of clusters increased, and
a plateau was found after six clusters were created. Thus, in
this study, the two-cluster and the six-cluster solutions were
employed.

When partitioning into two clusters (at the leftmost vertical
dotted line in Fig. 2), Cluster 1 was found to consist purely
of the amputee subjects (A1-A10) and Cluster 2, of purely
intact-limbed subjects (S1-S20). When partitioning into six
clusters (at the rightmost vertical line in Fig. 2), the previous
clusters were retained, but were further subdivided. Cluster 1
was partitioned into 4 subgroups, with 1 subject in Cluster 1A,
4 subjects in Cluster 1B, 1 subject in Cluster 1C, and 4 subjects
in Cluster 1D. The previous Cluster 2 was partitioned into 2
subgroups, with 10 subjects in Cluster 2A and 10 subjects in
Cluster 2B.

Fig. 3 shows the projection of all subjects into PCA space.
Two distinct clusters of patterns can be seen, highlighting
the differences between intact-limbed and amputee subjects.
A classification accuracy of 90% was found when using a
simple LDA classifier to classifier whether the data from
a given subject was able-bodied or amputee based on their
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Fig. 1: Figure 1: Box plot of gesture classification accuracies using an LDA
classifier with Hudgins’ time domain features for amputee and intact-limbed
subjects. * indicates significant difference (p < 0.01).

Fig. 2: Ward’s linkage dendrogram of the hierarchical clustering of the overall
myoelectric patterns representing the two-group and the six-group solutions.
Participant numbers are indicated.

overall signal patterns. Although overall signal patterns were
distinct, no differences were observable between the groups
even when classifying a single frame of EMG as being from
an able-bodied or amputee subject. A mean accuracy of 66%
(min: 46%, max: 78%, chance: 66%) was observed across all
subjects and motions classes.

V. DISCUSSION

The main purpose of this study was to determine whether
myoelectric patterns for intact-limbed and amputee subjects
could be classified into homogeneous subgroups. The HCA
approach was successful in identifying two distinct subgroups
(yielding the highest inconsistency coefficient value: 4.38)
based on overall myoelectric patterns. Although it would be
expected that there are differences between intact-limbed and
amputee subjects, it is quite surprising that an unsupervised
learning algorithm could create two subgroups that discrim-
inate myoelectric patterns of amputees and intact- limbed

Fig. 3: Scatter plot of the first three PCs representing overall myoelectric
patterns for 10 amputees (red dot) and 20 intact-limbed subjects (blue dot).
The first three PCs explained 54% of the total variance.

subjects nearly perfectly (Fig. 2 and 3). From observation
of Fig. 3, it appears as though a non-linear classifier could
achieve 100% classification using only 2-3 PCs. Campbell et
al. [10] investigated the differences between amputees and
intact-limbed subjects using 58 state-of-the-art myoelectric
features and suggested that most features in both time do-
main and frequency domain extract the same information
for both subject groups. However, the migration of several
amputee EMG features was found and can partially explain
the performance degradation in amputee subjects (Fig. 1)
(i.e., less information content is extracted using some EMG
features for amputees). These findings suggest that when
access to amputee populations is limited and able-bodied data
is supplemented, outcomes of investigations on EMG features,
dimensionality reduction, and classification algorithms should
expect performance degradation when translating back to
amputee populations. If a research study would like to develop
a cross-user or subject-independent classification model for
myoelectric-controlled prostheses, EMG data from amputee
subjects is likely necessary given the noticeable difference in
their patterns as compared to their intact-limbed counterparts
(Fig. 1 and 3).

When 3-5 clusters were formed in Fig. 2, one group consist-
ing of all the intact-limbed subjects remained consistent while
the amputee group was partitioned into subgroups. This finding
suggests that inter-subject variability in the amputee popula-
tion is higher than between able-bodied subjects. A higher
standard deviation of the classification accuracies for amputees
(Fig. 1) also supported a higher inter-subject variability in am-
putee population. When the number of clusters was increased
to six (yielding the second highest inconsistency coefficient
value: 3.11), intact-limbed subjects were also divided into
two subgroups. Some interesting characteristics of the six
subgroups of subjects were found. For the two able-bodied
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subgroups, Cluster 2A provided slightly higher feature values
compared to Cluster 2B. Cluster 1A, which contained only
subject A4, provided the highest values for amplitude-based
features (MAV and WL) among all subgroups but provided the
lowest values for the complexity and frequency information-
based features (ZC and SSC). It should be noted that the
variance of feature values for this subject was very high, which
could be due to noise or poor contraction repeatability.

Cluster 1D, which consists of 4 amputee subjects, provided
the lowest values for the amplitude-based features, but the
highest values for the complexity and frequency information-
based features. It should be noted that most subjects in this
group had prior experience in using a myoelectric prosthesis,
suggesting that learning may play a role in cross-user dif-
ferences. Cluster C1 consisted of only subject A3, the only
subject with a left amputated hand and using a cosmetic
prosthesis. Both subjects with an amputation due to cancer,
were clustered together, in Cluster 1B. No meaningful trends
were found for other clinical characteristics such as years
since amputation, the remaining forearm percentage, degree
of phantom limb sensation, and DASH (disability of the arm,
shoulder and hand) score.

Overall, these findings suggest that the adoption of data
from able-bodied subjects for the investigation of EMG fea-
tures, dimensionality reduction, and classification algorithms,
should be done with caution when focused on clinical applica-
tions for amputees. Specifically, even unsupervised clustering
methods identified two distinct groups of subjects: one with
all amputees and the other with all intact-limbed subjects.
Of the subgroups, the amputee subgroup demonstrated much
higher inter-subject variability. These results suggest that EMG
data from amputee subjects is necessary for creating cross-
user myoelectric-controlled prostheses, as their myoelectric
patterns are considerably different than their intact-limbed
counterparts.
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