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ABSTRACT  

Clinicians and prosthesis users care about the 

practical attributes of movement like the physical 

effort required by the user, the response time of the 

device, the reliability, and the accuracy of the 

movement performed. But the calibration parameters 

of a prosthetic device are relatively abstract and do not 

directly correspond to those quantities that the users 

and the clinicians inherently care about.  Here, we 

propose an intuitive tuning technique that allows 

clinicians to tune prostheses based on the things that 

end-users actually care about. We use well-established 

engineering techniques (optimal control) to determine 

the set of best possible solutions for different relative 

preferences of the user. This required optimizing the 

problem for multiple objectives, (effort, time, 

reliability, and accuracy) to compute the best tuning 

parameters for a wide range of trade-offs. By solving 

this optimization problem, the complexity of the 

relationship between the performance and the 

prosthesis parameters can be implemented as a 

mapping procedure, and thereby hidden from the user. 

This simplifies the calibration process and allows 

clinicians or users to intuitively customize the device 

for their individual needs.  

INTRODUCTION 

Biological movement and motor coordination can 

be thought of as optimization tasks that minimize the 

cost of effort and time while maximizing the reward 

obtained from performing the movement [1], [2]. The 

costs are mathematical representations of quantities 

that the brain tries to minimize when generating any 

motor command to move our body. Several different 

cost functions like effort, metabolic energy, and 

endpoint variance have been used to describe specific 

movements. This inconsistency in literature actually 

suggests that humans optimize a combination of 

different costs [3] and simply change their cost 

priorities to perform different tasks. The composite 

costs of effort, accuracy, reliability and time 

sufficiently describe how we consistently coordinate 

our joints to perform different tasks [4]. This cost 

preference also changes from person to person. 

Suppose we ask a group of people to write by hand the 

entire abstract of an article-  some might care more 

about the time spent on the task and write as fast as 

they could, while others might care more about the 

reliability of the outcome and don’t mind spending a 

few extra minutes.  

Clinical motivation  

Let’s take the example of driving a car. We 

usually care about things like fuel efficiency, comfort, 

safety, and the dynamic response of the car. The input 

parameters like the steering force, powertrain 

characteristics, suspension control, two-wheel and 

four-wheel drive modes can be adjusted to reflect our 

personal priorities in terms of the things we care about 

when driving. An experienced driver might be able to 

easily tune these parameters to get the desired 

response. But for new drivers, this could be a daunting 

task. The driving mode options provided by most car 

manufacturers nowadays, simplifies this task for both 

new and experienced drivers. The different modes like 

the eco mode, comfort mode or the sport mode speak 

the language of the user and directly convey the 

information in terms of things they care about.  

Likewise, both clinicians and end-users of 

prosthesis care about the costs of effort, time, 

accuracy, and reliability incurred by the users when 

making a movement with a prosthetic device. The 

input parameters for a myoelectric prosthesis are 

abstract quantities like the device gain, amplifier 

thresholds, and control mapping paradigms like 

proportional position or velocity control.  But unlike 

the example with the cars, the clinicians are not 

provided with a set of “driving mode” settings that 

simplifies the relationship between the cost space in 

which they care about and the input parameter space 

in which they work.  

Moreover, there is an inherent trade-off in the 

balance of these cost preferences. That is, we cannot 

have the best of both worlds and improve both the 

speed and the accuracy of our movements 

simultaneously. When larger control signals are 

produced to make faster movements, the 

multiplicative nature of the noise in our myoelectric 

signals deteriorates the accuracy and the reliability of 

the movement. The device gain parameter should 

hence be adjusted to a sweet spot that best reflects the 

user preference. But there is another catch, some 

combinations of the input parameters always produce 

results that are worse for all possible user preferences. 

For example, proportional velocity control always 

performs better than position control in terms of both 
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the costs of effort and reliability. Conventional tuning 

techniques force the clinicians to tune a limited 

number of abstract parameters that do not directly 

reflect the cost space that they care about, and make it 

much harder to tune for the optimal set of parameters 

for a given user. 

 So when tuning a prosthetic device, it will be 

beneficial to avoid the sub-optimal input parameters to 

ensure that the user gets the best experience. 

Optimization methods or optimal control techniques 

can be used to identify the optimal input parameters 

for each individual user preference. This approach 

makes the tuning procedure much more intuitive for 

the clinicians as the abstract device input parameters 

can be computed and set by an algorithm that 

optimizes based on the costs that users inherently care 

about.  

Background 

We care about a variety of things when making a 

movement. As we have multiple objectives that we 

wish to optimize, we need to perform multi-objective 

optimization (MOO) to find the best set of tuning 

parameters for each user’s personal preference. For a 

MOO, no single solution can be best with respect to all 

the conflicting objectives and we have several optimal 

solutions instead. The optimal solutions are those in 

which we cannot further reduce the cost of one 

objective function without increasing the cost of 

another. These optimal solutions are called the Pareto 

solutions, or the Pareto set [5].  

There are two broad strategies for obtaining these 

Pareto solutions for MOO problems. 

1) The first method is to scalarize the different 

objectives and to repeatedly solve for the 

entire range of cost- preferences. 

In terms of our prosthesis tuning example, 

this would mean that the different objective 

functions of effort, time, reliability, and 

accuracy get added up with relative weights 

that represent the user’s preference for the 

different cost functions. The computation is 

then repeated for every user’s individual 

preference.  

For example, if the total cost (J) is 

represented as a sum of two independent 

costs (J1 and J2):  

(i) J = J1 + J2, represents an equal 

preference for the two costs. 

(ii) J =  J1 + 10 J2,  represents that the 

user cares about 10 times as much 

about the second cost when 

compared to the first one.  

2) The second method is to find multiple Pareto-

optimal solutions in a single run, without any 

prior information about the relative 

preference of the different costs.  

For our prosthesis tuning problem, this would 

mean that we compute a set of optimal tuning 

parameters without any reference to the 

user’s individual preference for the different 

costs. This method can be represented 

mathematically as:  

J = [J1, J2], where we 

simultaneously try to optimize for both the 

cost functions J1 and J2.   

The first strategy expresses the user’s preference 

in terms of simple relative weights that change the 

optimum tuning parameters for the individual. But the 

tuning parameters must be recomputed every time the 

user’s preference changes. The interpretation of 

relative weights also becomes incorrect when the 

multiple objective functions are not normalized 

appropriately [6]. The second strategy has the 

advantage of solving multiple optimal tuning 

conditions in a single simulation run, but it is not 

possible to incorporate the user preference into the 

algorithm. Our third option is optimal control which 

best approximates how humans move their joints and 

control human-machine interfaces [7], but the 

disadvantage is that this method requires a single 

objective function.  Hence, we decided to blend the 

three ideas to get multiple meaningful Pareto solutions 

for the tuning parameters such that they can be saved 

in a look-up table to avoid re-evaluation.    

Technical challenge 

There are infinite solutions that satisfy the Pareto 

optimality condition and form the Pareto front. Ideally, 

we would like to obtain the optimal tuning parameters 

for a finite number of points on the Pareto front. These 

Pareto solutions can be saved in a look-up table that 

can aid with prosthesis tuning.  Due to the inherently 

nonlinear nature of the human movement cost 

functions, an equally spaced set of relative weights 

does not produce a uniform Pareto set. Figure 1 shows 

an example in which only the costs of effort and 

accuracy of the movement were considered, for a first-

order dynamic model of the prosthetic device. In this 

case, the Pareto solutions found are clustered towards 

one end of the Pareto front in which the effort cost is 

much lower than that of the accuracy cost. This means 

that a step-change in the user’s preference for the two 

costs will lead to a larger change in the cost of effort 

when compared to the cost of accuracy.  This also 

indicates that the problem is not accurately normalized 

(and that it requires nonlinear normalization mapping). 
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To describe the priorities meaningfully in terms of the 

cost, we need to flip the problem on its head and obtain 

a set of evenly distributed Pareto points that 

correspond to specific user priorities. This will allow 

us to bin the different regions of the Pareto front into 

“tuning modes” similar to the driving mode options 

provided by car manufacturers.  

In addition to conveying the tuning information in 

the language of the user, this technique allows us to 

entirely avoid normalization. In this article, we 

propose a gradient-based approximation technique 

that can be used to produce an evenly distributed set 

of points on the Pareto front. 

 

Figure 1: Pareto front for a set of cost preferences linearly 

spaced between 0.01 and 10. The red asterisks indicate the location 

of the obtained Pareto set.  

METHODS 

The main aim of this study is to determine if a 

uniform set of Pareto solutions can be obtained for a 

generic optimal control problem that has multiple 

objective functions. Optimal control guarantees the 

best solution, but it requires a single objective 

function, which is at odds with our attempt to enable 

users engage with multiple objectives. To solve this 

problem, we strategically assign weights across the 

multiple objectives to enable them to be considered as 

a single objective (which can then be solved using 

optimal control). Because this scalar composite cost 

can be solved using optimal control, it is guaranteed to 

land on the Pareto front, but where it lands on the 

Pareto front depends on the weights we choose. In 

order to strategically assign those weights to ensure an 

evenly distributed set of Pareto front, we use a 

crowding metric to decide where on the Pareto front 

we would like to land next, and then estimate the 

weights that should get us in that ballpark using a 

gradient-based approximation technique. This process 

is further described in the section on the Gradient-

approximation technique. 

To demonstrate the feasibility of the blended 

optimal control and MOO based approach, we use a 

simple optimal control example that relates to our 

ultimate aim of clinical prosthesis tuning. The 

example is that of a simple human-machine interface 

that is used to perform a target reaching task. In order 

to keep the problem simple and retain the multi-

objective nature of human movement, only the two 

contrasting objectives of effort and accuracy were 

used to compute the cost incurred to the user. The 

human-machine interface model contained two parts: 

the human component that modelled the user’s motor 

commands, and the prosthesis component that 

performed a reaching movement in response to the 

user’s control signal. The system was assumed to be 

deterministic and the potential uncertainties in the 

control signal and the environment were not modelled.  

The human component of the model produces an 

optimal control signal (𝑢) that minimizes the 

composite cost of effort and accuracy to the user.  The 

machine or the prosthesis component was simulated 

using standard zero, first or second-order dynamic 

system models. The tuning parameters of the 

prosthesis were not optimized in this study to reduce 

the number of optimization parameters. The duration 

of the movement was fixed to be a single time step for 

all conditions. The model was entirely implemented in 

MATLAB (Release 2016a, The Mathworks, Inc., 

Natick, MA.) 

Cost Function and User Priority 

The cost of effort was defined as the squared 

control signal 𝑢 that represents the magnitude of the 

myoelectric signal from the user.  

 𝐽𝑢 = 𝑢2  (1)  

The cost of accuracy penalizes based on the error 

between the target (represented as 𝑔) and the 

movement endpoint.  

𝐽𝑎 = [𝑔 − 𝑥(𝑝)]2, (2) 

 where 𝑥(𝑝) is the position of the simulated 

device at the end of the movement and the final time 𝑝 

is set to one for all the simulations without loss of 

generality.  

The total cost is a weighted sum of the accuracy 

and the effort costs and is represented by: 

𝐽 = 𝛼. 𝐽𝑢 +  𝐽𝑎, (3) 

 where α shows the user’s relative preference for 

the two costs. A large value of α shows that the user 

would rather minimize their physical effort even if it 

means that they don’t reach the target accurately. A 

small α value indicates that the user prioritizes the 

endpoint accuracy and won’t mind spending more 

effort. For a perfectly normalized set of costs, an α  

value of one will indicate that the user cares about 

the two costs equally. But as the magnitudes of the cost 
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values are highly task-dependent, normalization was 

not performed for our system.   

Gradient-based approximation technique 

The purpose of this algorithm boils down to two 

simple things – selecting the next point on the Pareto 

front that needs to be populated and landing there by 

computing the required α value. The distance 

(Mahalanobis form) between consecutive points was 

used as a measure of crowding and the next point was 

selected to ensure an even distribution of points on the 

Pareto front. We need to compute the desired user 

preference level or the α value to land at these points 

and a simple gradient approximation technique was 

used to achieve this. The required user preference 

value was calculated using the following equation. 

∝𝐷𝑒𝑠𝑖𝑟𝑒𝑑=
(𝐽𝐷𝑒𝑠𝑖𝑟𝑒𝑑

𝑖 − 𝐽𝐶𝑢𝑟𝑟𝑒𝑛𝑡
𝑖 )

𝜕𝐽𝑖

𝜕𝛼
| 

𝐽𝐶𝑢𝑟𝑟𝑒𝑛𝑡
𝑖

+ ∝𝐶𝑢𝑟𝑟𝑒𝑛𝑡   ,        (4) 

  

where 𝐽𝑖  corresponds to the individual costs of the 

effort or accuracy objective functions, and 
𝜕𝐽𝑖

𝜕𝛼
| 

𝐽𝐶𝑢𝑟𝑟𝑒𝑛𝑡
𝑖   refers to the sensitivity of the individual 

cost with respect to changes in 𝛼, computed at the 

current Pareto solution. These sensitivities are 

obtained by perturbing the α values at the different 

Pareto solutions obtained and are essentially just 

numerical approximations of the gradient at those 

points. 

The two extreme points on the Pareto front that 

correspond to slopes 0.01 and 100 were picked 

heuristically by tuning the α values for the given task. 

After this, the “selection” and the “landing” 

algorithms were used iteratively to obtain a uniformly 

distributed Pareto set. 

RESULTS 

In order to ensure that a uniform Pareto front can 

be produced using our algorithm, a variety of scenarios 

were tested. The prosthesis was modelled as a standard 

zero, first, or second-order dynamic system. The 

proposed algorithm was able to successfully produce a 

uniform distribution on the Pareto front for all three 

cases. Figure 2 shows an example of the Pareto 

solutions found for a first-order dynamic model. These 

results show that the algorithm is generalizable and 

can be applied to optimize the tuning parameters for a 

variety of different user preferences.  

DISCUSSION 

The aim of this study was to determine if we can 

generate sufficient Pareto solutions for a human-

machine interaction model, such that we can 

adequately describe different user preferences. Our 

simulations demonstrate the feasibility of the proposed 

method and show that it is robust for a variety of 

scenarios. The concept of relative tuning that we have 

described in this article could allow intuitive 

prosthesis calibration in terms of quantities that the 

clinicians and the patients care about. It will also 

permit the device to be tuned by the user. The user-

tunability function can allow them to optimally 

perform vastly different tasks like painting and yard 

work, which requires them to change their personal 

cost priorities. 

Limitations 

As the intention of this article was to understand 

if a uniform set of Pareto solutions can be formed, the 

mathematical model was simplified to reduce the 

computational complexity of the problem. For 

example, the system was assumed to have no noise and 

the tuning parameters of the prosthesis model were not 

optimized.  
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Figure 2: Uniform Pareto front obtained using the proposed 
algorithm  
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