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ABSTRACT 

Decoding the neurophysiological signal generated by 
voluntary arm movements is one of the major challenges in 
rehabilitation engineering. The most investigated approach 
for hand prosthesis control is the continuous pattern 
recognition of myoelectric signals. However, this is based on 
the assumption that repeated muscular contractions produce 
consistent patterns of steady-state myoelectric signals. 
Notably, it is the initial, transient, phase of such signals that 
was shown to contain a deterministic structure. Here we 
investigated if both wrist and hand intended movements 
could be decoded from the transient phase of the myoelectric 
signal. Twelve healthy individuals performed one of four 
grasps and of five wrist movements simultaneously (20 
combinations). Albeit the performance in recognizing both 
movements simultaneously was poor, the offline data 
analysis showed the feasibility of implementing a sequential 
wrist-hand embedded controller based on the transient phase.  

INTRODUCTION 

Individuals with a below-elbow amputation maintain 
part of the 18 extrinsic muscles that originally served the 
fingers and wrist. The electromyogram (EMG) recorded from 
these muscles can, in theory, be used to control a variety of 
motor functions in upper limb prostheses. Remarkably, the 
clinical state-of-the-art controller is still the two-state 
amplitude modulation controller proposed by Bottomley  
back in the ‘60s, [1]. In this controller, a single pair of 
agonist/antagonist muscles controls the opening and closing 
of the prosthetic hand. However, this scheme cannot 
differentiate between different muscular patterns pertaining 
to different hand movements, and, accordingly, cannot be 
used to control multiple grasps of a dexterous prosthesis 
intuitively. 

An alternative approach is pattern recognition, as first 
proposed by Finley and Wirta in 1967, [2]. This technique is 
based on the premise that amputees can activate repeatable 
and distinct muscular contractions for each class of desired 

motion and that the associated EMG patterns can be identified 
and used to control the prosthesis accordingly. In this 
framework, Englehart and colleagues pioneered the 
development of continuous classifiers [3]–[5] that still 
represent the state of the art. 

Remarkably, the assumption that repeated muscular 
contractions produce repeatable patterns of steady-state 
EMGs is weak. In fact, the steady-state EMG has very little 
temporal structure (it is mostly a random signal) due to the 
active modification of recruitment and firing patterns needed 
to sustain the contraction [6], [7]. For these reasons, time-
averaged, compound statistical properties have to be 
extracted from the EMG signals before classification. To 
further improve the reliability of the latter, low pass filtering 
techniques (e.g. majority voting, velocity ramp or confident-
based rejection) are usually applied to the output of the 
continuous classifiers [4], [8], [9]. 

While investigating the properties of the EMG at the 
onset of muscle contraction (the transient), Hudgins and 
colleagues observed a substantial degree of structure in the 
signals of upper arm muscles [10]. This observable structure 
was reported by others [11], and suggests a consistent orderly 
recruitment of motor units between contractions [7]. In our 
previous work, we exploited the transient EMGs generated 
during hand grasps/gestures (lateral, cylindrical, tri-digital 
grasp and hand open) to identify the intended movements 
using a simple representative classifier (i.e. the SVM). We 
demonstrated that the transients contained predictive 
information about the intended grasp, [12]. In this work, we 
investigated the possibility to extend the proposed method to 
the classification of both hand and wrist movements. We 
evaluated offline the performance of such a system in solving 
different classification problems, assessing its ability to 
operate with sequential or simultaneous wrist-hand 
movements. As the latter was not deemed sufficiently robust, 
the former was ported in a real-time system for a qualitative 
assessment. 
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MATERIAL AND METHODS 

Twelve healthy subjects (age 26 ± 2.63 years old, 7 
males, 10 right-handed) took part in the experiments after 
giving their informed consent. 

Subject were asked to sit on a chair with the elbow flexed 
at 90 degrees on a table to limit the participant’s fatigue 
during the test (Figure 1A). Eight EMG signals were sampled 
at 2 kHz (band-pass filtered at 10-900 Hz) using a signal 
amplifier (EMG-USB2+, OT Bioelettronica, Turin, Italy) and 
eight bipolar self-adhesive electrodes placed around the 
forearm (Figure 1B). In the described position, the subjects 
were asked to simultaneously perform one of the 20 possible 
combinations of two movements, involving: the hand (rest, 
lateral, tri-digital and cylindrical grasps) and the wrist (rest, 
flexion, extension, pronation and supination). 

A custom-made graphical user interface was developed 
to help the subjects during the execution of the trials driving 
the type and timing of requested movements of both hand and 
wrist (Figure 1C). The interface also allowed the participant 
to pause the procedure in the interval between two 
movements to recover from fatigue, if required. Following 
the graphical hints in the interface, the participants were 
asked to: (i) execute a simultaneous movement of hand and 
wrist, (ii) keep the contraction for 3 seconds, (iii) move back 
to the initial resting condition. Three series of the 20 
combinations were performed. Each series included five 
repetitions of each combination, for a total of (3 series × 5 
repetitions × 20 combinations) 300 movements per 
participant. The order of movements was randomized among 
series. 

The EMG signals were processed to extract the mean 
absolute value (MAV) on 100 ms windowed data, by sliding 
the observation window on a single sample basis. The 

obtained signal was then down-sampled at 20 Hz and 
processed to extract the onset of muscle contraction through 
an onset detection algorithm (ODA). The ODA was applied 
to the derivative of the MAV. Specifically, for every class, 
the median peak of each series was calculated. Then, the 
minimum peak across series was set as the threshold. 

In analogy with Kanitz et al. [12], after each detected 
onset, a different number of temporal MAV samples was 
extracted and provided to the classifier in order to establish 
which window length (WL) allowed an optimal trade-off 
between classification accuracy and delay (Figure 2). 
Specifically, WL ranged between 0 and 300 ms in steps of 
50 ms (corresponding to 1,…,7 MAV samples). Using these 
features, a linear SVM classifier was trained and cross-
validated for each subject, splitting the available data in 5 
folds, assigned to each fold based on the order of repetitions 
of each series (leave-one-repetition-out approach). The 
classifier was tested in solving three different problems (P1-
P3) with growing complexity: 

P1. Recognizing grasps or wrist movements separately 
with two dedicated classifiers (four hand and five wrist 
classes). 

P2. Recognizing grasps or wrist movements separately 
with one eight-class classifier. 

P3. Recognizing grasps or wrist movements when 
performed simultaneously (20-class classifier). 

A solution to P1 was searched to test if the results 
obtained in classifying the grasps [12] could be extended to 
wrist movements as well. Solving P2 would enable a 
sequential control of a robotic hand-wrist prosthesis. Finally, 
we also considered the more complex problem of recognizing 
hand and wrist movements performed simultaneously (P3). 

Concerning the porting of the algorithm, an online 
classifier was implemented as suggested in Kanitz et al. [12]. 

RESULTS 

The experimental recordings lasted for around one hour 
per participant, including the setup preparation. Results for all 
the addressed problems showed that the classification 
accuracy increases with WL (Figure 3). This was expected as 
the longer the WL, the more information is available to the 

Figure 1: A) Experimental Setup. Participants were sitting 
in front of a monitor with the elbow flexed at 90 °. 

B) Electrodes were uniformly distributed around the 
proximal part of the forearm. C) The Graphical User 
Interface informed the user on the next simultaneous 

movements to perform. 

 

Figure 2: Transient EMG classifier concept. Once the 
transient detection algorithm (ODA) identifies an onset 

(at tT), the transient window (WL) is recorded and 
classified. 
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classifier. However, WL longer than 150 ms (or four MAV 
samples) improved the performance only slightly. 

In general, the classification accuracy reached a plateau 
around WL = 150 ms. Specifically, the performance did not 
improve significantly (Friedman test) for WL > 150 ms for P1 
and P2, and for WL > 100 ms in the case of P3 (Figure 3). By 
comparing the different tested problems, accuracies for P3 
were generally lower (58.86 % for WL = 300 ms) than those 
obtained for P1 and P2 (93.33 % for WL = 300 ms). 
Considering P2, the inclusion of wrist movements did not 
have a critical impact on the overall performance when 
compared to P1 (93.33 % vs 89.54 %, respectively). 
Specifically, wrist movements and grasps were classified 
with an overall accuracy of 84.68 % and 79.88 % (Table 1), 
respectively. In fact, wrist movements were classified more 
accurately than grasps (Table 1). This held true also for P1 
and P3 (not shown). 

Following the results mentioned above, the optimal 
solution was considered the one from problem P2. Thus, a 
single eight-class classifier was implemented and tested 
online. The outcomes from the online implementation and 
feasibility test are preliminary and qualitative in nature. 
Following a short training, consisting of 15 repetitions for 
each of the eight classes, the participant was able to use the 
online controller (supplementary video S11). 

DISCUSSION 

To summarize, we claim that forearm EMGs patterns at 
the onset of a contraction contain predictive information 
about both upcoming hand and wrist movements. Moreover, 
this information can be used for real-time control of a wrist-
hand prosthesis. 

 
1 https://drive.google.com/open?id=1WC2aWKbbIyQHhGw
mHk0DMj1SfWQ02rIm 

The transient EMG approach uses only the data 
contained in a short window associated to the onset of muscle 
contraction, which is known to contain a deterministic 
structure [10], [11]. The advantage of this approach is that 
classification is only necessary when a transient window is 
detected by the ODA, making the entire system less prone to 
errors. In addition, when errors occur, it is comparatively 
simple for the user to abort the ongoing grasp attempt and 
start anew. Importantly, since the contraction precedes the 
actual movement, the response time of the transient classifier 
is faster than that of a conventional continuous classifier. 

Results from P1 complement the ones from our previous 
work [12] showing that the control strategy based on 
transients maintains very good performance also if applied to 
wrist movements (Figure 3). 

 Table 1: Confusion matrix for the problem 2 for grasps and wrist movements (WL = 200 ms) 

A
ct

u
al
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la

ss
 

  Lateral  Pinch Cylindrical Extension Flexion Pronation Supination Rest 

Lateral 142 (79.33%) 10 (5.59%) 17 (9.50%) 3 (1.68%) 0 (0%) 0 (0%) 6 (3.35%) 1 (0.56%) 

Pinch 5 (2.81%) 140 (78.68%) 5 (2.81%) 6 (3.37%) 4 (2.25%) 9 (5.06%) 9 (5.06%) 0 (0%) 

Cylindrical 13 (7.22%) 2 (1.11%) 147 (81.67%) 1 (0.56%) 1 (0.56%) 7 (3.89%) 9 (5.00%) 0 (0%) 

Extension 2 (1.11%) 2 (1.11%) 0 (0%) 150 (83.33%) 0 (0%) 6 (3.33%) 15 (8.33%) 5 (2.78%) 

Flexion  2 (1.11%) 4 (2.22%) 1 (0.56%) 0 (0%) 161 (89.44%) 5 (2.78%) 6 (3.33%) 1 (0.56%) 

Pronation 1 (0.56%) 3 (1.67%) 1 (0.56%) 8 (4.44%) 0 (0%) 146 (81.11%) 18 (10%) 3 (1.68%) 

Supination 5 (2.81%) 1 (0.56%) 1 (0.56%) 5 (2.81%) 2 (1.12%) 11 (6.18%) 151 (84.33%) 2 (1.12%) 

Rest 2 (1.11%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0.56%) 177 (98.33%) 

  Grasps Accuracy: 79.88% Wrist Accuracy: 84.68%  

   Overall Accuracy 84.59% 

    

 

Figure 3: Results for considered problems as a function of 
the window length. The statistical analysis was performed 
with the Friedman test (*:  0.05 ≥ p > 0.01; **: 0.01 ≥ p > 

0.001; ***: 0.001 ≥ p). 
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P3 represented the most challenging case, a 20-class 
classification problem involving simultaneous wrist and hand 
movements. The effort needed to acquire such a complex 
training set and the results obtained do not justify the use of a 
transient-based classifier for simultaneous hand-wrist 
control. The significant reduction in performance observed 
here with respect to P1 and P2 suggests that the information 
contained in the transients does not simply sum up 
constructively when more than a single anatomical district is 
involved in the movement. Several other groups also tried to 
investigate alternative methods for the simultaneous control 
of multiple degrees of freedom (DoF), but failed when the 
number of classes to be recognized increased above three or 
four [13], [14]. 

On the other hand, in P2 we analysed a standard eight-
class classification problem that allows non-simultaneous 
hand-wrist movements. In this case, the performance were 
sufficiently good and only slightly worse than the ones 
obtained in P1. Notably, as analysed from Liu et al. [15], 
grasps and wrist movements are almost independent during 
normal reach-to-grasp tasks. In other words, a grasp is 
executed only after the wrist is already positioned. This 
perspective makes it feasible and natural to control the DoFs 
of a wrist-hand prosthesis in sequential manner. A result of 
these considerations is a reduction of control complexity. 

This work has some limitations: (i) here we performed 
an offline analysis of the designed classifier and a qualitative 
evaluation of the online system (one subject case). It would 
be desirable to better evaluate the latter case, ideally including 
functional tests. (ii) We showed data acquired exclusively 
from healthy participants. An extension to amputee subjects 
is necessary to confirm the clinical usability of the algorithm. 
(iii) P3 would need a very extensive training phase (i.e. 15 
repetitions × 20 classes = 300 trials) that is not compatible 
with a prosthetics application. We mitigated the problem with 
the continuous classifier (i.e. 15 repetitions × 8 classes = 120 
trials), but the training phase is still quite demanding. Thus, 
the training phase part should be optimized to limit the 
number of repetitions needed to train each class. (iv) As a 
preliminary evaluation, we used a single feature: the MAV of 
the EMG. However, it is known that multiple time-domain 
features improve the accuracy of classification [16]. Future 
works will involve the introduction of new features, oriented 
particularly to an embedded real-time application. 

Finally, we generalized the approach from our earlier 
work, extending the number of classes to include wrist 
movements. At the moment, a quantitative assessment of the 
real-time performance of a transient-based EMG controller 
are ongoing with both healthy and amputee subjects. Albeit 
we excluded the possibility to simultaneously control wrist-
hand movements, we argue that a sequential control strategy 
based on the transient phase of the EMG could provide a 
natural and intuitive way to control a prosthetic device. 
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