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ABSTRACT
Recent human computer-interaction (HCI) studies using elec-
tromyography (EMG) and inertial measurement units (IMUs)
for upper-limb gesture recognition have claimed that inertial
measurements alone result in higher classification accuracy
than EMG. In biomedical research such as in prosthesis con-
trol, however, EMG remains the gold standard for providing
gesture specific information, exceeding the performance of
IMUs alone. This study, therefore, presents a preliminary
investigation of these conflicting claims between these con-
verging research fields. Previous claims from both fields were
verified within this study using publicly available datasets.
The conflicting claims were found to stem from differences in
terminology and experimental design. Specifically, HCI studies
were found to exploit positional variation to increase sepa-
ration between similar hand gestures. Conversely, in clinical
applications such as prosthetics, position invariant gestures are
preferred. This work therefore suggests that future studies ex-
plicitly outline experimental approaches to better differentiate
between gesture recognition approaches.

INTRODUCTION
Gesture recognition using electromyography (EMG) pattern

recognition has a long history of use in biomedical and
clinical applications, such as myoelectric control of prosthetic
devices and other assistive or rehabilitative technologies. These
devices leverage residual motor function to enhance qual-
ity of life limited by neurological (stroke [1]) or physical
impairment (amputation [2]). The emerging interest in hand
gesture recognition as a general human-computer interface
(HCI) for consumer applications, such as virtual reality, has
large commercial incentives and has therefore accelerated in
recent years. The use of wrist- or forearm-worn EMG devices
combined with inertial sensors (i.e., accelerometer (ACC),
magnetometer (MAG), or gyroscope (GYR)) have demon-
strated the potential of such gesture recognition interfaces
during offline classification studies [3]. These multi-modal
devices have been validated in both biomedical and general
HCI studies; however, the conditions of gesture elicitation
differ between the two applications.

Biomedical applications of EMG pattern recognition typ-
ically require accurate recognition of physiologically appro-
priate gestures that are robust to variability of daily-living;
simply put, the gestures should be reliably decoded regardless
of limb posture and contraction intensity, among other factors
[4]. Limb posture and contraction intensity variability degrades
the usability of clinical EMG pattern recognition systems

meaningfully, as gesture recognition accuracies were found
to decrease on the order of 13% and 20% for these factors,
respectively, across several studies [5]. Interventions in the
form of training strategies [6], algorithmic solutions [7], or
multi-sensor approaches [8] have lessened this degradation and
led to more reliable use of myoelectric control. Multi-sensor
approaches using EMG and ACC measurements from many
positions have altogether removed degradation caused by static
limb positions in recorded positions by sequential use of a
position-classifier using ACC, followed by a position-specific
EMG classifier for gesture recognition [8]. No application
other than position recognition, however, has been validated
for non-mechanomyographic ACC measurements within clin-
ical EMG pattern recognition studies.

Alternatively, general HCI applications of EMG pattern
recognition desire accurate recognition of distinct gestures;
the gestures in these application are no longer required to be
invariant to daily-living variability and may selectively harness
position variability to become more distinct. Consequently,
inertial sensors have been found to outperform EMG sensors
in terms of gesture recognition accuracy [3], [9]–[11]. For in-
stance, gesture recognition using MAG achieved 93% accuracy
across 40 motion classes, whereas EMG achieved only 65%.
The different interpretation of the application and value of
inertial measurements between biomedical and HCI studies is
a current area of confusion in the field that warrants further
clarification.

This paper aims to highlight the main differences between
biomedical and HCI studies of EMG pattern recognition by
examining the differences between gesture elicitation studies.
Specifically, this study focused on the differences in the
gestures performed and the differences in the use of inertial
information. Differences in gestures are presented through
visualization of signals, whereas the differing use of inertial
information is presented through classification outcomes using
EMG and ACC feature sets.

METHODS
Datasets

Two public datasets were adopted to represent biomedical
and HCI gesture recognition studies; the Fougner [8] and
NinaPro7 [9] datasets, respectively. All subjects provided
informed consent, and secondary consent was obtained for bor-
rowed datasets. The biomedical dataset was collected using 8
bipolar Ag/AgCl electrodes (EMG) and 2 tri-axis accelerome-
ters. Twelve intact-limbed subjects performed 6 motions (wrist
flexion, wrist extension, wrist pronation, wrist supination, hand
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Fig. 1: EMG and ACC measurements (unfiltered) from the biomedical and HCI datasets. The first row contains the EMG elicited during wrist flexion (WF),
wrist pronation (WP), and a turning screw (TS) gesture. The second row contains the accelerometer readings for the same contractions, where the black lines
represent the x, y, and z components of a forearm mounted sensors and the blue lines represent measurements simultaneously taken at the biceps.

close, and pinch grip) and no motion, where each motion was
repeated 10 times in 5 different static limb positions. The HCI
dataset contained 12 bipolar Ag/AgCl electrodes and 12 tri-
axis accelerometers. Twenty intact-limbed subjects performed
40 dynamic gestures (8 finger gestures, 9 wrist gestures, and
23 grasping gestures), where each motion was repeated 6 times
with limb position unspecified. The gestures of the HCI dataset
were segmented into 3 gesture sets: HCI-A, a set matching
the biomedical dataset gestures, HCI-B, a subset containing
8 finger gestures, and HCI-C, a subset containing 23 grasp
gestures. A sample of EMG and ACC signals from both
datasets is given in Fig. 1.

Data preparation
The EMG signals from both datasets were pre-processed

by a 60 Hz or 50 Hz notch filter and 20-450 Hz bandpass
filter to remove power-line interference and motion artefacts,
respectively. The ACC signals were pre-processed using 1 Hz
low-pass filters, to remove accompanying sensor noise from
measurements. Both EMG and ACC signals of all channels
were segmented into overlapping windows using window
length and increment of 200 and 100 ms, respectively.

Features were extracted from each window to create 2 EMG
and 2 ACC feature sets. The EMG feature sets were the Hud-
gins’ time-domain (TD) feature set [12] (mean absolute value,
zero crossings, slope sign change, and waveform length), and
the time domain power spectral descriptors (TDPSD) feature
set [7]. The ACC feature sets were the median feature set
(MED) and root mean square (RMS) feature set.

Classification problems
The four feature sets of all four datasets (biomedical, HCI-

A, HCI-B, and HCI-C) were used in three classification tasks,
where applicable, to validate claims proposed by previous
studies.

1) Multi-gesture position classification: Classifiers were
trained with feature vectors from all gestures with the
class label selected as the position of the gesture. Only
the biomedical dataset was used for this analysis, as the
HCI dataset did not specify any specific limb positions.

2) Within-position gesture classification: Classifiers were
trained with feature vectors from an individual position
with the class label being the associated gesture. This
process was repeated for all positions in the case of
the biomedical dataset and only a single position was
assumed for the HCI dataset.

3) Sequential classification: Classifiers were first trained
following the multi-gesture position classification task,
where feature vectors were used to predict position. Sub-
sequently, the position was used to select the appropriate
position-specific gesture classifier, as was conducted in
the within-position gesture classification task. As the
HCI datasets did not provide labelled positions, they
were excluded from this task.

All classification tasks were performed using within-subject
leave-one-trial-out cross-validation using linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), k-
nearest neighbours (kNN, k=5), and random forest (RF, 10
trees) classifiers. Accuracies are presented as mean + standard
deviation, where the mean accuracy is the mean accuracy
across all subjects and cross-validations, and the standard
deviation is the standard deviation across subjects.

RESULTS
The multi-gesture position recognition results using ACC

MED, ACC RMS, EMG TD, and EMG TDPSD feature sets
are shown in Table I for the biomedical dataset. The within-
position gesture recognition results of the biomedical and HCI
datasets were presented in Table II. The LDA classifier was
found to have the best performance among classifiers for
all datasets in this latter classification task, again justifying
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TABLE I: Multi-gesture position recognition accuracy (mean+std of subjects)
across positions of the biomedical dataset

Classifier ACC EMG
MED RMS TD TDPSD

LDA 99.9+0.3 96.3+5.2 63.0+9.7 62.3+8.0
QDA 99.9+0.1 98.4+1.8 67.8+8.9 66.0+7.6
kNN 100.0+0.0 98.0+2.4 66.8+8.1 54.8+8.4
RF 99.5+0.6 96.3+3.2 66.8+8.4 63.0+8.5

its predominant use in myoelectric control [13]. The EMG
TD feature set was found to be best for the biomedical
dataset whereas ACC MED was found to best for all HCI
datasets. Further inspection of the performance of the EMG
TD feature set with the LDA classifier is provided through
the confusion matrices of the biomedical and HCI-A dataset
in Table III. Conversely, Table III shows a similar confusion
matrix using the best feature set determined for the HCI dataset
(ACC MED). Finally, the results of sequential classification of
gestures from multiple-positions are presented in Table IV.

DISCUSSION
This study corroborates the use of ACC as an accompanying

modality in biomedical/clinical applications to achieve posi-
tional robustness. Table I verifies that accelerometers situated
on the forearm and biceps can be used with confidence to
decode 5 upper-limb positions in the sagittal plane. Despite
encoding similar information from the ACC modality, the
MED feature set consistently encoded positional information
significantly better (p <0.05) than RMS. Table II provides an
upper-limit of accuracy that can be achieved when position
recognition is performed without fault. Use of a sequen-
tial classification framework achieved no statistical difference
between the within-position gesture recognition framework
when using ACC MED to segment position and EMG TD to
recognize gestures. Although the position recognition perfor-
mance of MED was statistically better than RMS, no statistical
improvement is apparent in the gesture recognition accuracy
of the sequential framework using these feature sets to decode

TABLE II: Within-position gesture recognition rates across positions

Dataset Classifier ACC EMG
MED RMS TD TDPSD

Bio

LDA 69.8+4.4 65.8+4.5 96.2+0.7 96.0+0.4
QDA 66.4+4.8 64.3+5.1 95.1+0.8 94.2+0.5
kNN 63.8+5.6 60.8+5.1 94.3+0.9 85.8+1.2
RF 61.2+4.9 59.2+3.3 92.9+0.7 91.6+0.9

HCI-A

LDA 97.1+1.5 96.6+1.9 89.1+3.5 91.1+2.7
QDA 93.8+3.8 89.0+5.5 82.9+5.3 68.4+7.0
kNN 94.2+2.6 94.6+2.4 82.8+4.5 70.1+4.8
RF 92.0+3.8 92.9+2.5 85.4+3.6 82.3+3.8

HCI-B

LDA 94.4+4.0 94.2+4.1 84.7+8.1 87.5+8.6
QDA 88.5+8.5 84.4+8.5 75.0+8.4 53.1+10.4
kNN 87.7+8.8 87.9+8.6 68.3+9.1 50.6+9.2
RF 84.2+6.9 84.4+7.1 78.4+7.0 73.0+8.4

HCI-C

LDA 89.1+4.4 84.5+6.6 66.5+8.5 71.9+8.5
QDA 87.9+8.1 84.1+8.9 60.9+9.6 45.9+8.8
kNN 80.6+9.1 81.7+9.2 52.0+9.8 34.1+7.1
RF 77.9+8.9 78.2+8.9 62.3+8.6 54.2+8.0

position.
This study additionally corroborates the past outcomes

of biomedical and HCI studies, where EMG is best for
biomedical applications and ACC is best for HCI gesture
recognition. Gesture recognition for biomedical applications,
such as prosthesis control, relies on class-separability provided
through EMG features (96.3%). Although ACC features pro-
vide moderate class-separability for the WS (83.9%) and WP
classes (87.2%), they provide only marginal class-separability
for other classes (mean: 55.7%). HCI gesture recognition
results found that ACC features substantially outperformed
EMG features with the same set of gestures (HCI-A), a set of
finger gestures (HCI-B), and a set of grasping gestures (HCI-
C). In contrast to past HCI experiments where 40 gestures are
used together, the use of EMG TDPSD for gesture recognition
with a subset of wrist gestures provided satisfactory accuracy
(91.1%).

Although findings were consistent with past studies, there
remains a disconnect between the use of ACC for the recogni-
tion of gestures between the biomedical and HCI frameworks.
When no positional variance was purposely included (biomed-
ical section of Table II), ACC provided no real gesture-
specific information resulting in low accuracy. The high ges-
ture recognition accuracy achieved using the HCI datasets is
most likely an outcome of stratifying gestures across different
positions to strategically reduce to improve the separability
of the gestures. This use of positional variance can be seen
in Fig. 1, where the HCI dataset shows distinct changes in
ACC signals during contractions that are uncharacteristic of
mechanomyography. This leveraging of positional variance
was inferred in [3], where gestures performed “in the air”
resulted in higher accuracy than gestures performed when in
contact with a surface.

A limitation of this study is the use of static contractions
alone in the biomedical dataset. Past studies have found that
including ramp contractions can reduce the impact of contrac-
tion intensity variability by incorporating more dynamics [14].
It is possible that there may exist repeatable ACC patterns
during the transient segment of such ramp contractions that
could be leveraged as part of future multi-modal myoelectric
control systems.

Ultimately, the consequence of different aims between
biomedical and HCI applications can result in confusion
when interpreting the outcomes of studies from both fields,
especially the when terminology used to describe the gestures
does not indicate the aim of the study. In light of this identified
deficiency, it is suggested that a full review of past studies
be conducted so as to develop a clear taxonomy and set of
terminology that could be adopted by both of these expanding
fields.
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