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ABSTRACT 

To restore limb functionality, control of a prosthetic hand 

should ideally be (I) proportional, i.e. produce speeds which 

varies in conjunction with changes in the latent intensity of 

muscle contractions, and (II) simultaneous, i.e. allow for both 

combined and independent steering of relevant kinematic 

degrees of freedom (DoFs). These desiderata are not 

straightforwardly attainable with classificatory pattern 

recognition applied to surface electromyography (sEMG), 

which only allows for the detection of a finite set of 

categorically encoded gestures. To alleviate such limitations, 

we here introduce a related approach for myocontrol which 

maps sEMG envelopes directly to multiple, continuously 

encoded DoFs, providing proportionality and simultaneity 

implicitly. The proposed method, termed myoelectric 

representation learning (MRL), is constituted by a deep 

learning topology and a domain-informed model training 

scheme. As with conventional pattern recognition, MRL 

operates on sEMG exclusively and is calibrated without 

ground truth limb kinetics, allowing for deployment with 

amputee users. We demonstrate the practical viability of 

MRL by implementing a virtual control interface driven by a 

setup consisting of 8 surface electrodes and capable of 

decoding 2 kinematic DoFs in real-time. Experiments with 10 

healthy subjects, in which the interface was used to conduct 

tests yielding 5 numeric performance metrics, were 

performed to quantify the quality of myoelectric control 

afforded by MRL. Comparisons with the performance 

obtained from of a Linear Discriminant Analysis benchmark 

method on an identical test revealed that MRL outperforms 

the former in all computed measures of control efficacy. 

INTRODUCTION 

Pattern recognition applied to surface electromyography 

(sEMG) has for a time been considered a key component in 

the endeavour to make intuitively controlled, multiarticulate 

upper limb prostheses available to transradial amputees [1].  

Despite countless reports of successful application of several 

variations of the technology in lab environments, widespread 

clinical adoption remains elusive [2]. Due to the notable level 

of reliability and stability required for practical viability, the 

few commercial implementations existing currently [3] make 

use of linear classification algorithms applied to a robust set 

of handcrafted signal features [4]. Within this gesture 

detection framework, speed of motion is typically modulated 

separately from classification by use of the mean average 

value of sEMG aggregated across all available channels [5]. 

Albeit functional and robust, this type of approach does not 

allow for true simultaneity, here defined as the ability to 

separately control multiple kinematic degrees of freedom 

(DoF) with mutually independent speeds. 

This paper introduces an alternative method for intuitive, 

proportional, and simultaneous myoelectric control which 

functions via supervised machine learning and is constituted 

by (I) a computationally lightweight artificial neural network 

(ANN) and (II) an appertaining calibration strategy. Due to 

its reliance on kinematically influenced signal representations 

arising throughout the ANN model during use, the method is 

termed Myoelectric Representation Learning (MRL). 

METHODS 

10 able-bodied subjects (age range 26-49 years, 5 male 

and 5 female) participated in the current study, which 

consisted of two phases: acquisition of calibration data 

followed by evaluation of myocontrol efficacy. The study 

was approved by the Regional Ethical Review Board in Lund, 

Sweden and all subjects gave their written consent. Data 

acquisition and processing were performed with custom code 

written for and executed in Python 3.6. All hyperparameters 

were selected ad-hoc prior to the start of experiments via 

empirical work on subjects not part of the current study 

Data Acquisition 

sEMG signals were acquired with a Myo armband 

(Thalmic labs, Canada) consisting of 8 equiangularly spaced 

dry surface electrodes. At the start of each experiment 

session, the armband was placed enclosing the dominant 

forearm of the subject at a level approximately 1/3 of the 

distance from the humeroradial joint to the radiocarpal joint. 

sEMG signals were sampled at a rate of 200 Hz and were 

transferred at identical rate to a host desktop computer (on 

which all signal processing was performed) in real-time via 

Bluetooth. The subject was seated comfortably in a chair, 

approximately 1 m from the computer screen, with elbow 

resting on a table; the angle and position of the elbow could 

be varied freely by the subject at all times. 
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Table 1. The recorded calibration movements and their 

corresponding categorical target encodings.  

Movement 

Class 
Description 

Ternary 

Encoding 𝒚 

0 Rest [0, 0] 

1 Wrist flexion [-1, 0] 

2 Wrist extension [1, 0] 

3 Flexion of the digits [0, -1] 

4 Extension of the digits [0, 1] 

5 Wrist flexion and Flexion 

of the digits 

[-1, -1] 

6 Wrist flexion and 

extension of the digits 

[-1, 1] 

7 Wrist extension and 

flexion of the digits 

[1, -1] 

8 Wrist extension and 

extension of the digits 

[1, 1] 

 

The current study entailed the decoding of two DoFs: (I) 

wrist flexion/extension and (II) flexion/extension of all digits 

simultaneously. Movement instruction stimuli were encoded 

with a ternary scheme, where each DoF could assume the 

values -1 (DoF active in one direction), 0 (DoF inactive), or 

1 (DoF active in the opposite direction). All of the resulting 

32=9 combinations possible in this framework (shown in table 

1) were recorded. Prior to calibration data acquisition, 

subjects were instructed to perform each of the 8 nonrest 

movements classes with maximal voluntary contraction 

(MVC) for 5 seconds. This step served to familiarize the 

subject with the movement combinations under consideration 

and was furthermore used to compute an MVC magnitude 

value specific to each subject and movement by summing the 

mean absolute value over all 8 sEMG channels. 

Calibration data was recorded by an acquisition program 

which prompted the subject to perform all nonrest 

movements for 3 repetitions, each lasting for a duration of 5 

s and separated by 3 s of rest. To aid the subject in applying 

a sustainable and consistent level of contraction across 

movements, the mean absolute value of the sEMG signal, 

summed over all channels of a sliding window of length 0.5 

s, was mapped to the height of a bar shown in real-time on the 

computer screen together with a threshold set to equal 50% 

of the movement-specific MVC magnitude computed earlier; 

subjects were instructed to keep the activity level as close to 

the threshold as possible. Once the program concluded, 

recorded sEMG was, together with the concurrent movement 

instruction stimuli information, saved and subsequently used 

for calibration of two different myoelectric control methods 

(an example of such calibration data is provided in fig. 1). 

 

Figure 1. sEMG calibration data acquired from a single 

subject. (1) Wrist flexion. (2) Wrist extension. (3) Flexion 

of the digits. (4) Extension of the digits (5) Wrist flexion 

and flexion of the digits. (6) Wrist flexion and extension of 

the digits. (7) Wrist extension and flexion of the digits. (8) 

Wrist extension and extension of the digits. 

Myoelectric Representation Learning 

Before being applied for neural network training, the 

previously collected sEMG signals were subject to 

preprocessing in the form of an envelope extraction step 

followed by a nonlinear rescaling step. Envelope extraction 

entailed signal rectification and channel-wise lowpass digital 

filtering with a moving average filter of length 0.5 s (100 

samples), yielding a nonnegative and unbounded signal 

matrix 𝑬𝑢. Nonlinear rescaling entailed channel-wise linear 

rescaling, clipping and lastly transformation by the square 

root operator as is shown in equations 1 and 2 below. 

 𝐸𝑖,𝑡
𝑟  ←  

𝐸𝑖,𝑡
𝑢 − 𝑝𝑖

1%

𝑝𝑖
99% − 𝑝𝑖

1%
 (1) 

 

 𝐸𝑖,𝑡
𝑇𝑟  ←  √𝑚𝑎𝑥(0, 𝑚𝑖𝑛(1, 𝐸𝑖,𝑡

𝑟 )) (2) 

 

𝑝𝑖
1% and 𝑝𝑖

99% were the 1st and 99th percentile level, 

respectively, of the samples of the 𝑖th channel of 𝑬𝑢. These 

preprocessing steps (I) guaranteed that all samples in 𝑬𝑇𝑟 , 

which were to be used for optimization, were constrained to 

the interval [0, 1] and (II) limited the impact of outlier sEMG 

samples on the resulting training data. The square root 

operator was included to bias resolution towards high levels 

of muscle contraction (i.e. 𝐸𝑖,𝑡
𝑟  close to 1). When the system 

later operated in real-time inference mode, input sEMG was 

identically processed using online filtering and the statistics 

𝒑1% and 𝒑99% obtained from the calibration data.
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Figure 2. The regression neural network topology central to the presented approach.  

 

The MRL topology, presented schematically in fig. 2, 

was composed of an encoder subnetwork, shared between the 

DoFs, and two separate decoder subnetworks, each specific 

to a DoF. The encoder network consisted of 5 fully connected 

blocks, each in turn consisting of a fully connected layer [6], 

a leaky ReLU activation [7], and layer normalization[8]. The 

number of output nodes for each encoder block was set to 

128, 64, 32, 16, and 8, respectively, resulting in a code size of 

8. Each decoder network operating on the generated signal 

representation consisted of one fully connected block of the 

same type, utilizing 128 hidden units, terminating in a fully 

connected layer with 1 linear output node, representing the 

inferred level of activity for one of the decodable DoFs. 

Model training was performed via gradient descent with 

batch size of 4096 for 5000 iterations by the Adam algorithm 

[9] with η = 10−4, 𝛽1 = 0.9, 𝛽2 = 0.999. The loss to be 

iteratively minimized was given by equation 3. 

 

 ℒ = ℒ𝑖 + α𝑐ℒ𝑐 (3) 

 

α𝑐 is a hyperparameter, set to equal 10−2. ℒ𝑖 is referred 

to as the inference loss and given in equation 4. 

 

ℒ𝑖 = ‖𝒚̂ − 𝒚‖1 (4) 

 

The regressand 𝒚̂ is the 2-element vector containing the 

DoF-wise continuous kinematics inferred by the ANN and 𝒚 

is the ground truth ternary encoding of the movement 

instruction stimuli concurrent with the sEMG envelope 

regressor sample. With ℒ𝑖 minimized, the ANN produces 

output which matches the movement intent of the subject. 

ℒ𝑐 denotes the contractive loss and given in equation 5. 

ℒ𝑐 =
1

2 ∙ 8
∑ ∑ (

𝜕𝑦̂𝑗

𝜕𝑒𝑖

)

22

𝑗

8

𝑖

 

 

(5) 

The term 
𝜕𝑦̂𝑗

𝜕𝑒𝑖
 denotes the gradient of the 𝑗th output DoF 

with regards to the 𝑖th channel of the input sEMG envelope. 

With a minimized ℒ𝑐, ANN output will be sensitive to 

variations in the level of latent muscle activity (as proxied by 

the sEMG envelope), i.e. control will be proportional. 

Benchmark Pattern Recognition Control 

To verify the conjectured advantages of MRL, a benchmark 

proportional pattern recognition method for myocontrol 

based on linear discriminant analysis was implemented. All 

implementation details, including feature extraction, 

classifier architecture, and calculation of speed, were selected 

to be identical of those of Method 2 introduced by Scheme et 

al in [5]. The method is in its entirety henceforth referred to 

simply as LDA. 

Quantitative Method Evaluation 

A real-time virtual environment was implemented to 

quantify myocontrol efficacy for both MRL and LDA. To 

counteract confounding effect from acclimation, half of 

subjects were selected to evaluate MRL first whereas the 

other half were selected to evaluate LDA first (determined 

randomly). The output command of the evaluated method 

was mapped to the velocity of a cursor shown on the 

computer screen. Detection of wrist flexion/extension 

translated to cursor movements left/right, and detection of 

flexion/extension of digits translated to cursor movements 

down/up. In the test, subjects were instructed to steer the 

cursor towards a sequence of circular targets, generated at 20 
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Table 2. Summary of real-time performance metrics. 

Name (abbreviation) Description 

Completion rate (CR) The proportion of targets which 

were successfully reached. 

Completion time (CT) The average time elapsed 

between task start and 

completion 

Path Efficiency (PE) The average ratio between the 

straight-line distance from the 

starting point to the target and 

the actual distance traversed. 

Overshoot (O) The average number of 

occurrences wherein the cursor 

leaves the target prior to the end 

of the dwell time 

Throughput (T) The ratio 
𝐼𝐷

𝐶𝑇
 between index of 

difficulty (ID) and completion 

time (CT), averaged across all 

successfully reached targets. 

 

locations spanning all four quadrants with 2 radii, resulting in 

a set of 40 targets each covering either 0.6% or 2.3% of the 

total screen area. The order in which targets were presented 

was determined randomly for each subject. An index of 

difficulty 𝐼𝐷 was computed for each target as in [10]. As in 

earlier work [11], targets were considered successfully 

reached after a dwell time of 0.3 s and considered failed if not 

successfully reached within 20 s. The 5 performance metrics 

introduced by Williams and Kirsch in [10] (summarized in 

table 2) were computed for each subject and control method 

at the end of experiments.  

RESULTS 

Linear regression showed a strong relationship between 

ID and CT (𝑅2 = 0.89) for MRL across all subjects and 

targets. The corresponding value for LDA was computed as 

𝑅2 = 0.81, verifying the eligibility of the Fitts’s law test and 

by extension the validity of the throughput metric. 

Aggregated performance metric summary statistics of both 

MRL and LDA from all subjects are presented in table 3. 

CONCLUSIONS 

The proposed algorithm (MRL) was found to be superior 

to conventional pattern recognition (LDA) in the sense of 

outperforming the latter in all computed measures of real-

time efficacy of control. These results are encouraging, but 

need to be replicated with a larger subject sample size (ideally 

including amputee subjects) as well as have their stability 

over longer time spans be investigated. 

Table 3. Means and standard deviations of metrics. 

Metric MRL LDA 

CR 99.25 ± 1.60 98.00 ± 2.45 

CT 3.68 ± 1.14 5.25 ± 1.43 

PE 55.33 ± 10.83 49.93 ± 7.90 

O 0.53 ± 0.19 0.61 ± 0.26 

T 0.67 ± 0.15 0.51 ± 0.13 

 

The MRL model was successful in extracting kinematics 

pertaining to two separate DoFs, but required calibration data 

of every possible movement combination. For larger numbers 

of DoFs, the number of movement combinations grows 

geometrically, leading to infeasibly long calibration data 

acquisition phases. Notably, this drawback is not unique to 

MRL, but is shared by all contemporary pattern recognition 

frameworks aimed at multiarticulate myocontrol 
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