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ABSTRACT 

Commercial myoelectric control systems using surface 

electromyography are unable to obtain consistent control 

signals for finger-specific motions because the desired 

signals are either obscured by more superficial muscles or 

non-existent due to the level of amputation. Intramuscular 

recording techniques and Regenerative Peripheral Nerve 

Interfaces (RPNIs) can potentially resolve each of these 

issues. Two persons with transradial amputations had bipolar 

electrodes surgically implanted into residual musculature and 

RPNIs. Participants used a low latency pattern recognition 

system to intuitively distinguish 7 individual finger postures 

with 100% online success and complete a functional task 

requiring multiple grasps with a commercially available 

prosthetic hand. A classifier with the same architecture was 

also used to distinguish movements in a simultaneous and 

proportional 2 degree of freedom control scheme. Both 

participants used this controller in real-time to complete a 

virtual target matching task with success rates of 99%. 

INTRODUCTION 

Traditional myoelectric prostheses for persons with 

upper-limb amputations are controlled by residual muscle 

activity via electromyography (EMG) recorded from the skin 

surface. Pattern recognition systems seek to provide users 

with intuitive control of wrist and hand functions. However, 

grip selection remains unintuitive as control is limited to 

simple open/close due to the lack of robust signals specific to 

finger movements [1]. Surgical interventions such as 

Targeted Muscle Reinnervation can create additional motor 

control sites [2] and more recent research has demonstrated 

the potential to extract specific motor inputs with signal 

decomposition [3]. Focusing on movement transitions has 

also allowed researchers to demonstrate more intuitive 

switching between a few grips [4]. However, without direct 

access to muscles that control fingers these techniques rely 

on algorithms to distinguish individual finger movements 

from subtle co-activations of prominent muscles or highly 

obscured deep muscle activity. Therefore, more work is 

needed to demonstrate that these techniques generalize 

outside of controlled tests. Given these challenges, it is also 

not surprising that pattern recognition is very sensitive to 

surface electrode placement [5]. Instead of attempting to 

resolve these issues with software alone, this study evaluates 

the use of intramuscular electrodes which can record large 

amplitude movement-specific EMG when implanted directly 

into finger flexors and Regenerative Peripheral Nerve 

Interfaces (RPNIs).   

RPNIs are created by implanting the end of a severed 

peripheral nerve into a small, autologous free muscle graft. 

After reinnveration, electrodes implanted into RPNIs record 

highly specific and anatomically consistent EMG signals, 

which remain stable, allowing for precise control of 

individual fingers in humans for up to one year without 

requiring recalibration [6]. Previous work in able-bodied 

non-human primates has shown accurate tracking of digits, 

suggesting that control is intuitive as well as precise [7]. In 

this study, two participants with transradial amputations had 

bipolar recording electrodes surgically implanted into RPNIs 

and residual forearm muscles. The high-quality EMG signals 

recorded from the implants allowed a low latency pattern 

recognition system to predict individual finger movements 

and grasps in a virtual reality environment and during 

preliminary functional testing with a commercially available 

prosthetic hand. The high speed classifier also predicted 

movements in combination with a regression algorithm to 

provide 2 degree of freedom (DOF) position control of the 

index and middle-ring-small (MRS) fingers of a virtual hand 

to complete a dextrous target matching task.  

METHODS 

Two patients with transradial amputations, P1 and P2, 

had RPNIs surgically created on each of the median, ulnar, 

and radial nerves. P1 had one RPNI created on each nerve, 

while P2 had two RPNIs surgically created on the ulnar 
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nerve, which had been subdivided into two fascicles, and one 

RPNI created on each of the median and radial nerves. Both 

participants provided written and informed consent and this 

study was approved by the Institutional Review Board at the 

University of Michigan. Eight pairs of bipolar electrodes 

(Synapse Biomedical, Oberlin, OH) were implanted into the 

ulnar and median RPNIs for both subjects as well as six and 

five residual muscles for P1 and P2, respectively. Although 

wrist movements were not a focus of this study, each subject 

had one electrode pair implanted in flexor carpi radialis 

(FCR). The remaining residual muscles were selected to 

target thumb, index, and small finger flexion and extension.  

For 7 total experiment sessions, a Matlab xPC 

(Mathworks, Natick, MA) decoded EMG in real-time and 

controlled virtual [8] and physical (DEKA, Manchester, NH) 

prosthetic hands. Controllers were calibrated by having 

participants mimic 5-10 movement repetitions with their 

phantom limb while seated at a table. Training for virtual 

posture matching and functional grasps instructed 

participants to make discrete holds as opposed to gradual and 

intermediate movements for the continuous motor task. A 

Hidden Markov Model (HMM) was fit to training data and 

modelled transitions between latent states [9]. The underlying 

classifier, features, and processing windows were selected 

from other studies [6,7]. P1 performed preliminary functional 

tests where HMM output was directly mapped to pinch (Pi), 

point (Po), and hand close (HC), while rest (Re) predictions 

opened the DEKA hand (Figure 1). P1 and P2 also performed 

a pilot test that required them to precisely move the index and 

MRS fingers of a virtual hand to target positions (Figure 2). 

The controller for this task was a switching Kalman filter 

(KF) [10] with regression coefficients fit according to 

previous work [6,7] and an HMM to distinguish flexion of 

individual finger groups along with flexion and extension of 

both. Three performance metrics were evaluated per trial: 

acquisition time was the total time excluding a hold period, 

orbiting time was the time spent stabilizing around the target 

position, and path efficiency was defined as the distance ratio 

of a perfect 2D path to the actual path including orbiting 

(Table 1). These metrics were specifically chosen to evaluate 

the fine motor ability afforded by the intramuscular signals 

and controller.  

RESULTS  

P2 controlled a virtual hand in real-time to match a cue 

hand and select 7 postures: thumb, index, ring, and small 

finger flexion, fist, finger abduction, and rest. The HMM 

issued an incorrect prediction transitioning to the cue on 

8.64% of trials, however P2 was able to quickly recover from 

these errors and hold the cued posture for 1 second with a 

100% success rate. P2’s average latency between the onset of 

new EMG activity and a successful hold was 311±31.2ms. 

Total trial time including reaction and hold was 1.73±0.03s 

on average (mean±s.e.m, n=73 trials across 3 sessions).  

P1 controlled the DEKA hand with a HMM and 

completed a reach and place task (Figure 1) with an average 

time of 18.39±2.77s (mean±s.t.d, n=5 trials). Real-time 

accuracy was calculated by comparing the instructed grips for 

interacting with each object to the HMM commands output 

to the hand. Most misclassifications occurred when using the 

point grip during the button press, which was found to be a 

result of moderate index flexor activation. 

 

P1 and P2 both used the switching KF to perform the 

dextrous 2 DOF target matching task which evaluated fine 

motor performance. The virtual task required them to 

navigate to 9 precise finger positions and remain within a 

tolerance window of ±13% flexion for 0.5-1s. Both subjects 

completed the task with success rates of 99%. On average P2 

could not manage to move to target positions as directly as 

P1, evidenced by lower path efficiency and higher acquisition 

times despite comparable orbiting times (Table 1). This 

indicates that the P1 was better able to use the control 

algorithm to independently make fine movements. 

Table 1: Dextrous 2 DOF Target Task Metrics 

Participant Successful 

Trials (n) 

Metric (mean±s.e.m.) 

Acquisition 

Time (ms) 

Orbiting 

Time (ms) 

Path 

Efficiency 

(%) 

P1 100 871.8±77.4 190.5±72.0 74.2±2.5 

P2 109 1025.7±82.3 141.2±51.3 63.2±2.5 

 

 

Figure 1: P1 performing the reach and place task 

which required three separate grips: point to press a timer 

button, pinch to move a ball, and hand close to move a 

bottle. P1 was instructed to start the timer, place both items 

on the shelf, bring the items back to the table, and stop the 

timer. Real-time accuracy was calculated across 5 trials. 
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DISCUSSION 

This study demonstrated that electrodes surgically 

implanted into residual muscles and RPNIs allow pattern 

recognition of individual finger movements and functional 

grasps. The HMM did not require lengthy integration 

windows, allowing P2 to quickly recover from errors and 

complete the 7 posture virtual task with low average latency 

and a perfect success rate.  P1 was also able to use the HMM 

and the DEKA hand to perform a task that required 

interacting with objects at multiple elevations. The common 

misclassification noticed during this preliminary functional 

test could be the result of subconscious muscle activity to 

stiffen the index finger for a button press. Similar phenomena 

have been noted by other groups and a variety of strategies 

exist to prevent such errors in future work [2,4]. The HMM 

implementation used a Naïve Bayes classifier to model latent 

states. However, it is likely that many classifiers could 

provide comparable performance due to the high amplitude 

and anatomical specificity of intramuscular EMG [6]. 

P1 and P2 also piloted a 2 DOF controller and performed 

a dextrous target matching task with similar near perfect 

success rates. P2’s slightly lower average orbiting time may 

have been an artefact of a lower required hold time than P1. 

The larger discrepancies in other metrics suggest that for P2 

either the HMM was not as effective in suppressing undesired 

movements or the movement distinctions were less intuitive. 

Strategies that blend trajectories of a switching KF may 

mitigate these issues [11]. The 2 DOF target task assessed 

fine motor control of independent finger groups. With 

commercial myoelectric systems using surface EMG, users 

rely on features of prosthetic hands such as compliant joints 

or internal controllers to substitute fine actuation for a gross 

motor command. Providing users with direct fine motor 

control of their prostheses will increase confidence over a 

broader range of activities, particularly as research in sensory 

feedback mechanisms progresses. Long term goals of this 

research are to increase the number of DOF and precision of 

finger control and incorporate precise control of wrist 

movements into a fully dextrous controller. 
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Figure 2: P2 performing the dextrous 2 DOF target 

matching task by simultaneously and precisely matching 

the positions of the virtual index and MRS fingers (grey) 

which she had position control over to their cued positions 

(blue). The cue turned green to indicate successful 

positioning of the fingers. 
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