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ABSTRACT 

We propose action control, a novel approach for myoelectric independent digit control based on multi-label 

classification. At each time step, the decoder classifies movement for each controllable degree-of-freedom (DOF) into 

one of three categories: open, close or stall (i.e., no movement). The user employs continuous feedback information 

to estimate and minimise the mismatch between target and current digit positions. We implemented the proposed 

action controller and evaluated its real-time performance with 3 transradial amputee—two bilateral, one unilateral—, 

whilst they controlled a six-dimensional computer interface with surface electromyography (EMG) signals. We 

benchmarked the performance of the algorithm against the state-of-the-art in myoelectric digit control, that is, position 

control using multi-output regression. We found that action control consistently and substantially outperformed 

position control. Furthermore, all participants rated action higher than position control in a series of questions in a 

post-experimental survey and expressed and overall preference for the former. The proposed algorithm warrants 

further investigation in the future by transferring the control space from a computer display onto a real prosthesis and 

evaluating performance during activities of daily living.  

INTRODUCTION 

The holy grail of upper-limb myoelectric prostheses is individual control of digits in a continuous space [1]. 

Several teams have previously attempted to use regression algorithms to map electromyography (EMG) features onto 

digit positions/velocities offline [2-5]. Only a few studies, however, have demonstrated real-time digit position control 

in amputees [6-8]. Furthermore, the feasibility of using this paradigm to enable the user to perform object manipulation 

and activities of daily living in an unconstrained environment yet remains to be demonstrated.  

We propose action control, a novel approach for individual digit control with EMG signals. In the heart of the 

control algorithm lies a multi-label classifier, which decodes movement intent for each controllable degree-of-freedom 

(DOF) into one of three classes: open, close or stall (i.e., no movement). We implement our proposed algorithm in 

real-time and evaluate its performance with three transradial (i.e., below-elbow) amputee participants using a six-

dimensional control interface. We show that action control can systematically and substantially outperform the state-

of-the-art for myoelectric digit control, which is based on position control via multi-output regression. 

METHODS 

Participant recruitment 

We recruited three transradial amputee volunteers. Two of the participants had bilateral and one had unilateral 

amputation. Participant 2 performed two experimental sessions with alternate sides, thus the total number of sessions 

was 𝑛 = 4. Experimental procedures were in accordance with the Declaration of Helsinki and approved by the local 

ethics committee at Newcastle University. Participants gave written informed consent prior to the experiments.  

EMG recording system 

We recorded surface EMG activity with 16 Delsys® Trigno™ sensors placed around the forearm in two rows of 

eight equidistant electrodes. Prior to sensor placement, we cleansed participants’ skin using 70% isopropyl alcohol 

swabs. We visually inspected the quality of all EMG channels and used adhesive tape to secure sensor positions. The 

EMG sampling rate was fixed at 2 kHz.  
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Signal pre-processing and feature extraction 

We processed EMG data using a sliding window with overlap. The length of the window was set to 128 ms and 

the overlap to 50%. Two features were extracted from each EMG channel, namely, waveform length and log-variance. 

Prosthetic hand 

We used the Robo-limb™ hand to demonstrate target postures to participants. The hand is similar to the Össur®           

i-Limb® Ultra hand and comprises six motors controlling thumb rotation and flexion/extension of all digits. The hand 

was powered by an external power supply unit (7.4 V/7 A) and operated by a laptop computer via a CAN bus 

connection.  

Training data collection 

We instructed participants to perform imaginary movements with their phantom limb, which were instructed on 

the prosthesis. The following single-digit and grip exercises were included: thumb opposition/reposition; thumb, 

index, middle, ring and little finger flexion/extension; cylindrical and lateral grip opening/closing. Participants 

performed 12 repetitions for each exercise and myoelectric data were recorded and stored on disk. 

Control schemes and decoder training 

During the interval between training data collection and real-time control, two types of decoders were trained: 1) 

a multi-output regression mapping EMG features onto digit positions (position control); and 2) a multi-label classifier 

decoding EMG features onto one of three classes: open, close or stall (i.e., no movement) (action control). In both 

cases, the target vector was six-dimensional, that is, the number of controllable DOFs.  

Real-time control task 

Participants were instructed to use their muscles to control a six-dimensional bar interface on a computer display. 

Prior to the start of the trial, the target posture was demonstrated on the prosthesis. Upon completion, a cue sound 

initiated the start of the preparation phase of the trial and six pairs of bars appeared on the screen. For each DOF, a 

fixed red bar indicated the target position and a blue bar showed the position that was controlled by the participant. 

Participants were given 5 s to match the blue bars to the red ones as closely as possible. A second cue sound initiated 

the start of the evaluation phase of the trial, which lasted for 1 s. Ten target postures were included, which comprised 

both single-digit and full-hand grip patterns: thumb opposition; thumb, index, middle, ring and little finger flexion; 

cylindrical, lateral and tripod grips; and index pointer. Note that not all exercises were included in the training set. 

Participants performed 10 blocks of trials for each control condition. Every target posture was included exactly once 

within each block in a pseudo-randomised order. 

Evaluation 

At the end of each trial, participants received a score characterising their performance during the evaluation part 

of the trial. The score was based on the median absolute error between the target and controlled positions and was 

normalised between 0% and 100%.   

Post-experimental questionnaire 

At the end of the experimental session, participants were asked to rate the two control schemes, namely, position 

and action control, based on the following three questions: 1) the interface was easy; 2) the interface was intuitive; 3) 

I found it easy to adapt to the interface. Ratings ranged from 1 (strongly disagree) to 5 (strongly agree) and half scores 

(e.g., 3.5) were also allowed. Participants were finally asked to indicate their overall preference. Participant 2 answered 

the questionnaire twice, once after each session, and respective scores were averaged. 

Statistical analysis 

For each participant, the target presentation order was the same for the two conditions (i.e., paired measurements). 

To compare performance between the two algorithms, we used two-sided Wilcoxon signed-rank tests with Holm-

Bonferroni correction to account for multiple comparisons. The condition order was counter-balanced across 

participants. 
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RESULTS 

The performance results from the real-time control experiment are presented in Figure 1. The scores achieved by 

each participant with the two conditions (i.e., position and action control) are summarised using box plots. For all four 

sessions, action control (i.e., multi-label classification) significantly outperformed position control (i.e., multi-output 

regression). The differences in median performance were as follows: P1, 𝑀𝐷 = 20.14, 𝑝 < 10−2; P2R, 𝑀𝐷 = 52.63, 

𝑝 < 10−13; P2L, 𝑀𝐷 = 47.23, 𝑝 < 10−10; P3, 𝑀𝐷 = 62.32, 𝑝 < 10−13. 

The outcomes of the post-experimental questionnaire are presented in Table 1. All participants rated action higher 

than position control in all three questions. Furthermore, all three participants expressed an overall preference for 

action control. 

DISCUSSION 

We have introduced a novel paradigm for myoelectric digit control. At each time step, the algorithm decodes 

movement for each controllable DOF in one of three categories: open, close or stall. To reach a desired position, the 

user has to utilise the available feedback information—in our experiment visual from the computer display—to 

estimate the mismatch (i.e., error) between the target and current position(s) and take appropriate action(s) to minimise 

it. The controller can be viewed as an extreme, discretised case of velocity control; the velocity has a fixed value and 

is, thus, only parametrised by its direction. Using this approach, we can employ a multi-label classifier as the decoder, 

rather than a multi-output regression algorithm. One caveat of regression-based approaches is that noise in the input 

 

Figure 1: Performance comparison between position (i.e., multi-output regression) and action (i.e., multi-label 

classification) control. The performance score characterised the match between target and controlled positions 

during the evaluation phase of the trial. Higher values indicate better performance.  Solid lines, medians; solid 

boxes, interquartile ranges; whiskers, overall ranges of non-outlier data; diamonds, outliers; double asterisk, 𝑝 <
0.01; triple asterisk, 𝑝 < 0.001. 

 

 Table 1: Post-experimental questionnaire 

Range: 1 (strongly disagree) to 5 (strongly agree); PC, position control; AC, action control 

Participant 

Question 

Interface was easy 
Interface was 

intuitive 

I found it easy to 

adapt to the interface Overall 

preference 
PC AC PC AC PC AC 

P1 2 4 1 4 3 5 AC 

P2 2 3.5 3 4 2.5 3.5 AC 

P3 3 4.5 2 4.5 2 4 AC 
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(i.e., EMG) space is propagated to the output, hence resulting in unstable control. To address this issue, it is common 

to smooth the output using a low-pass filter. Nevertheless, a large amount of smoothing is typically required to achieve 

a satisfactory outcome, which translates into a noticeable control delay. Classification, on the other hand, does not 

suffer from this limitation due to its discrete nature. Thus, by replacing the regression algorithm by a classifier we can 

achieve more stable digit control. Action control has an additional advantage. As opposed to position control, whereby 

a user has to hold a muscle contraction to retain a specific posture, with action control the user can completely relax 

once the target posture has been reached. This can result in more effortless control for the user. 

We have previously shown that position and action control can yield comparable performance in a robotic hand 

tele-operation task with a data glove [9]. Here, we have provided a real-time myoelectric implementation of the two 

algorithms and have shown that action control can systematically outperform position control, which is considered as 

the state-of-the-art for prosthetic digit control. Moreover, all participants rated action higher than position control in a 

series of questions and expressed an overall preference for the former. As a future direction, we will compare the 

performance of the two algorithms using additional metrics. Finally, we will further evaluate action control by 

transferring the control space from a computer interface onto a real prosthesis. 

 

CONCLUSION 

We have proposed and evaluated a novel paradigm for myoelectric individual digit control based on multi-label 

classification. We have shown that it can systematically outperform the state-of-the-art position control approach 

based on multi-output regression. In the future, we shall further validate the algorithm by transferring the control space 

from a computer interface onto a real prosthesis.  
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