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ABSTRACT 

State-of-the-art myoelectric upper limb prostheses control often utilize pattern recognition (PR) systems that 

translate electromyograph (EMG) activity to a desired movement. As possible prosthesis movements increase, users 

have difficulty generating sufficiently separable EMG signals that reliably operate all possible degrees of freedom. 
Current training regimens attempt to increase the separability of a user’s EMG signals through trial-and-error, where 

a therapist prompts a user to generate EMG signals and provides advice based on the strength and channel distribution 

of the EMG. In this work, we present a novel visual feedback interface that allows users to observe how their EMG 

signals affect PR output directly.  

INTRODUCTION 

Myoelectric control is a widely used method for the control of multi-articulated prosthetic devices. Myoelectric 

control operates by capturing electromyographic (EMG) signals generated during the user's muscle contractions and 

pattern recognition (PR) methods can be utilized to classify data into separate groups. Once these patterns of EMG 

activity have been established, they can serve as indicators for future EMG input, facilitating the identification of 

various movements [1]. While several factors contribute to the adoption of PR-based myoelectric control, low 

acceptance of prosthetic devices among individuals with upper limb loss (ULL) underscores significant challenges 
[2]. Experimental robustness does not necessarily equate to practical functionality and for novice users, there is often 

a steep learning curve to attain control proficiency [3]. Potential misclassifications can stem from a variety of 

environmental factors, including motion artifacts, electrode displacement, variations in limb positioning [4], and 

muscle fatigue. Furthermore, as the complexity and quantity of gestures employed in PR systems expand, the 

differentiation between each pattern becomes less discernible, leading to system confusion [5].  

Previous literature has supported that human motor learning-based training plays a pivotal role in enhancing 

myoelectric PR-based prosthesis control, improving both accuracy and adaptability [6], [7], [8]. Existing training 

programs encompass various approaches, including motor imagery, which visually represents the picture of intended 

movements to the user, EMG training games that integrate proportional and derivative control into gameplay, and 2D 

virtual arm training that concurrently displays the user's movements on a screen [8], [9]. However, for a more defined 

separation of gesture classes, the core solution lies in either shifting the classes within the feature space to augment 

interclass distance or reducing intra-class variability [7]. Enhancing control strategy performance in the 
aforementioned training methods poses a challenge without insight into the underlying algorithm's performance, as 

users only have a 'black box' perspective of input-output interactions. This deficiency may obscure the understanding 

of a performance issue’s origins, thereby limiting the users' ability to make informed, strategic adjustments, 

particularly as the complexity and number of gestures escalate [10]. 

In this work, we present a novel 3D visual feedback system designed to bridge the gap between the user and the 

pattern recognition system. Our system addresses the challenge of understanding the input-output control relationship 

in multi-gesture myoelectric control. PR training outcomes are showcased within a 3D interactive platform, wherein 

gesture relationships can be intuitively observed through their positioning in the feature space. Through this 

innovation, we aim to bolster the training-induced enhancement of control quality in myoelectric PR-based prostheses. 
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METHODS 

This study was conducted in accordance with a protocol approved by the Johns Hopkins University School of 

Medicine Institutional Review Board. Twelve able-bodied participants, 6 males and 6 females, were recruited to take 

part in a 10-day longitudinal experiment. Participants varied in age from 18 to 22. No participants had previous 

experience with PR-based myoelectric control. Participant EMG signals were recorded using the 8 channel Myoband 
(Thalmic Labs, Ontario, Canada) positioned on the subject's dominant arm. Additionally, participants wore a bypass 

prosthesis to incorporate noise conditions from load and fatigue, and movements were performed in multiple spatial 

locations to incorporate the limb position effect. 

Training Methods  

Participants were provided one of two methods to visualize their control during the exploration period: (1) an 

experimental, 3D visualization of the pattern recognition decision-space; and (2) a controllable virtual arm (Figure 1). 

The 3D control visualization projects 

the individual's incoming EMG data into 

the decision-space of the PR-based 

control method. This is accomplished by 

first undergoing a standard calibration 

regiment for PR-based control, where a 
calibration data set of EMG samples is 

collected on a class-by-class basis to 

generate a classifier. This calibration set is 

then projected into a 3-dimensional 

subspace, optimizing for low intra-cluster 

variability and high inter-cluster distance. 

During the evaluation periods, EMG 

activity of subjects was projected within 

the same training basis to represent where 

an individual's current EMG activity lies 

within the projection space. Within the visualization, the original training data is represented as coloured clusters of 
data points and the individual's current EMG activity is represented as a cursor. The cursor's position is modulated in 

real time by the user's EMG activity, allowing the participant to directly observe how their changing EMG patterns 

affect the proximity of their current pattern to the data the PR-based control method was calibrated with. In this way, 

participants receive direct visual feedback on the discriminability of their calibration data and the repeatability of their 

control as well as an opportunity to generate and observe how novel patterns of EMG activity map to regions of the 

decision-space (Figure 1a). In contrast, the virtual arm training method allows participants to operate a virtual model 

of an arm as if it were a real-world prosthesis (Figure 1b). 

Experiment Protocols  

Participants were evenly split into two groups of six, each comprising three males and three females: one 

experimental group utilizing the 3D visual feedback system, and a control group granted access to a real-time 

controllable virtual prosthesis. Each day, both participant groups underwent a calibration phase to capture EMG 

signals used for training the PR algorithm. From days 1 to 4, the participants performed a set of five gestures. This 
was increased to six distinct movements on day 5, and by day 7, they were executing a total of nine distinct movements 

(rest, open, power, pronation, supination, tripod, key, index point, pinch). Following the initial calibration phase, both 

participant groups were granted an exploration period to adjust their calibration data. Subjects had the flexibility to 

engage in practice sessions and refine their gestures if they found their control to be unsatisfactory and were allowed 

to recalibrate individual movements any number of times.  

During this phase, the experimental group had access to real-time feedback from a 3D visual feedback system, 

while the control group had access solely to a virtual arm. To maintain consistency and fairness, time constraints were 

established for both groups: three minutes were allotted per movement (excluding rest). After the adaptation period, 

all participants' control proficiency was assessed following a Fitts Law assessment protocol (Figure 2c-d) [11]. 

During the testing phase, subjects were centrally positioned, with a display screen to their right and a numbered 

board to their left (Figure 2a). The screen presented the Fitts Law test and subjects were required to perform the task 

 

Figure 1. This figure shows the training methods employed in the 

study: (A) the 3D Visual System and; (B) the Virtual Arm. 
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with alternating limb positions, with classified hand grasps modulating the size of the ring and classified wrist 

movements modulating its orientation. Each task had a time limit of 15 seconds. The total number of tasks was 

determined by the total number of gestures: four movements correspond to 18, six movements to 36, and eight 

movements to 54 tasks. The control proficiency of subjects was evaluated based on four metrics of the Fitts Law test: 

completion rate, overshoot per trial (OT), path efficiency (PE), and throughput (TP) [11]. 

An 11th session was completed 30 days after the last session to gauge the long-term impact of the 3D visual 

system with the exact same setup. 

RESULTS 

In this 10-day study involving twelve novice subjects, new movements were introduced in the first, fifth, and 

eighth sessions. As depicted in Figure 3a, the experimental group consistently outperformed the control group in terms 

of mean task completion rate.  

A notable distinction between the two groups was observed in their ability to adapt to heightened control 

complexity. On the fifth day, the completion rate of the experimental group dipped from 0.97 ± 0.07 (mean ± standard 

deviation) to 0.83 ± 0.1 relative to the previous day, while the control group saw a more pronounced drop from 0.77 

± 0.23 to 0.51 ± 0.29. The divergence in performance was further amplified on the eighth day; the experimental group 

experienced a marginal decline in completion rate from 0.92 ± 0.12 to 0.86 ± 0.14 since day seven, whereas the control 

group exhibited a substantial decrement from 0.86 ± 0.07 to 0.46 ± 0.31. In both instances, the difference between the 

two groups was significant on the day following the introduction of new movements, a contrast to their previous day, 

where no significant difference was observed.  

In terms of OT, PE and TP, the experimental group consistently outperformed the control group as shown on 

Figure 3b-d, although not at the rate indicated by the CR metric. 

DISCUSSION 

Throughout all sessions, the experimental group utilizing the 3D visual feedback system exhibited higher mean 
values for three metrics: CR, PE, and TP, and a lower mean for OT. This shows that the 3D system group surpassed 

the virtual arm group in all aspects of control proficiency. Based on feedback from participants, the experimental 

group reported less difficulty in modifying and fine-tuning movements and were able to refine their gestures 

effectively by observing overlaps in the visualization system. However, the results for OT, PE, and TP do not appear 

to align with the trend of increased control proficiency leading to increased differences between the two groups. 

 

Figure 2. (A) Physical Setup for the Experiment: 1) a bypass prosthesis to emulate the weight-bearing 

experience; 2) a numbered board to achieve postural variance; and 3) a screen to display the Fitts Law Test. (B) An 

enumeration of the testing positions for the Fitts Law Tests. (C) In the Fitts Law Test, subjects will manoeuvre a 
black ring with open/close gestures, along with a protrusion on the ring with wrist rotation gestures. (D) Subjects 

are tasked with aligning to the red ring and protrusion. A trial is deemed successful only when both the ring and 

protrusion are aligned accurately within a timeframe of 15 seconds. 
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The most plausible explanation for this affect is the decline in classification accuracy. Successfully executing the 

gestures required by the trial is crucial for task completion as well as incurring an overshoot, since overshoot is based 
on the over-application of the correct movement. This shows a limitation of this study, that a metric that captures 

failure to initialize an intended movement is missing. 

The findings from the 11th session continue to highlight the experimental group's superior performance in all 

mean values, however the gains washed out over the 30-day period, suggesting a diminishing advantage conferred by 

the 3D system on subjects when training is suspended.  
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Figure 3. The results show the mean and standard deviation of the experimental group (EG) and control group (CG) 

over ten sessions, along with an additional return session conducted 30 days after session 10. In the span from 

session 1 to 4, four gestures were involved in calibration (excluding the resting position); in session 5, two additional 

movements were incorporated, and in session 8, two further movements were added. These movement differences 

separate the test into three segments. A dashed line delineates the return experiment results from the original test 

data. * indicate sessions wherein the difference between the experimental group and control group was statistically 

significant (p < 0.05). 
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