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ABSTRACT

EMG-based gesture recognition tasks have received a lot of attention in recent years, mostly focused on multi-channel EMG

sensors, leading to issues in ease of use and computational requirements of such systems. The present study leveraged the

BioPoint, a smartwatch-like device, to proceed to multi-sensor deep-learning based gesture recognition. 3 hand gestures in

3 wrist orientations were targeted by measuring the EMG, PPG and IMU waveforms on able-bodied subjects (n=10).

Preprocessing and feature extraction allowed the modalities to be used in a two-head neural network trained for the

simultaneous classification of hand gestures and wrist rotation. During evaluation, the model obtained an average classification

accuracy for hand gestures of 83.5± 12.4% and 94.3± 9.7% for wrist position. Overall, this study showed the potential of

single-site, multi-sensor approaches for compound gesture recognition.
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Fig. 1: Concept: (a) The BioPoint provides low-latency synchronized data
from up to 6 sensors, (b) the PPG, IMU and EMG signals are processed by
a two-head neural network to extract wrist orientation and gesture.

Upper extremity musculoskeletal disorders, motor im-

pairments, and amputations profoundly affect millions of

individuals worldwide, leading to diverse challenges and

significant lifestyle changes [1]. Myoelectric prostheses

represent a significant advancement in upper-limb assistive

technology to address these issues. These sophisticated

robotic devices harness electromyographic (EMG) signals

from the muscles in the amputated limb to enable control.

Recent progress in robotics has significantly enhanced the

capabilities of these prostheses, particularly in achieving

various grasp shapes [2]. This enhanced functionality owes

much to the integration of multi-channel surface EMG

(sEMG) sensor setups, which allow for high-accuracy

recognition of multiple concurrent gestures [3], [4]. How-

ever, such advancements have primarily been confined to

laboratory environments [5].
Despite their impressive performance in gesture recog-

nition, multichannel EMG systems face several limitations,

including increased complexity, cost and computational requirements, and tend to reduce comfort due to their size [6]. These

drawbacks can substantially affect their practicality and user experience.
Moreover, effective prosthetic control encompasses more than just the recognition of diverse grasping actions; it crucially

includes the management of wrist dynamics, integral for performing a wide range of activities of daily living [7]. Despite

its importance in reducing compensatory movements, which can be a cause for prosthesis rejection [8], the concurrent

modulation of grip and wrist motions remains a significant challenge. Studies such as those conducted by Connan et al.,

exploring the online myocontrol of combined hand and wrist actions, exemplify efforts to overcome these obstacles [9].

Nevertheless, the intricate nature of these challenges underscores the necessity for further innovation and research in signal

acquisition, processing, and control algorithms to achieve truly seamless and intuitive control of both grasp and wrist motion

simultaneously to enable users to perform a wider array of tasks effortlessly.
Consequently, this work introduces the simultaneous classification of grasp and wrist movements from a single-point,

single-channel EMG device as shown in Figure 1(a). This advancement, made possible by the integration of an inertial

measurement unit (IMU) and a photoplethysmograph (PPG) within the EMG device, leverages a multi-head deep neural

network to perform sensor fusion. The proposed approach is designed to offer a more streamlined, efficient, and user-friendly

solution, whilst providing high-level functionality and ultimately improving user experience in prosthetic control.
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METHODS

System Hardware

Figure 1(b) illustrates the collection of EMG, PPG, and IMU data conducted throughout the study using the BioPoint

[10], a compact and wireless device with the capability of simultaneously recording and streaming EMG, ECG, PPG, IMU,

BioZ/EDA, and skin temperature data. Within the context of this study, we focused on three out of the six modalities

provided by BioPoint: PPG (Blue, Green, Red, and Infrared) sampled at 50 Hz, a 6-axis IMU sampled at 100 Hz, and

EMG sampled at 2 kHz. Figure 1 presents the BioPoint device alongside examples of data captured for various gestures.

An important advantage offered by the BioPoint for this study is the synchronization of all sensors using a common clock,

eliminating the need for additional processing as all modalities are inherently aligned with each other.

Pre-processing

During the post-acquisition pre-processing phase, the raw data obtained from EMG, PPG, and IMU sensors undergo

initial standardization filtering. This filtration process involves removing the mean and adjusting signal magnitudes based on

their respective standard deviations, which are derived from the subject’s training data. This step ensures a consistent range

of values across all three modalities. Additionally, for EMG data, a 60 Hz notch filter is applied to attenuate powerline

interference, followed by a 20-450 Hz band-pass filter to eliminate motion artifacts and component noise. PPG data undergoes

further processing with a 0.66-3 Hz band-stop filter to mitigate cardiac pulse influences. Moreover, as suggested in [11], a

Principal Component Analysis (PCA) is conducted specifically on the Infrared and Red channels. These channels are targeted

due to their longer wavelengths, facilitating better penetration into the arm tissue and heightened sensitivity to changes in

arm geometry. Regarding IMU data, the approach directly utilizes the standardized signals’ 3-axis accelerometer data.
In the context of real-time human-computer interaction, latency is a crucial consideration. To optimize system usability

while minimizing input delay, selecting an appropriate window size for data processing is essential. While longer window

sizes are associated with enhanced performance in myoelectric control [12], research suggests that the optimal window size

to mitigate input latency falls within the range of 150 to 250 ms [13]. Consequently, this study adopts a 200 ms window for

classification, supplemented with a 20 ms incremental update, to effectively capture the dynamic nature of the sensor data.

Sensor Fusion Classification Algorithm

A preliminary feature selection was performed for PPG and IMU on pilot subjects to determine appropriate features

for each of the modalities. Selection was performed on a per modality basis with the criterion of individual classification

accuracy. Subsequently, maximum (MPK), wavelet energy (WENG), and mean (MEAN) features were selected for PPG,

and waveform length phasor (WLPHASOR), discrete Fourier transform representation (DTFR), wavelet energy (WENG),

and root mean square phasor (RMSPHASOR) features were selected for IMU. The EMG gesture recognition literature was

consulted and the LS4 feature set was used, composed of l-score (LS), maximum fractal length (MFL), mean squared ratio

(MSR), and Willison’s amplitude (WAMP) [14].
The feature vectors are concatenated to form a single input vector, which is then fed into a fully connected neural

network. This network comprises three hidden layers, containing 64, 128, and 64 neurons respectively. For each layer, we

apply batch normalization, which is then followed by the Scaled Exponential Linear Unit (SELU) activation function as the

non-linearity function [15]. Additionally, we employ Alpha Dropout (with a rate of 0.5) after each activation function to

reduce overfitting and improve robustness under different input distributions, as suggested by the SELU activation’s design

principles [15].
The network utilizes a dual fully connected output layer strategy (dual heads), tailored for multitasking. One layer

focuses on predicting the three grasps, while the other is dedicated to the wrist movements. The softmax function is applied

as a the final layer of non-linearity for both heads.
AdamW [16] is employed with a learning rate of 0.01 to optimize the weights of the network. Learning rate scheduling is

used with a step size of 5 epochs and a decay factor (gamma) of 0.1, to adjust the learning rate during training. Furthermore,

to prevent overfitting and ensure generalization, we apply early stopping, using 10% of the training dataset as a validation

set and a patience parameter set to 30 epochs. Finally, the loss is calculated using cross-entropy, assigning equal importance

to both grasp and wrist movement predictions.

Data Collection

In this study, data collection involved ten able-bodied participants, including four women and six men, with ages ranging

from 21 to 59 years (Mean: 32.4, SD: 14.8 years). Four participants had no prior experience with biosignal-based collection,

and all were new to IMU and PPG data collection methods. The data acquisition protocol received approval from the ethics

committee for sectorial research in readaptation and social integration of the CIUSSS de la Capitale-Nationale (project

2023-2639). Ethical compliance was ensured through obtaining informed consent from all participants.
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Each participant was instructed to execute 3 hand gestures (Neutral grasp (NG), Open hand (OH) and Power grip (PG))

in sequence for three wrist positions: supination (Su), neutral wrist (NW), and pronation (Pr) as shown in Figure 2. Each

gesture was recorded for six repetitions lasting 5 seconds each. Only the isometric portions of the contraction were utilized

to train the classifier.

Fig. 2: Gesture set collected during the experiment composed of three hand gestures taken in each of the three wrist positions. The figure illustrates the
positioning of the BioPoint sensor on the participant’s forearm, located between the brachioradialis and flexor carpi radialis, distal to the elbow joint.

RESULTS AND DISCUSSION

Figure 3 showcases an example of how raw signals from EMG, IMU and PPG differ when comparing different wrist

positions and different hand gestures. Neutral grasp, which is used during transitions, has the lowest EMG activity and

generally keeps the IMU and PPG signals stable. Open hand causes a slight rise in EMG activity, which is explained by

the activation of extensor muscles located on the opposite side of the sensor placement. However, IMU signals have high

frequency oscillations similar to the ones obtained with the power grip which have the highest EMG activity due to the

recruitement of flexor muscles located right under the sensor. To differentiate between wrist positions, EMG visually seems to

play a much smaller role compared to IMU and PPG. The DC levels of the IMU are quite different between the orientations

and the shape of the PPG signals are consistent for the same wrist position. These two sensors provide reliable metrics to

differentiate amongst the wrist rotations.
Further analysis through feature extraction and neural network training was conducted to obtain quantitative results.

The confusion matrix of figure 4(a) shows the results for combined hand grasping and wrist rotation. Both network’s heads

had to be accurate for the sample to be compiled in the good classification diagonal. One result of note is the generally

lower accuracies for the neutral grasp compared to the other active hand gestures. It could be explained by users activating

their muscles to maintain pronation or supination which are the two lowest wrist positions for this hand grasp.
Next, by isolating the hand grasps and wrist rotations, classification accuracy with an average of 83.5 ± 12.4% was

obtained for the hand grasps and an average of 94.3 ± 9.7% for the wrist positions. Figure 4(b) shows the spread of the

distribution across the 10 users. Hand grasp was harder to classify due to its reliance on EMG signals which was taken

only at a single site far away from the hand. It is to note that the variation in performance across users is significant and

the average is skewed downwards by less experienced users. On the other hand, wrist rotations had much higher accuracies

except for one outlier user as denoted by the dot under the boxplot at around 67%. Wrist orientations were easier for new

users to perform as they do not require the same level of muscular control and practice as finger gestures. Moreover, IMU

and PPG sensors were very sensitive to those rotations.
Overall, this experiment showed that separating the hand and wrist motions using multiple sensors on a single-site already

obtains great results. Therefore, performing a similar compound movement experiment using sensor fusion and multi-site

EMG is a promising next step to hopefully enhance control of the newer generation of fully articulated prosthesis.

Fig. 3: A sequence was performed to showcase how the EMG, IMU and PPG raw signals affected by hand and wrist motion. 6 combinations of active hand
gestures and wrist positions were performed. Transition periods were used to change wrist orientation while keeping the hand in a neutral grasp (passive).
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Fig. 4: (a) shows the confusion matrix for the grasps and wrist motions considered simultaneously as predicted by the dual-head deep neural network
utilizing sensor fusion in the proposed classification pipeline. (b) provides the box plots, showcasing the distribution of the participants’ accuracies for
both grasp (hand) and wrist motions predicted separately.

CONCLUSION

In this study, the BioPoint, a single-site multi-modal acquisition device, was used to implement a two-head neural network

for simultaneous classification of hand gestures and wrist rotations, laying the groundwork for integrating wrist dynamics into

gesture recognition systems. Following preprocessing of EMG, IMU, and PPG waveforms, features supported by literature and

experiments were extracted. The network’s performance was evaluated with common offline metrics and showed near-perfect

performance for wrist rotations and high accuracy for hand gestures. While these results are promising, further experiments

should capitalize on online classification and on evaluating the system’s effectiveness with upper-limb amputees, both of

which are crucial aspects for the practicality of myoelectric prostheses control.
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