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ABSTRACT 

Existing myoelectric controllers operate in a sequential fashion and use a state machine architecture to select grip 

postures. Direct control interfaces that seek to map individual muscles with joints in a prosthesis can provide a greater 

ability to perform individuated movements but require users to selectively activate their muscles to prevent unintended 

motion from natural muscle co-activations. Musculoskeletal modeling offers a possibility to estimate joint motion 

from muscle co-activation patterns themselves but require significant computational resources to run in real time. A 

major source of delay in a myoelectric system that reduces the amount of time available for advanced signal decoding 

schemes such as a musculoskeletal model is the low-pass filtering of rectified EMG signals. To minimize these delays, 

we explore the low-pass filtering properties of skeletal muscle using a simplified excitation-contraction dynamics 

model, applying a thresholded EMG signal and the rectified EMG profile itself as model inputs. Our results indicate 

that passing these signals through a biomechanical model of muscle can produce a usable myoelectric control signal 

while introducing a physiologically appropriate amount of delay between EMG onset and muscle force estimation. 

INTRODUCTION 

Approximately 541,000 individuals live with an upper limb deficiency in the United States [1]. Myoelectric 

control options for these individuals typically include two-site myo (the standard of care), pattern recognition, and 

postural control [2-4]. These systems operate in a sequential open-close fashion as users can switch between grip 

postures but are unable to modify their motions in real-time or combine postures simultaneously. The state machine 

architecture used by these controllers also reduces the capability of multi-articulated prosthetic hands to simple 

grasping mechanisms. Direct control schemes seek to achieve simultaneous joint motion using targeted EMG 

electrode placement to provide a greater number of control sites. Cipriani et al. [5] demonstrated the ability of intact 

individuals to produce individuated and simultaneous thumb, index, and middle finger motions through a direct control 

interface using intramuscular EMG measured from the extrinsic finger flexors. However, mapping joint motion to 

EMG activity produced by individual muscle compartments required users to selectively activate their targeted 

muscles and avoid producing natural muscle co-activations that play an important role in producing dexterous motions. 

Musculoskeletal simulation provides an appealing option to estimate joint motion produced by muscle co-activations 

that ultimately result in complex and intuitive limb motion. 

Using a musculoskeletal model as a signal decoding interface requires significant computational overhead to run 

in real-time [6]. A real-time myoelectric control system must acquire, process, and decode EMG data at a rate faster 

a human operator can perceive. Users can largely tolerate controller update rates of 100ms before complaining of 

sluggish performance [7]. The low-pass filtering (or enveloping) of EMG activity can introduce delays between the 

onset of muscle contraction and prehensor motion ranging between 50-250ms [8]. Larger filtering time constants 

reduce the overall system bandwidth along with the proportion of the controller update rate available for more 

sophisticated signal decoding schemes. Childress et al. [9] developed a highly responsive control signal by 

thresholding the EMG amplitude profile and pulse modulating a motor within a myoelectric prehensor to leverage its 

inherent dynamics for low-pass filtering. Skeletal muscle performs a similar role in the body by producing a force 

response from pulsed motor unit action potentials that closely follows a minimum-jerk smoothness profile [10]. In 

this work, we apply a thresholded (or myopulse) EMG signal in addition to the rectified EMG amplitude profile as 

inputs to a physiological model of muscle excitation-contraction dynamics to demonstrate its ability to produce a 

smooth output response while introducing a physiologically appropriate delay between EMG onset and muscle 

contraction. 
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METHODS 

Muscle Excitation-Contraction Dynamics 

A simplified model of muscle excitation dynamics based on the model in Krylow et al. [10] consisted of two 

coupled first-order ODEs to estimate the active state of the muscle, defined as the rate at which calcium-bound 

troponin exposes actin binding sites for cross-bridge formation [11]. The amount of free calcium 𝑟(𝑡) in Eqn. 1 is 

proportional to pulsed input 𝑥(𝑡) and offset by the reabsorption of free calcium. The proportion of bound calcium 𝑦(𝑡) in Eqn. 2 provides the active state of the muscle, bounded between 0 and 1. The coefficients 𝐶1 = 100, 𝐶2 =107, 𝐶3 = 99, and 𝐶4 = 94 were determined by fitting Eqns. 1 and 2 to match muscle activation and deactivation 

time constants of 10ms and 40ms recommended for human muscle [12].  �̇�(𝑡) = 𝐶1𝑥(𝑡) − 𝐶2𝑟(𝑡) �̇�(𝑡) = {𝐶4𝑟(𝑡) − 𝐶3𝑦(𝑡), 𝑦(𝑡) ≤ 1−𝐶3𝑦(𝑡), 𝑦(𝑡) > 1 

(1) 

(2) 

The active state estimated by Eqn. 2 drove a simplified two-element model [10], illustrated in Figure 1a, consisting 

of a contractile element representing the muscle body and a series elastic element representing the tendon. The 

contractile element followed Hill’s force-velocity relation [13], expressed in Eqn. 3 

𝑉𝐶𝐸 = 𝑏0(𝑃0𝑦 − 𝐹𝑀)𝐹𝑀 + 𝑎0  
(3) 

where 𝑉𝐶𝐸 is the muscle shortening velocity, 𝑎0 = 0.3 and 𝑏0 = 0.04 𝑚/𝑠 are Hill model constants, 𝑃0 = 24.1 𝑁 is 

the maximum isometric muscle force, 𝐹 is the contractile element force, and 𝑦 is the muscle active state [10].  

The force developed by the series elastic tendon in Eqn. 4 is equal to contractile element force 𝐹𝑀 and can be 

expressed in terms of total muscle length 𝐿𝑀 and contractile element length 𝐿𝐶𝐸  𝐹𝑆𝐸 = 𝑘𝐿𝑆𝐸 = 𝑘(𝐿𝑀 − 𝐿𝐶𝐸) (4) 

where 𝐹𝑆𝐸 is the force on the tendon, 𝑘 = 1800 𝑁/𝑚 is the tendon stiffness [10], and 𝐿𝑆𝐸 is the tendon length.  

Scaling the model constants 𝑎0, 𝑏0, and 𝑘 using an empirical isometric force-length curve from Krylow et al. [10] 

introduces length-dependence to the force-velocity and tendon stiffness equations in Eqns. 3 and 4. Differentiating 

Eqn. 4 yields the ordinary differential equation governing contractile element force production  𝑑𝐹𝑀𝑑𝑡 = 𝑘(𝑉𝑀 − 𝑉𝐶𝐸) 
(6) 

In Eqn. 6, the velocity of the muscle-tendon endpoint (𝑉𝑀) is set to zero to represent an isometric force scenario. 

The system of ODEs formed by Eqns. 1-3 and 6 were solved using a fourth-order Runge-Kutta integrator.  

Experimental Protocol 

Eight subjects (6M/2F, all right-handed, age 28.6 ± 7.6 yrs.) performed a set of steady-state isometric contraction 

tasks consisting of a single isometric force trial at Maximum Voluntary Contraction (MVC) followed by a series of 

sub-maximal contraction tasks in increments of 20-percent MVC. Subjects provided informed consent for their 

participation and the protocol was approved by the Colorado Multiple Institutional Review Board (COMIRB). 

Subjects produced isometric forces by gripping a Jamar hand dynamometer instrumented with a pressure transducer 

(Honeywell, Charlotte NC) while a single differential electrode (Delsys, Natick MA) placed on the medial surface of 

the forearm recorded EMG activity from the extrinsic finger flexors. Data was acquired at 2000 Hz while a custom 

graphical interface developed provided visual cues of target grip force levels to participants.  

Data Analysis 

Surface EMG data was bandpass filtered (6th order Butterworth, 30 Hz high-pass, 480 Hz low-pass) and notch 

filtered (2nd order IIR bandstop, 60 Hz stopband frequency). After normalizing EMG data to MVC values for each 

subject, the myopulse signal was computed for each isometric force trial using a threshold value of three standard 
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deviations above the mean quiescent EMG amplitude. The muscle excitation-contraction dynamics model estimated 

muscle force using the myopulse signal and the rectified EMG amplitude profile as separate inputs. The average 

steady-state isometric forces estimated by the model were used to determine the relationship between estimated muscle 

force and measured muscle contraction level. 

 

RESULTS 

The forces estimated from the myopulse signal produced a hyperbolic relationship with muscle contraction level, 

(Figure 1b), while the forces estimated from rectified EMG amplitudes produced a linear relationship with muscle 

contraction level. The myopulse signal produced a smoother force response at steady-state isometric contraction levels 

and reached higher force magnitudes (Figure 1c), but also produced noisier forces during the quiescent portions of the 

isometric force trials. The opposite was true for the force profiles produced by the rectified EMG signal (Figure 1d) 

characterized by smoother quiescent forces and noisier steady state values. 

DISCUSSION 

We explored the ability of a physiological model of muscle excitation-contraction dynamics to avoid introducing 

large time constants associated with EMG low-pass filtering. The system of equations governing the model essentially 

act a cascaded fourth-order filter that successively smooths the input signal and constrains the delays introduced at 

each stage within a physiologically appropriate range. From Figure 1, the forces estimated from the quiescent 

myopulse signal are noisier than those estimated from the rectified EMG signal. This result is most likely due to the 

on-off nature of the myopulse signal which would cause noticeable force production depending on the time constants 

used by the excitation dynamics equations. In contrast, the rectified EMG signal produced a noisier steady-state force 

 

Figure 1: (a) Two-element Hill model from Krylow et al. [10] and force-length and force-velocity relations. (b) Normalized muscle 

forces plotted against steady state MVC contraction level. (c) Time series plot of estimated muscle forces from excitation-contraction 

dynamics model from rectified EMG signal. (d) Time series plot of estimated muscle forces from myopulse signal. 
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profile but a smoother quiescent period. Since the rectified signal retains its amplitude information, the active state 

estimated from low EMG amplitudes will also be small in magnitude. Although the magnitudes of the estimated 

muscle forces vary between the myopulse and rectified EMG inputs, proper scaling and normalization will produce 

sufficient output signal magnitudes to drive a myoelectric system. The selection of excitation dynamics coefficients 

and tendon stiffness values influences the rise time of the muscle force profiles, as an inverse relationship exists 

between the amount of delay introduced to the output signal and the degree of smoothing performed by the excitation-

contraction dynamics model. 

The steep increase in output force produced by the myopulse signal at low muscle contraction levels and force 

saturation at higher contraction levels may be a result of the interaction between the force-velocity curve with the 

response of the myopulse signal with increasing muscle contraction. As these relationships are both hyperbolic but 

inverse to each other [9, 13], it is likely that these quantities cancel at higher MVC levels while remaining either linear 

or hyperbolic at lower contraction levels given a mismatch in slopes. Combining the myopulse and rectified EMG 

signals may produce an improved force response across all muscle contraction levels. Multiplying the myopulse signal 

with the rectified EMG signal would produce a thresholded signal that retains amplitude information. The 

corresponding muscle force behavior would most likely display high sensitivity at low contraction levels from the 

myopulse signal content and high linearity across contraction levels from the rectified EMG amplitudes.  

CONCLUSION 

We evaluated the ability of thresholded and rectified EMG data to produce a responsive myoelectric control signal 

using simplified model of muscle excitation-contraction dynamics. These results further confirm the physiological 

role of muscles as a biological low-pass filter and establish the ability of a muscle model to sufficiently filter rectified 

EMG activity while introducing physiologically appropriate delays to the output signal. Additionally, from observing 

the properties of the estimated force profiles produced using thresholded and rectified EMG signals, we believe that 

combining both signals will produce a robust myoelectric control signal that displays high sensitivity at lower 

contraction levels favorable to myoelectric control use while producing a linear response at higher contraction levels. 
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