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ABSTRACT 

Modern mechatronic upper limb prostheses are controlled using surface electromyography sensors (EMG) that 

are typically embedded in the prosthetic socket. However, when the user moves their device in space or interacts with 

an object, changes in electrode contact pressure can occur that work to the detriment of consistent and effective 

prosthesis control. Yet, we suggest that these pressure changes offer unique information that can be captured using 

force myography (FMG) and decoded to help classify intended prosthesis movements. Thus, the goal of this work was 

to investigate the feasibility of combining FMG with EMG to classify hand grasping movements in an able-bodied 

cohort and compare this combination to EMG and FMG alone. We hypothesized that FMG will capture complimentary 

information to the EMG data and when combined, will produce more robust classification accuracies when the user’s 
limb moves in space or grasps objects of varying loads. We used a custom EMG+FMG armband and instructed N=21 

participants to grasp objects of different weights at a variety of different positions using 4 different hand grasp 

movements. The results demonstrated that the average classification accuracy of EMG+FMG was statistically 

different and of higher classification accuracy when compared to EMG and FMG. It was also found that position and 

load affect classification accuracy together suggesting that control techniques that adapt to these changes are likely to 

produce more effective prosthetic control performance.   

INTRODUCTION 

Modern upper limb prostheses (ULPs) are growing increasingly sophisticated with a variety of clinical and 

experimental systems offering individually articulating digits to perform a variety of hand movements, grasp force 

ranges similar to an intact limb, and proportional control of movements [1–3]. Operating these devices most commonly 

relies on surface electromyography (EMG) to measure residual muscle activity, decode the user’s intended 
movements, and in turn actuate the corresponding prosthetic movement. However, even with these advancements, 

growing availability of advanced devices, and their increased prescription rates, abandonment rates remain as high as 

23-26% [4]. Achieving effective and consistent device control is a major contributing factor [4]. One challenge is the 

fact that EMG sensors are embedded in the prosthetic socket (PS). When the device is moved or loaded (object 

interaction) the pressure distribution between the prosthetic socket and the residual limb can dramatically change [5] 

resulting in varying impedance, potential motion artifacts, and overall inconsistent electrode recordings that 

collectively work to the detriment of effective and consistent control [6, 7].  

While these pressure changes add unwanted variability for EMG control systems, they may also offer unique 

information about the state of the prosthesis that can be useful for device control. For example, recent studies have 

recorded patterns of pressure changes inside the PS during residual muscle contractions, which were then classified 

using machine learning to infer intended prosthesis movements (force myography, FMG) [7–9]. We suggest that the 

measurement of pressures developed inside the PS may offer complimentary information to augment EMG-based 

control strategies. Thus, our objective was to investigate the feasibility of combining FMG with EMG to predict hand 

grasping movements across a variety limb positions and grasped loads. We hypothesized that EMG and FMG would 

demonstrate variable classification accuracies depending on the limb position and loading conditions and, when fused, 

EMG+FMG would perform more accurately than either system individually.   
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METHODS 

Participants and Experimental Setup 

We recruited N=21 able-bodied participants (14 male and 7 female, 

average age 24, SD 3.08). Research protocols were approved by the 

Institutional Review Board at the University of California, Davis and 

participants provided written informed consent. Participants wore our custom 

EMG+FMG armband which was comprised of our FMG system (8 Interlink 

Electronic FSR400 sensors) and our EMG system (8 EMG sensors from our 

Delsys Trigno EMG system) as shown in Figure 1. The sensors were arranged 

equidistantly onto a Velcro strap in an alternating sequence before they were 

tightened onto the muscle bulk of the participants’ forearm. Sensor data was 

collected using two National Instruments USB6210 Data Acquisition 

Systems, one for the EMG data and one for the FMG data.  

Experimental Procedure 

Participants grasped a weighted manipulandum (MPD) using a specific 

grasp configuration at various positions. This allowed us to examine how 

EMG, FMG, and their combination are affected by load and limb position. The MPD was loaded with 5 weights, 

including a no weight condition (the weight of the MPD, 53g), 250g, 500g, 750g, and 1000g. Participants stood in 

front of a 7-foot-tall shelf and grasped the MPD with 4 different hand grasps: Key, Pulp Pinch, Power and Tripod 

Pinch [10]. The shelf levels and standing ‘zones’ were adjusted for participant height such that their arm was fully 

extended when standing at zone 2 and reaching positions 5-8 (Figure 2a). The participants grasped the MPD using 4 

different grasps, at 8 different positions, and under 5 different weights. Each trial consisted of the MPD being placed 

at one position, in line with the sagittal plane of the subject’s dominant arm. They would then be queued to grasp and 

slightly lift the manipulandum with a specific grasp, hold it for 3 seconds, and then set it down and relax for 4 seconds. 

This was repeated 3 times at each position prior to moving on to the next randomized position, weight, and grasp 

combination. Randomization helped ensure that any potential muscle fatigue did not influence experimental results. 

Data Analysis 

Contraction data was first separated from resting data using time 

stamps before being parsed together and segmented using a 200ms 

window and a 50ms time increment [11]. We used the Hudgins’ Set 
to create EMG features [12], the mean absolute value for FMG 

features [7] and combined both into a single feature vector for 

EMG+FMG [13]. We used linear discriminant analysis to classify 

hand grasps using leave-one-out cross validation to train the 

classifier and calculate classification accuracies. We analysed data 

in 3 cases: (1) Classification accuracy for a constant position 

(position 2) and varying weights, (2) classification accuracy for a 

constant weight (500g) and varying positions, and (3) training the 

classifier at a neutral position (position 2, no weight, as is done in 

numerous studies [13-15]) and testing the classifier with data from 

the most extended and loaded position (position 5, 1000g). We used 

multiple linear mixed effect models to examine statistical differences 

in classification accuracies of each modality (EMG vs. FMG vs. 

EMG+FMG) for each of the 3 cases, using modality as the fixed 

effect and participant as the random effect. 

RESULTS 

The first two cases illustrated how varying either the load or position affected classification accuracy for each 

modality. The results are shown in Figures 3a and 3b, respectively.  

 

Figure 1: The EMG+FMG armband was 
comprised of 8 EMG and 8 FMG sensors 

which were housed in 3D printed casings 

which attach to the Velcro band. 

 

Figure 2: (a) The 8 positions and 2 zones for the test. The 

participant stood at zone 1 for positions 1-4 and zone 2 for 

positions 5-8. The participant’s elbow was bent at 90º at position 
2, between fully extended and bent at positions 1, 3, and 4, and 

fully extended at positions 5-8. (b) The manipulandum was 

comprised of two parts such that the weights can be top loaded 
and held with the 4 grasps. 
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 For both cases, EMG+FMG was found to be the most accurate sensing modality while FMG alone was found to 

be the least accurate. Each sensing modality yielded an average classification accuracy of greater than 90% except for 

FMG in case 2 (84.9%, SD=11.1%). It was also found that each modality was statistically different from one another, 

as shown by Figures 3a and b.  Furthermore, it was found that 

position and weight demonstrated an effect on EMG and FMG 

as shown by statistically different accuracies (P < 0.05) when 

comparing cases 1 and 2 while EMG+FMG was not affected 

(P > 0.05), indicating that the fusion of the two modalities may 

be more robust to these conditions.  

For case 3, we first graphed the average classification 

accuracy of the classifier at the neutral position. We then 

trained the classifier at this neutral position and tested the 

classifier with data from the most extended and loaded 

position, illustrated in Figure 4. As shown, there are 

significant differences between the classification accuracies of 

the neutral and extended positions. Furthermore, there was no 

significant difference between each modality’s classification 

accuracies at the extended and loaded position.   

DISCUSSION AND FUTURE DIRECTIONS 

We found that that position and grasped load affect classification accuracy muscle measurement modalities 

(EMG, FMG, EMG+FMG). As illustrated by the results of case 1 and 2, EMG outperformed FMG in both cases and 

yielded higher classification accuracies when the load and position was varied. This may have been a result of little 

change of radial muscle forces across the range of loads and positions, or alternatively large variability in these radial 

forces. Thus, it may be useful in the future to classify hand gestures under multiple combinations of varying weight 

and position to further define the nature of these relationships. Furthermore, as shown by the results of cases 1 and 2, 

the combination of EMG and FMG yields statistically different and nominally greater classification accuracies than 

either EMG or FMG could individually produce. This suggests that FMG produces complimentary information that 

can be paired with EMG data to more accurately classify hand gestures during varying position and loading conditions. 

Further, when comparing the results of the same modality across cases, accuracies for cases 1 and 2 for EMG and 

FMG were found to be statistically different whereas EMG+FMG demonstrated no difference. This indicates that the 

combination of the two provide a more robust classification accuracy during changes in position and load than the two 

modalities separated.  

The results from case 3 further illustrate the effect of limb position and loading on classification accuracy for each 

modality. As shown in Figure 4, when the classifiers are trained and tested at the neutral position, as is typically done 

for ULPs, the classification accuracy of the four hand gestures approaches 100%. However, when trained in the neutral 

position and then tested in the extended and loaded position, the average classification of each modality decreases to 

35-40%. Furthermore, these classification accuracies were found to be not statistically different from each other (P > 

0.05), illustrating that each modality performed equally poorly when tested at the extended position. While the 

extended position was the most different from the neutral position, this illustrates the fact that limb position and 

 

Figure 3. ** (P < 0.01) *** (P < 0.001) (a) Average classification accuracy for case 1 (constant position of position 2 with varying loads). (b) 

Average classification accuracy for case 2 (constant weight of 500g and varying positions). 

 

Figure 4: *** (P < 0.001) ns (P > 0.05) Case 3: Average 

classification accuracies at the neutral position (position 2 no 

weight) and at the extended and loaded position (position 5 

1000g) after being trained at the neutral position. 
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loading can work to the detriment of classification accuracies. As current ULPs are usually trained at a neutral position, 

the addition of weight and position would vastly decrease the effectiveness of the users control system. Furthermore, 

current literature does not provide a reliable consensus on if the combination of EMG and FMG adds any statistical 

value for hand gesture classification [13, 16, 17]. However, in our work, we demonstrated that when the limb is moved 

to various positions and loaded, as is more representative of real-world object manipulation, the addition of FMG adds 

significant improvements to current EMG classification systems. Thus, designing and implementing a control system 

that implements these combinations can account for or adapt to position and loading changes could aid in more 

effective device control.   

The long-term goal of this work is to implement an EMG+FMG sensing system inside of ULPs for the purpose 

of more robust control. While this experiment begins to provide feasibility data to further explore this topic, future 

work is ongoing to investigate how combinations of position and load affect classification accuracy of grasping 

patterns along with how well the modalities can accurately classify positions and applied loads. This future work will 

illustrate the robustness of each sensing modality along with what conditions each sensing modality may be best suited 

to perform under. We further aim to begin to examine how in-socket prosthesis applications of our approaches may 

change relative to our able-bodied dataset and examine efficient machine learning training practices that incorporate 

and accommodate for position and grasped weight combinations.  
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