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ABSTRACT

For persons with transhumeral amputation, targeted muscle reinnervation (TMR) has unlocked the potential for inno-

vative and intuitive control of myoelectric prostheses. There are many open source datasets available for training machine

learning (ML) models for transradial and transhumeral prosthetic control. However, to the best of our knowledge, no

datasets have been gathered in different limb positions with the intent of training models specifically for persons with tran-

shumeral amputation who have undergone TMR surgery. Moreover, such a dataset is challenging to curate as TMR is still a

relatively new surgical technique and there are few people with TMR. In this work we present a novel biologically-inspired

protocol for collecting data from persons both with and without upper-limb amputations that can be used to train gener-

alized ML models for this growing population of users. Our results from a three-participant pilot study suggest that by

choosing targeted sensor placements that correspond to specific limb nerve/muscle compartment associations post-TMR

surgery, we can potentially capture control-relevant muscle activation patterns from persons without limb difference that

closely resemble expectations of anatomical prime movers. We expect this collection protocol to provide further utility in

studying the relationship between limb positions and myocontrol signals, and differences between isotonic and isometric

muscle contractions during prosthesis use, leading to a new generation of TMR-ready control solutions.

INTRODUCTION

Most commercially available motorized prostheses are controlled via electromyogram (EMG) signals from a pair of

residual agonist-antagonist muscles [1]. Conventional control strategies map the acquired EMG signal amplitude to operate

each joint of the prostheses [2]. For example, EMG signals from the contraction of the biceps brachii and triceps brachii

muscles can be mapped to operate elbow flexion and extension, respectively. However, myoelectric control with only two

signals is slow and unintuitive [3]. In contrast, targeted muscle reinnervation (TMR) is a surgical technique that reroutes

nerves that would innervate forearm and hand muscles to alternative muscle sites in the residual limb [4]. As a result,

persons with TMR and transhumeral amputations (hereafter simply termed users) can have up to five distinct muscle sites,

allowing for advanced ML solutions to control multiple joints simultaneously. TMR has been shown to improve myoelectric

prosthesis control for persons with transhumeral amputations or shoulder disarticulations [5, 6].

Machine learning (ML) models for prosthetic control can be trained to recognize patterns in the acquired signals

related to their physiologically appropriate joint action [7]. However, training a personalized ML model capable of making

accurate predictions in different limb positions and conditions of use requires a substantial amount of labelled data from

the user, which is time consuming and prohibitive during daily use [8]. Furthermore, these models tend to suffer from lack

of generalizability both across and within participants, due to inter- and intra-participant variability, as well as differences

in sensor placement and environmental conditions [2, 9]. Being able to augment the training set with data from persons

without limb differences—or a TMR user’s other limb without amputation—may contribute to both increasing the initial

generality of learned controllers and reducing re-training effort. Our preliminary study demonstrates that data collected

using our proposed protocol reflects anatomically-based expectations of muscle activation patterns for a non-amputated

upper limb during various actions. This will enable future work to analyze the effect of limb positions on muscle activation

signals and capture the differences between isotonic and isometric muscle contractions in the arm and forearm.

METHODS

Our proposed data collection protocol provides an anatomically-inspired sensor placement guide designed to acquire

signals from muscles that align with a residual limb post-TMR. We first describe an overview of the data collection protocol

and then present the results of a three-person pilot study.
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Bio-inspired Sensor Placement

Figure 1: The five nerves responsible for providing motor innerva-

tion to muscles of the residual limb after transhumeral TMR. Note:

N. denotes nerve; this figure is best viewed in colour.

Since we were interested in creating a data col-

lection protocol that can be used on both prosthe-

sis users and persons without limb difference, we

took inspiration from our own underlying anatomy.

While humans show some variation in the location

of individual nerves, we all share the same basic in-

nervation patterns, originating from the development

of the limb buds, with each terminal nerve always

innervating the same muscles [10]. The intermus-

cular septum divides the limb bud into anterior and

posterior compartments, with flexor muscles devel-

oping in the former and extensor muscles in the lat-

ter [11]. The brachial plexus provides innervation

to the upper limb and follows the same division, with

trunks separating into anterior and posterior divisions

before ending as five terminal branches. The axil-

lary and radial nerves supply the posterior compart-

ment while the musculocutaneous, median, and ul-

nar nerves supply the anterior compartment. For our

protocol, we positioned sensors on specific muscles based on their nerve supply. In other words, muscles are viewed as a

conduit for collecting motor signals from the brain, which we can then use as input features for training ML models. It is

because of this novel perspective that we will be able to collect data from both users and persons without limb differences.

Figure 1 shows the five nerves responsible for providing motor signals to muscles in the residual limb after TMR

surgery. The radial nerve natively innervates the long and lateral heads of the triceps brachii (marked by the dark blue lines

in Figure 1); for users, the lateral head is denervated from the radial nerve (demarked by black slanted lines through the

dark blue line) with the deep branch of the radial nerve re-routed to provide supply to the muscle belly (solid light blue

line). Since the deep branch of the radial nerve natively supplies most of the posterior compartment of the forearm, for

a person without limb differences, we can choose any muscle from this compartment to position the relevant sensor. We

chose the extensor carpi radialis longus and brevis (dashed light blue line) due to its proximity to the surface and because

it contributes to both wrist flexion and radial deviation. We follow the same reasoning for the remaining four nerves. The

musculocutaneous nerve natively innervates the long and short heads of the biceps brachii (solid red line); for users, the

median nerve is re-routed to the short head of the biceps brachii (solid orange line), which in turn natively supplies the

pronator teres and flexor carpi radialis (dashed orange lines). The ulnar nerve provides native innervation to the flexor carpi

ulnaris muscle (dashed yellow line) and gets mapped to the brachialis muscle for users, if their residual limb is long enough.

Note that there is a line missing from Figure 1 that would be solid yellow leading from the ulnar nerve to the brachialis

muscle; for persons without limb difference, we are unable to place a sensor on the brachialis muscle because it lies deep to

the biceps brachii. However, this does not have a negative effect on the data: during model training, we would compose the

input feature vector from the signals matching up to the five nerves. For persons without limb difference, these channels

are marked with pink boxes in Figures 1 and 2; for users we simply replace the flexor carpi radialis, flexor carpi ulnaris,

and extensor carpi radialis features with signals from the short head of the biceps brachii, brachialis, and lateral head of the

triceps brachii, respectively. For each column in Figure 1, a solid-colored square marks that the muscle is a prime mover

for the corresponding action along the y-axis. A hatched square denotes that the muscle is either a synergist or there is

anticipated noise due to its proximity to the prime mover for the given action.

Data Collection Protocol

Three participants without limb difference, two males (26 years old, 193 cm, 104 kg, right-handed; 33 years old, 178

cm, 100 kg, left-handed) and one female (40 years old, 170 cm, 70 kg, right-handed), provided informed consent and were

recruited for this pilot study (P1, P3, and P2 in Figure 2, respectively). We used the Delsys Trigno Wireless Biofeedback

System with the Trigno Avanti sensors (Delsys) set to broadcast EMG signals at 1926 Hz and accelerometer data at 74 Hz.

Eight sensors were placed on each arm in the middle of the muscle belly for each muscle in Figure 1 (x-axis); the solid-

coloured actions in each column can be used to help find the correct muscle belly. The participants’ dominant arm was then

braced with the elbow bent at approximately 70
◦, forearm at mid-pronation, and wrist straight. This bracing position was

chosen to lock the arm approximately in the middle of each joint’s range of motion. This was to elicit isometric contractions

to capture a higher amplitude from the signal for a longer duration, which we expect to be more similar to the type of muscle

contractions a person with limb difference has. On the unbraced side, isotonic contractions are elicited as the participants

moved actively through the range of motion, producing concentric contractions in the prime mover and synergist muscles.
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(a) Unbraced arm (isotonic contractions) (b) Braced arm (isometric contractions)

Figure 2: Consolidated muscle activation heatmap showing the results of our pilot study. In each column, activation is

ranked with the highest number (normalized mV) denoting a given muscle as the prime mover for the corresponding action

and lower numbers denoting lesser/minimal involvement in the action.

An interactive video played on a monitor in front of the participant to visually guide them through the data collection

process. Participants follow a series of 11 actions (Figure 2, y-axis) in 13 limb positions to curate a dataset that covers the

functional workspace of the human arm, including positions above the shoulder and behind the back. Three cross-body

positions were also included but were found to be awkward to perform and their removal had minimal effect on the results.

Once the participant was ready, a random limb position was presented on the monitor, and they were guided through a

pre-ordered set of actions in that position. Each action was held for five seconds. Each participant carried out one training

session guiding them through all 11 actions in one limb position before starting the full data collection process. After each

limb position the participant was allowed to rest before continuing to the next limb position or redoing the last. To prepare

the raw data for analysis, a bandpass filter from 20–450 Hz and a notch filter at 60 Hz was applied. The mean absolute

value feature was then extracted using a sliding window of size 50 in increments of 10 samples. The participant data was

aggregated into unbraced and braced groups to compare the difference bracing (i.e., isotonic vs. isometric) has on the

muscle signals, and to account for differences in handedness. For clear visualization in Figure 2, each action-sensor pair

were normalized by the greatest mean activation signal (mV) obtained for that sensor across all actions and limb positions.

RESULTS

The heatmaps shown in Figure 2 highlight the potential of our new data collection protocol to provide meaningful

signals for each action across all limb positions. Figures 2a and 2b show the data from all three participants consolidated

and normalized by sensor for the unbraced and braced arms, respectively. Each column provides a ranked order of activation

strengths for the muscle, with the highest number reflecting the highest contractile strength for that action relative to all the

other actions. The grey mini-maps contain the highest mean activation signal obtained for each sensor. Despite its normal

overall activation pattern, the lateral head of the triceps brachii muscle value for P1 was an order of magnitude higher than

all other mean activation signals. Further investigation suggests this may have been due to the participant activating this

muscle to counteract the weight of the brace during elbow flexion in limb positions above the shoulder line. We focus our

analysis on the five muscles marked with pink boxes in Figures 1 and 2 as these are the signals we would use for training a

TMR prosthesis control model. In a ML model, the input would be the vector of EMG signals (e.g., the five signals from

one row of the heatmap) and the output would be the action label (i.e., one of the y-axis labels).

Comparing Figure 2 with the anatomical expectations in Figure 1, a similar activation pattern emerges. Note that, as

expected, the unbraced arm more closely matches the expected pattern as these predictions are based off anatomical muscle

tables [12]. For the unbraced arm (Figure 2a), results reflect that the triceps brachii is the prime mover for elbow extension,

the biceps brachii for elbow flexion, the flexor carpi radialis and flexor carpi ulnaris for wrist flexion, and the extensor

carpi radialis for wrist extension. Interestingly, when compared with the isometric contractions elicited in the braced arm

(Figure 2b) we see less distinct signals for each action as muscles close to the prime mover are also activated during the

sustained contraction. This is shown in similar activation patterns of the pronator teres, flexor carpi radialis, and flexor

carpi ulnaris during both pronation and wrist flexion. The biceps brachii also exhibits higher activation during supination

than elbow flexion when braced, compared to unbraced. Both the unbraced and braced results reflect the effect of limb
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position on muscle contractions, as seen in the high activation signals for all forearm, wrist, and hand actions for the triceps

and biceps brachii muscles. In fact, further investigation across individual limb positions show that EMG signals from the

triceps and biceps brachii muscles begin to activate at a higher level across all actions as the participants raised their arms.

DISCUSSION AND CONCLUSION

Targeted muscle reinnervation (TMR) is a promising avenue for opening new and intuitive methods for myoelectric

control. This work offers three key contributions to the field of advanced prosthetic control. Firstly, we introduce a bio-

inspired protocol for collecting data in thirteen different limb positions targeted at training ML models for persons with

transhumeral amputation that have undergone TMR surgery. We present results from a three-person pilot study using our

proposed data collection protocol, highlighting its potential utility. Data from this limited sample mirrors what would be

expected from anatomical predictions of which muscles should be active during each given action; this is most noticeable

in the unbraced arm and provides validation for our choice of sensor placement. By analyzing muscle activation patterns

for different upper limb actions, we can anticipate which actions ML models should be able to accurately predict for users.

These actions are elbow flexion and extension, forearm supination and pronation, wrist flexion and extension, and radial

and ulnar deviation. A model would have trouble predicting hand open and close accurately if included in this set of

labels. Secondly, this study also touches on the limb position effect (c.f., Williams et al. [8]), which is reflected in the

data and enables us to further analyze the effect of limb position on muscle contractions. Future work will include a more

detailed analysis of this effect across all thirteen limb positions. Thirdly, our protocol captures the differences between

isotonic (unbraced) and isometric (braced) muscle contractions, which will be of particular interest when comparing with

data from users in future investigations. Looking ahead, we plan to streamline training processes by exploring ML-based

transfer learning techniques as well as identifying the minimal number of limb positions and sensors needed during data

collection to capture the full set of arm actions. In conclusion, this work presents a novel data collection protocol for

TMR prosthesis control that uniquely reveals the interplay between limb position and muscle activation, while capturing

the differences between isotonic and isometric contractions. This research sets the stage for training limb-position-aware

prosthetic control models, offering the flexibility to use data from persons without amputations or a TMR user’s non-

amputated limb. Our approach has the potential to help streamline the development of a new generation of TMR-ready

control solutions designed to improve the lives of persons with transhumeral amputations.
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