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ABSTRACT 

Upper limb myoelectric pattern recognition-controlled prostheses use machine learning algorithms to identify a 
wearer’s intended movement from their muscle activity patterns. However, many factors can contribute to changes 
in the characteristics of the EMG input signals (electrode shift, muscle fatigue, limb position etc.) during everyday 
prosthesis use which can diminish controller performance. Multiple in-lab studies have demonstrated promising 
results towards improving controller performance by employing advanced algorithms, none of which have been 
tested clinically, that can adapt to these changes. This paper presents the implementation of a supervised-adaptation 
algorithm on a commercially available pattern recognition control system that makes use of historical EMG data 
collected during previous user-initiated calibration routines to update the existing classification model. In an at-
home clinical study, we evaluated whether real-world use of adaptive classification reduces how often upper limb 
prosthesis wearers need to recalibrate their pattern recognition system.  

INTRODUCTION 

Pattern recognition style of myoelectric prosthesis control has benefitted many individuals since 
commercialization in 2013. Using machine learning techniques to decode complex muscle activity patterns recorded 
from electromyographic (EMG) sensors, a pattern recognition controller can provide wearers natural and intuitive 
control of their powered prosthesis [1]. A key feature of pattern recognition is that is needs to learn the wearer’s 
unique EMG patterns corresponding to each type of prosthesis motion they want to control. This is achieved by 
inputting representative data during system training (i.e., calibration). The inability of a control system to classify 
the user’s EMG inputs significantly affects user control of their prosthesis device. This often leads to frequent 
recalibration which can be quite time-consuming and burdensome for many pattern recognition wearers. 

Effective EMG pattern recognition requires wearers to make repeatable, consistent muscle contractions [2]. 
Studies have shown that it is possible for control algorithms to achieve accuracies greater than 90% under ideal 
laboratory conditions [3], [4]. However, classification accuracies deteriorate significantly under more realistic usage 
scenarios such as when electrodes shift positions [5], when the user changes the posture/position of their residual 
limb [6], or when modulating the force of their contraction. To address these deteriorations, the most effective 
method might be to collect additional algorithm training data that is representative of these conditions. After 
representative data is collected, the control system may be adapted to incorporate this new data.           

The default behaviour of many existing pattern recognition systems is to clear the existing classification model 
from memory each time the user initiates a calibration. Studies have shown that an alternative solution, which 
instead modifies the existing classifier using EMG input data recorded upon recalibration, has the potential to 
improve pattern recognition control. In lab-based studies, Vidovic et al. found that classification accuracy improved 
from 75% to above 92% [7] and Cummins et al. found that classification error rates significantly decrease across 
multiple days of training data [8] when utilizing such adaptive calibration strategy. These promising results point to 
the need for clinical implementation; yet, no studies have evaluated the effectiveness of using pattern recognition 
adaptation under realistic use conditions – i.e., while prosthesis wearers use their device at-home in their own 
environment. Here, we present preliminary results from an at-home study where upper limb myoelectric pattern 
recognition wearers used a supervised adaptation calibration paradigm. Our primary hypothesis is that using 
adaptation reduces the frequency at which recalibration is needed. In a randomized, cross-over study design, we 
compared everyday wearers’ calibration frequency and the quality of their EMG input data between their prosthesis 
use with and without the adaptive classification algorithm.  
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METHODS 

Participants:  

Five individuals with upper limb difference/absence (three at the transradial level and two at the transhumeral 
level) have completed the at-home study. Two additional individuals are currently enrolled, and two others withdrew 
their study participation. All participants provided informed consent in accordance with the Institutional Review 
Board and Human Research Protection Office.  

Apparatus:  

Participants used their existing Coapt Complete Control Gen2® pattern recognition control system to control 
their motorized arm components. The number and type of prosthesis motions participants had enabled varied 
depending on the type of powered devices connected (hand, wrist or elbow combination). Gen2 system users are 
able to train their EMG pattern recognition controller by performing either a prosthesis-guided or software-guided 
motion calibration sequence using the Complete ControlRoom software application [9]. The classification algorithm 
of the control system is linear discriminant analysis (LDA) [10] which, when enabled, clears the existing classifier 
from memory upon a user-initiated motion calibration sequence. Effectively, new EMG input data recorded during a 
calibration replaces the existing data and only this data is used to create a new LDA classifier.  

Changing the control system to the adaptive classification algorithm can be easily done by accessing the 
controller settings in the software. This classification model uses covariate shift adaptation to update the class means 
and pooled covariance matrices of an existing LDA model using the new EMG input data recorded during each 
subsequent user-initiated calibration. The control system retains memory of the existing LDA classifier which does 
not clear until the user manually performs a full system reset. A full derivation of the adaptive algorithm can be 
found in [7]. It is important to note that the default classification algorithm employed by the Complete Control Gen2 
system for all new and existing wearers is the adaptive algorithm, thus study participants were not naïve.  

Following each calibration, the EMG input and classifier data is analyzed by the Control Coach® [11]. The 
Control Coach® uses artificial intelligence to detect calibration issues and to evaluate the quality of the calibration 
data. In addition to providing feedback messages (up to two per motion) to users on how to improve calibration 
quality, the software tool provides a star rating for each enabled prosthesis motion relating to the potential severity 
of any calibration data quality issues detected (1 star = most severe, 5 stars = least severe). The overall calibration 
quality is determined by computing the average star rating across all motions. The Gen2 system hardware also has 
data logging capabilities to monitor at-home prosthesis use including prosthesis wear-time, calibration frequency, 
commanded motion frequency and device output speeds, electrode liftoff frequency and Control Coach® data. 

Procedures:  

Participants were asked to use their prosthesis at-home for a total of 16-weeks. Each participant was randomly 
assigned to one of two study groups. For the first 8-weeks, participants used their Gen2 system with the adaptive 
classification algorithm either ON or OFF, and for the second 8-weeks, the opposite classification algorithm was 
enabled. Only research personnel had access to the controller settings to enable or disable the adaptive algorithm at 
the beginning of each 8-week period so that participants were blind to the classification algorithm enabled on their 
system throughout the experiment. At the beginning of each 8-week period, research personnel manually performed 
a full control system reset to clear out any existing calibration data. Participants were then asked to complete an 
initial motion calibration sequence. At the end of the study, participants completed a questionnaire asking about 
their preferences towards the type of classification algorithm used in both 8-week periods in terms of their perceived 
prosthesis control efficiency and controller performance.  

RESULTS 

Our primary outcome measure was calibration frequency which we defined as the ratio between the number of 
times users initiate a calibration sequence and the number of times the user powers on their prosthesis. This 
calibration frequency metric accommodates for differences in user wear-time and number of calibration events. We 
compared calibration frequency during each 8-week period in which the adaptive algorithm was either ON or OFF 
for each user (Fig. 1, left). Preliminary results reveal a trend towards a reduction in calibration frequency among 
participants with the adaptive algorithm ON. Three out of the five participants reduced their calibration frequency on 
average by 43% while one participant showed a marginal increase and another participant nearly doubled calibration 
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frequency with the adaptive algorithm ON. Our preliminary analysis also shows a trend towards increased prosthesis 
wear-time per calibration (Fig. 1, middle) as four out of five participants demonstrated an increase in how many 
hours (on average, 2.7 more hours) they used their prosthesis with the same classifier before recalibrating. Four out 
of the five participants also showed improvements in the quality of their calibration data, as measured by the Control 
Coach® star ratings, with the adaptive algorithm ON (Fig. 1, right). 

 

 

DISCUSSION 

We presented preliminary results of an at-home study to determine whether an adaptive classification algorithm 
for upper limb myoelectric prosthesis wearers reduces how often users choose to recalibrate their pattern recognition 
controller when using their prosthetic device within their home environment. By adding new data to the pattern 
recognition classifier rather than completely clearing the existing classifier, we implemented an adaptive algorithm 
that affords the controller the opportunity to generalize to more movements, prosthesis use conditions and a larger 
set of EMG input data. Our preliminary analysis reveals a trend towards a reduction in calibration frequency and an 
increase in how much time elapses before users choose to recalibrate their device when the adaptation algorithm was 
enabled. Interestingly, four of the five participants reported, in a Post-Study Questionnaire, that they felt they 
achieved better control performance during the 8-week period when the adaptive algorithm was enabled on their 
device. The implementation of supervised controller adaptation on a commercial pattern recognition system that 
decreases the need for recalibration, and even improves home-use performance can have a far-reaching clinical 
impact on prosthesis wearers. 

An adaptive classification strategy may provide a means not only to reduce the frequency of user recalibration, 
but also to improve their functional prosthesis control. Another main finding of our preliminary results was that 
users improved their calibration quality when the adaptive algorithm was enabled. This result provides preliminary 
evidence that adding additional EMG input data can improve calibration quality which may translate to enhanced 
user control of their prosthetic device. Further analysis of participants’ usage logs and virtual game data collected 
during each 8-week period is needed to determine the correlation between the quality of their calibrations and their 
control efficiency within both a virtual environment and their home environment.   

While the adaptation algorithm implemented on the control system can generalize over a broader set of EMG 
calibration inputs, it is unable to account for EMG signal noise recorded during regular prosthesis use. EMG signal 
quality is a significant factor in users being able to consistently achieve adequate control of their device. While there 
are several physiological and engineering factors that can affect EMG signal quality (including external noise, 
muscle fatigue, electrode-skin impedance), myoelectric prostheses require that the electrodes maintain contact with 
the skin surface to ensure proper user function. The Complete Control System can detect such electrode liftoff 
events which can be used to monitor signal quality issues. Interestingly, the two users who had higher a calibration 
frequency when the adaptive algorithm was off also had a high frequency of electrode liftoff events. Currently, the 

Figure 1: Differences in individual participant logged prosthesis use data including (left) calibration frequency 
(middle) wear-time per calibration (right) average calibration quality star-ratings when the adaptation classification 
algorithm was enabled or disabled on their pattern recognition control system. 
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only way for users to counteract frequent electrode liftoff is by disabling the electrode channels with a noticeably 
high occurrence of liftoff events. 

Participants in this study were required to perform a full motion calibration sequence to either replace or update 
their control system’s classifier during both 8-week periods. However, one of the added features of the adaptative 
calibration algorithm is the ability to add EMG input data to a single motion rather than completing the entire 
motion sequence. This feature provides users a convenient way to update and improve their classifier for a single 
motion if they feel that their control efficiency for that motion has deteriorated or if there are prosthesis use 
conditions where they want to train with that specific motion. Since participants in this study were existing 
Complete Control system wearers and the adaptive classification algorithm is the default behaviour of the system, 
many who normally rely on the “Single Motion Add Data” feature to improve their prosthesis control did not have 
access to it. In fact, one of the participants who withdrew from the study reported that the inability to use the “Single 
Motion Add Data” feature as the primary reason for withdrawing from the study.  
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