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ABSTRACT 

Prosthetic hand operation often results in high levels of cognitive burden on the user which can lead to fatigue, 
frustration and device rejection. Previous work that quantified this cognitive load relied on subjective questionnaires 
or distraction tasks. We have adapted a protocol capable of real-time, objective, non-distracting assessment of 
cognitive load for use with individuals controlling a myoelectric prosthesis. Here we present this platform to assess 
cortical dynamics during prosthesis use. We describe a custom-built lightweight prosthesis simulator and an 
electroencephalography (EEG) assessment. We also present pilot work that shows how alpha inhibitory activity 
recorded with a wireless EEG system can be used to assess cognitive load. 

INTRODUCTION 

 
Efforts to improve upper-limb myoelectric prostheses often aim to provide a high degree of functionality to those 

living with limb-loss [1]. Despite technological advancement, these devices provide limited capabilities compared to 
intact limbs and impose a high cognitive load that results in fatigue and frustration [2], which can lead to device 
rejection [3]. Measurements to directly evaluate cognitive load are needed in order to further understand how efficient 
visuomotor behaviors develop during prosthesis learning and use. For this, electroencephalography (EEG) is ideally 
suited as it allows the measurement of ongoing neural activity with high temporal resolution. Active processing in 
engaged and task-relevant areas of the brain is reflected by a suppression in the magnitude (power) of oscillations in 
the alpha range (8-12 Hz) [4], [5]. The development of skilled motor performance is characterized by the efficient 
allocation of processing resources to task-relevant areas of the brain [6]. Recently, this approach was used to 
demonstrate a decrease in alpha power detected across the scalp during prosthesis use compared to an anatomical 
hand, reflecting more conscious control [7]. Based on this work, we present a platform to assess brain dynamics during 
prosthesis use. The first section describes a customizable, lightweight myoelectric prosthesis simulator created for the 
platform. The second section describes the wireless EEG equipment and the analysis used in the platform. We 
conclude by showing pilot data of the alpha distribution on the cortex reflecting functional inhibition which can be 
indicative of high cognitive load. 

METHODS AND PILOT RESULTS 

Prosthesis simulator  

A novel, custom built, lightweight (approx. 900 g) 3D-printed myoelectric prosthesis simulator was built (Figure 
1). This device allows for people with intact limbs to control a prosthesis. The University of Alberta’s Handi Hand 
[8] was mounted to a wrist brace with a medial offset, a position chosen to minimize the effect on modulating arm 
kinematics [9] and to reduce visual occlusion of the prosthesis [10]. Two electrodes (Myoware, Advancer 
Technologies) placed on the dorsal and ventral surfaces of the forearm record electromyographic (EMG) activity from 
wrist extensors and flexors to be used for hand control. Force sensitive resistors (Interlink Electronics®, CA USA) 
(FSRs) embedded in the fingertips of the index and thumb of the prosthetic hand detect pressure changes normal to 
the sensor that drive vibrating resonant motors providing haptic feedback to the user.  
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Control 

Signals from the two EMG channels are amplified, 
high pass filtered at 20 Hz and notch filtered at 60 Hz. 
Signals are then rectified and integrated to drive a 
proportional open-close controller. Proportional control of 
the closing and opening velocity of the hand is done by 
mapping the maximal and minimal velocities to the 
maximal and minimal EMG activity recorded. To 
normalize the controller for each participant, they are asked 
to perform wrist flexion and extension maximal voluntary 
contractions (MVCs) for 5 seconds at the beginning of the 
session to determine the maximal amplitude for each of the 
electrodes. Similarly, the minimal activity for flexors and 
extensors is experimentally determined by recording the 
baseline EMG activity of each sensor during a period of 5 
seconds while the arm is resting in the prosthesis  simulator. 
The minimal activity is set to a value three standard 
deviations above the mean recorded activity to reduce 
unintentional activation of the channels. 

Feedback 

Changes in resistance captured by the FSRs at the 
fingertips control two haptic motor drivers (DRV265L, Adafruit Industries, New York, NY) that activate two 
corresponding linear resonant actuators (C10-100, Precision Microdrives, London, UK). These coin motors are in the 
inside lining of the forearm cuff and in direct contact with the skin of the forearm. The amplitude of the vibration of 
the haptic motors is mapped proportionally to the resistance change of the FSRs to represent the force detected at the 
fingertips. The magnitude of the minimally detectable vibration is determined individually for each participant and 
used as the lower edge of the mapping with the FSR signal.  

EEG recordings 

Cortical activity was recorded using EEG sampling at 1000 Hz. The electrodes are positioned on the head based 
on the standard 10/20 Channel system, with all referenced to the left and right earlobe. Data are transmitted wirelessly 
via Bluetooth from the cap directly to a PC and recorded using the software provided by the system manufacturer 
(Cognionics Data Acquisition, Version 3.6). 

Blink and eye artifacts were removed using Principal Component Analysis and visual assessment [11]. EEG 
signals were then band-pass filtered from 0.1 to 100 Hz. Time-frequency decomposition of the signal was performed 
through short-time FFT on Hanning-tapered and zero-padded (up to 2000ms) overlapping segments (50% overlap) of 
500 ms. These windows were recorded from 1000 ms before and after initial contact with the object to assess grasping 
force modulation (total time window of 2000 ms). Alpha power of EEG spectra has been previously used as a proxy 
to quantify functional inhibition of cortical areas [5], [7], [12], [13]. With this model, a greater level of alpha activity 
reflects a higher level of functional inhibition of a brain region [5]. After the FFT transformation, power (μV2) in the 
alpha range (8-12 Hz) was averaged across overlapping FFT segments for each channel and trial. Channels on the 
scalp were divided in 7 functional regions of interest (RoI); left temporal (T7), left central (C3), frontal (Fz), right 
central (C4), right temporal (T8), parietal (Pz) and occipital (O1, O2). Power is then averaged across these channels 
to yield values for each region. Finally, the values are divided by the average baseline value obtained during the resting 
state to obtain an index of change in activity from the resting state [14].  

Using this method, we were able to qualitatively identify high levels of alpha power reflective of functional 
inhibition of the occipital lobe during an eyes-closed recording. The occipital lobe is responsible for the processing of 
incoming visual information [15]. A sample recording from one participant is presented in Figure 2. This increase in 
alpha activity in posterior regions of the brain indicating low cortical activation has been well described since the late 
1920’s [15]. The wireless EEG setup presented here can identify alpha activity changes across the scalp.

Figure 1. Experimental set-up displaying the custom prosthesis 
simulator and the dry-wireless EEG system. During experiments, 

the user’s hand and arm are visually occluded. 
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DISCUSSION 

A common goal in developing new myoelectric 
technology is to increase the clinical effectiveness of 
prostheses [3]. Despite advances in technology, most devices 
impose a high cognitive burden that can result in fatigue and 
frustration [2], and eventual prosthesis rejection [3], [16], [17]. 
Here, we present a platform to assess cognitive load during 
prosthesis use. The development of our prosthesis simulator 
facilitates experimentation with individuals not affected by 
limb-loss, allowing us to increase the statistical power of our 
studies. Furthermore, this system was manufactured using 
light-weight 3D printed parts, allowing for less constrained 
movements compared to previous simulators requiring 
suspension systems to offset the weight [10].  

 Previous work has sought to assess cognitive load during prosthesis use using EEG [18], [19], however, only one 
previous study has displayed an overall reduction of alpha activity across the scalp in during prosthesis use compared 
to use of anatomical hand [7], indicating higher levels of cognitive load compared to the use of the anatomical hand. 
Based on this work, we present a platform aimed to help researchers and prosthesis developers investigate the effects 
of their prosthetic implementations on cognitive load. The advantage of our platform lies in the wireless EEG system 
utilized, as it does not restrict the movement of the user and avoids having large cable artifacts [20]. Furthermore, 
unlike the previous study using EEG to assess alpha activity [7], our protocol also includes a baseline normalization 
step, in which the relative differences in alpha activity between resting state and prosthesis use allows for the analysis 
of alpha changes exclusively due to prosthesis use, and allows for normalization across multiple assessment days [21].  

From a practical perspective, it is important to understand how users develop efficient control of a prosthesis. 
Adaptive learning processes rely on the engagement of appropriate mental resources during practice and performance 
[14], [22], [23], and high levels of cognitive load have been shown to hinder them [22], [24]. As supposed to 
performance-based tests where users can increase their success rate with a higher level of attention and conscious 
engagement, we hope to combine this platform along with them to create a prosthesis-use testing battery evaluate not 
only performance but also user experience and cognitive strain while they learn and use the devices.  Furthermore, 
EEG based assessments can provide insights about the cortical mechanisms responsible for the high levels of cognitive 
load, and drive evidence-based interventions on how to address them. Currently, we are conducting work using this 
EEG based approach to investigate the effects of adding augmented feedback on the cognitive load required to operate 
a myoelectric prosthesis, as augmented feedback could potentially reduce the visual attention and cognitive burden 
required to operate a prosthesis [18]. 
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