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ABSTRACT 

State-of-the-art transradial prostheses can provide intuitive and proportional myoelectric control by training an 
algorithm to correlate surface electromyographic signals from the residual forearm muscles to intended movements 
of the amputated hand. One training paradigm, “mimicked training,” relies on amputees mimicking a prosthetic hand 
with their missing hand such that the corresponding muscle activations are correlated to the preprogrammed 
kinematics of the prosthetic hand. A second training paradigm, “mirrored training,” relies on unilateral amputees 
mirroring their contralateral hand with their missing hand such that the muscle activations are correlated to the 
kinematics of the contralateral hand (determined via a motion capture). Prior work with intact participants 
demonstrated that the kinematics of a given hand are more closely related to that of an individual’s contralateral hand 
as opposed to the preprogrammed kinematics of a prosthesis. This abstract continues our investigation into the training 
data for myoelectric prostheses by exploring the impact of these training paradigms on real-time prosthetic control 
with amputees completing a functional task. For one out of three participants, mirrored training significantly improved 
task performance. These preliminary results demonstrate that mirrored training may provide more dexterous control 
through task-specific, user-chosen training data. These results can guide myoelectric training for proportional and 
dexterous control. 

INTRODUCTION  

The current standard of care for upper-limb amputees is unsatisfactory and, as a result, up to 50% of upper-limb 
amputees abandon their prostheses, citing poor and unreliable control as a primary reason. One approach to providing 
more intuitive and reliable control is to leverage supervised machine-learning algorithms that correlate residual muscle 
activity to motor intent. These supervised machine-learning algorithms require a training session in which a patient-
specific training dataset is collected. The training dataset consists of synchronized muscle activity and the intended 
kinematic positions of the prosthesis.  

To date, most research has focused on improving the machine-learning algorithm [1]–[8]. However, the quality 
of the training data is also a critical component of the run-time performance of machine-learning algorithms [1], [2], 
[9]. There are two widely used approaches (i.e., training paradigms) to collecting training data for prostheses. One 
training paradigm, herein referred to as “mimicked training”, relies on amputees mimicking preprogrammed 
movements of a prosthesis with their missing hand such that the corresponding muscle activations are correlated to 
preprogrammed kinematics of the prosthesis. A second training paradigm, herein referred to as “mirrored training”, 
relies on unilateral amputees mirroring their contralateral hand with their missing hand such that the muscle activations 
of the missing hand are correlated to the kinematics of their intact contralateral hand (determined via motion capture). 
Our prior work with intact participants demonstrated that the kinematics of a given hand are more closely related to 
that of an individual’s contralateral hand as opposed to the preprogrammed kinematics of a prosthesis [9]. This 
suggests that mirrored training provides more accurate training data and therefore should provide better prosthesis 
control than mimicked training.  

Here, for the first time, we specifically tested whether or not mimicked or mirrored training would lead to 
improvements in real-time prosthetic control. Using two widely used algorithms, a linear Kalman filter and a non-
linear convolutional neural network, we compared the performance of mimicked and mirrored training with amputees 
performing the Clothespin Relocation Task (CRT) [10]. We show that there is minimal difference in the subjective 
workload of each training approach and that user preference varies. However, we also show that the training paradigm 
may have significant impact on task performance for some participants. These results imply amputees should be given 
a choice between both paradigms or that a combination of the two may yield best control. 
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METHODS 

Human Subjects 

A total of three transradial amputees with prior myoelectric experience were recruited for this study. Two of three 
participants were male and all participants were between the ages of 55 and 65 years old. Informed consent and 
experimental protocols were carried out in accordance with the University of Utah Institutional Review Board. 

Training Data Recording 

Training data for the 
machine-learning algorithms, 
was collected across a total of 
four training sessions. 
Participants performed two 
sessions (1.5 minutes each) of 
mirrored and mimicked 
training respectively Fig 1. 
Prior to the training sessions, 
participants were instructed to 
perform the CRT with their 
intact hand to understand what 
movements would be necessary 
to complete the task. 
Participants were instructed to 
only perform two movements: 
open/close of the hand (simultaneous flexion/extension of D1-D5) and pronation/supination of the wrist. Participants 
then donned the prosthesis (LUKE Arm, DEKA), and performed a session of mirrored training at their own pace using 
self-selected movement patterns. Training data from this first mirror-training session was used to train an algorithm 
and participants were allowed to temporarily control the prostheses. The participant then performed a second self-
directed mirror-training session. The same two stage training process was then repeated for mimicked training. 

Signal Acquisition 

Infrared hand images of the contralateral limb were converted to 3D hand coordinates using custom MATLAB 
software. Joint angles were calculated based on an orthogonal palm vector.  A total of two joint angles were calculated 
for the contralateral hand: D2 flexion/extension and wrist pronation/supination. The joint angle of D2 was used to 
measure grasping (i.e., simultaneous flexion/extension of D1-D5). Joint angles in the training data were normalized 
from -1 (maximum extension) to 0 (rest), and from 0 to 1 (maximum flexion) for each mirror-training session. The 
rest position of each joint was determined by the average angle while the participant relaxed for 15 seconds prior to 
each training session. 

Surface electromyography (sEMG) was recorded from the surface of the residual limb using a custom EMG 
sleeve [11]. Thirty-two monopolar sEMG electrodes were sampled at 1 kHz using Micro2+Stim Front-Ends and a 
Summit Interface Processor (Ripple Neuro LLC). The 300-ms smoothed Mean Absolute Value (MAV) was calculated 
at 30 Hz for the 32 monopolar electrodes, as well as for all possible differential pairs (i.e., 496 differential pairs) [5]. 

Machine-Learning Algorithms 

A total of two machine-learning algorithms were used in this study. The first was an eight-layer convolutional 
neural network (CNN). The CNN predicts kinematic position based on a spatiotemporal “image” of sEMG activity 
over the last 10 samples in time, described in more detail in [1]. The CNN utilizes convolution to learn complex 
spatiotemporal relations within EMG activity that correlate to kinematic position. The second algorithm used in this 
study was a modified Kalman filter (MKF), as described in [5]. The MKF provides an efficient recursive algorithm to 
optimally estimate the position of the bionic hand when the likelihood model (i.e., the probability of EMG activity 
given the current kinematic position) and prior models (i.e., the state model of how kinematics change over time) are 
linear and Gaussian. The inclusion of prior information about the system state enables an efficient recursive 

 
Figure 1: Overview of the mimicked training (left) and mirrored training (right) for collecting training 
data for myoelectric prostheses. During mimicked training, the user is watching a prosthesis move 
while simultaneously mimicking the movement of the prosthesis with their phantom limb. During 
mirrored training, the user performs bilaterally mirrored movements, such that the motion of their 
intact contralateral hand mirrors that of their phantom limb. 
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formulation of the machine-learning algorithm and effectively smooths noisy estimates in a mathematically principled 
way.  

Modified Clothespin Relocation Task 

      The CRT provides a simple way to assess the ability of individuals to simultaneously grasp and rotate their wrist. 
The CRT involves moving a clothespin from a horizontal bar to a vertical bar. Clothespins are placed eight inches 
down the length of the horizontal bar and 8 inches up the vertical bar. If the participant drops the clothespin or takes 
longer than one minute the attempt is considered a failure. 

Participants were instructed to complete the CRT with the prostheses under four different conditions: 1) using the 
CNN trained with data collected via mirrored training, 2) using the CNN trained with data collected via mimicked 
training, 3) using the MKF trained with data collected via mirrored training, 4) using the MKF trained with data 
collected via mimicked training. Participants performed the task six times for each of the four aforementioned 
conditions. The four conditions were tested in pseudo-randomized counter-balanced blocks to minimize order effects. 
During each block, participants were given eight attempts to move the clothespins. A block was finished after three 
successfully transfers or if all eight attempts were used. After the final block for a given condition, the participants 
completed the NASA Task Load Index (TLX) survey of subjective workload as well as a survey of embodiment 
adapted from [12]. At the end of the experiment, participants were asked to rate the four decodes from best to worse. 

Data Analysis 

Data were screened for normality. A two-way analysis of variance (factors: algorithm and training paradigm) was 
performed for each participant individually. No significance differences were observed for the algorithms, so a 
subsequent pooled analysis was performed to look at the effect of training paradigm. Because the number of completed 
clothespin transfers varied based on success rate, an unpaired t-test was used to compare between the mimicked-
training and mirrored-training data. 

RESULTS 

Mirrored Training Can Improve Speed on the CRT 

We saw no significant difference between 
mimicked training and mirrored training on the overall 
success rate of transfers for the CRT. However, in 
general, mirrored training decreased the transfer time 
on the CRT for two of the three participants, although 
this was only significant for one of the three 
participants. Participant one saw a 12% improvement 
in speed with mirrored training (p = 0.19, unpaired t-
test), participant two saw a 57% improvement in speed 
with mirrored training (p < 0.05, unpaired t-test), and 
participant three saw a 5% decrease in speed with 
mirrored training (p = 0.68, unpaired t-test; Fig 2). 

No Detectable Difference in Subjective Workload or 
Embodiment between Mimicked Training and Mirrored Training  

Subjective workload during the training sessions was comparable between mimicked training and mirrored 
training (Fig 2). Mimicked training has a slightly lower subject workload score for participants one and three, but none 
of the differences in subjective workload were greater than the minimum detectable change of 15 points [13]. 
Similarly, there were no significant differences or meaningful trends in the embodiment scores between the training 
paradigms. User preference between the training paradigms also varied. Participant one favored mimicked training, 
participant two favored mirrored training, and participant three had no preference. 

DISCUSSION 

Task-specific and accurately labeled training data is critically important for algorithm performance. Here, we 
compare the impact of two different training paradigms on the run-time performance of two commonly used machine-
learning algorithms for use on a real-world functional task. Overall, we that subjective workload was similar between 

 
Figure 2: Differences between mimicked training and mirrored training 
during the CRT. Subjective workload varied among participants, but no 
differences were greater than the minimum detectable change. Transfer 
time decreased with mirrored training for participants one and two, but 
this trend was only significant for participant two. 
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the training paradigms and that user preference varied. Mirrored training is capable of providing significantly better 
prosthetic control algorithm, but this improvement is unique to individuals.  

Prior work showed that mirrored training provides more accurately labeled kinematics than the mimic approach 
[9]. The results presented here suggest that the more accurately labeled kinematics can also translate to improved run-
time prosthetic control. We hypothesize that the benefits of more accurately labeled kinematics from mirrored training 
will become more pronounced with more complex machine-learning algorithms and more complex task. 

The results presented here suggest that users should be given a preference in the training paradigm. However, 
there are several other important factors to consider when selecting a training paradigm. For example, mirrored 
training is only available to unilateral amputees and requires additional motion capture equipment and calibration to 
ensure accurate kinematics. That said, the work presented utilized a Leap Motion (Ultrahaptics) that cost less than 
$100 USD, requires low computational power and no extensive technical knowledge to use. The ability to allow users 
to collect their own self-selected training data could prove useful when training on complex activities of daily living. 
Task-specific training has been shown to improve performance on activities of daily living [2]. Furthermore, this 
approach empowers amputees to be control of their personal data and the type of movements they can perform with 
their bionic limb. 

The ability of mirrored training to significantly improve run-time performance for some participants warrants 
further investigation. Future work should replicate these findings with additional participants, multiple training 
sessions and more complex tasks to more precisely quantify the impact of training paradigm on run-time prosthetic 
control. 
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