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ABSTRACT 

Sonomyography (SMG), or ultrasound-based sensing of muscle deformation, is an emerging modality for upper 
limb prosthesis control with potential to significantly improve functionality. SMG enables spatiotemporal 
characterization of both superficial and deep muscle activity, making it possible to distinguish the independent 
contributions of individual muscles during functional movements. Early offline studies have shown that SMG is 
capable of accurately classifying motor intent among able-bodied individuals, but it has not yet been shown whether 
individuals with upper limb absence can successfully use this modality for prosthesis control. This paper describes 
our ongoing work towards implementing SMG control for individuals with upper limb absence in offline and real-
time settings. We provide strong evidence supporting the feasibility of using SMG to control upper limb prostheses. 

INTRODUCTION 

Although designs of electromechanical prosthetic hands have improved over time, surface electromyography 
(EMG) remains the most common modality for sensing and decoding user intent. Unfortunately, using EMG to control 
a prosthetic hand with multiple degrees of freedom can be challenging for individuals due to the poor amplitude 
resolution and low signal-to-noise ratio inherent in EMG signals [1]. Sonomyography (SMG) is an alternative 
approach that uses ultrasound imaging of muscle deformation to spatiotemporally resolve both surface and deep 
musculature in the residual limb. Using SMG, it is therefore possible to derive a rich set of prosthesis control signals 
that may better account for the independent contributions of individual muscles. For example, we previously used 
SMG to identify five individual digit movements in able-bodied individuals with 97% offline cross-validation 
accuracy [2] and fifteen complex hand grasps with 91% offline cross-validation accuracy [3]. More recently, we have 
extended this work to better understand whether SMG is a clinically viable control modality for individuals with upper 
limb absence. This paper will discuss our ongoing work in this area and highlight opportunities for future study. 

DEVELOPING PROFICIENCY WITH SONOMYOGRAPHY 

One factor that may affect the feasibility of using SMG for prosthesis control is the length of pre-prosthetic 
training time required for individual with upper limb absence to learn to use it. Prior to receiving a prosthesis, patients 
must develop an ability to produce control signals that are sufficiently consistent and separable for accurate grasp 
classification. The pre-prosthetic training process can be lengthy and difficult in the context of EMG control [4], which 
presents a barrier to adoption of a prosthesis. However, our testing with SMG suggests that patients can rapidly 
complete pre-prosthetic training. 
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In a sample of eight individuals with 
transradial limb absence, we characterized grasp 
classification performance during their initial and 
subsequent exposures to SMG in order to 
understand how proficiency develops over time. 
Participants were asked to repeatedly perform a 
set of 4-7 grasps while ultrasound images of their 
residual limb musculature were recorded using a 
commercial ultrasound transducer. Grasps were 
self-selected based on what each participant felt 
was intuitive to perform. The images were saved 
to a database and subjected to leave-one-out 
cross-validation with a modified 1-nearest-
neighbor classifier [5]. This process was 
completed once while the participants were naïve 
to SMG control to establish baseline 
performance. To assess whether performance 
could improve with further instruction, it was 
then repeated three times while participants received verbal and visual biofeedback about their performance. Lastly, 
participants returned for a second session on a different day to assess between-day repeatability. Despite being naïve, 
the participants achieved high classification accuracy during their initial exposure to SMG (96.2 ± 5.9%; Figure 1). 
Moreover, the accuracy did not systematically change with the provision of biofeedback or between days. Our findings 
suggest that individuals who are naïve to SMG can quickly and consistently achieve reliable grasp classification [5]. 

USING SONOMYOGRAPHY WITH PROXIMAL LIMB ABSENCE 

Our initial offline investigations of SMG focused on able-bodied individuals and individuals with transradial limb 
absence. However, we also investigated whether SMG may be a suitable control modality for individuals with limb 
absence at more proximal levels. Absence of the forearm may create challenges for using SMG because the muscles 
associated with wrist, hand, and finger control are primarily located in the forearm. To explore this issue, we asked an 
individual with transhumeral amputation to perform 11 hand motions (including six grasps and flexion of each 
individual digit) interspersed by periods of rest. The participant achieved high classification accuracies during both 

 

Figure 1: Average and individual classification accuracies 
during participants’ first exposure to sonomyography. 

 

Figure 2: Confusion matrix for the motion end states achieved by an individual with transhumeral 
amputation. Integer values in each cell represent the total number of SMG image frames that were classified. 
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the motion end states (94.04%; Figure 2) and rest phases (98.34%) [6]. This promising result shows remarkable 
potential for using SMG to recognize individual finger movements and complex grasps in individuals with proximal 
limb absence. However, we acknowledge that our participant may have been uniquely able to achieve this outcome 
due to spontaneous muscle reinnervation, although his amputation surgery did not include targeted muscle 
reinnervation. More individuals must be assessed to understand how SMG can be best implemented in this population. 

FUNCTIONAL TASK PERFORMANCE USING A SONOMYOGRAPHIC PROSTHESIS 

Although we have shown that robust offline classification performance is possible with SMG, we also sought to 
understand the feasibility of using SMG to control a prosthesis in real-time functional settings. In contrast to the 
tightly-controlled settings in which offline classification performance is typically assessed, the use of a physical 
prosthesis involves many variabilities that can degrade classification performance. Notably, changes in the ultrasound 
imaging angle during arm movement could affect the acquired images, potentially causing misclassification. Thus, it 
must be confirmed whether classification is stable as users move their arm through their entire reachable workspace.  

As a first step to understanding this issue, we asked an individual with bilateral limb absence at the wrist 
disarticulation level to perform a series of functional tasks using a prosthesis controlled by SMG. To collect data for 
training a linear discriminant analysis classifier, the participant moved her arms throughout her reachable workspace 
in a pre-defined pattern while maintaining a set of muscle contractions. Each contraction was mapped to a specific 
grasp within the prosthetic hand. Tripod grasp was initiated by wrist flexion, index finger point was initiated by wrist 
extension, and rest was initiated by a relaxed muscle state. 

The participant then performed three functional tasks that involved grasping and moving one-inch wooden blocks. 
These tests were repeated every 30 minutes across three hours of continuous prosthesis wear without retraining the 
classifier. Box and Blocks Test (BBT) performance was measured by the number of blocks transferred over a barrier 
in one minute. Targeted Box and Blocks Test (tBBT) performance was measured by the time required to move 16 
blocks over a barrier into predetermined positions. Rainbow Test performance was measured by the time required to 
move blocks located at various heights from a white board to a box at waist height. During each break between tests, 
the participant turned off the prosthesis and performed pre-defined tasks that were staggered to require increased arm 
movement over time. In addition to the test outcomes measures, we quantified the number of transient classification 
bouts to characterize the efficiency of grasp selection. A transient bout was defined as an instance when the classifier 
predicted a grasp for less than five consecutive frames. Fewer transient bouts indicate increased efficiency. 

The participant successfully completed all tasks throughout the three-hour testing period [7]. The outcome 
measures remained generally stable over time (Figure 3), although we did observe a slight improvement in test scores 
during BBT with the left arm (p = 0.038) and during tBBT with the right arm (p = 0.011). There was only one negative 
effect of socket wear time on performance, as evidenced by a small increase in the number of transient bouts during 
the Rainbow test with the left arm (p = 0.027). Our results show that training a classifier to predict hand grasps while 
moving the arm throughout the reachable workspace is a practical strategy for reducing misclassification related to 
changing arm position. Additionally, this study supports the feasibility of using SMG to control upper limb prostheses 
in real-world applications. 

CONTINUING WORK 

As part of our continuing work towards demonstrating the utility of SMG control, we are working to develop 
wearable low-power ultrasound systems that can be integrated into a prosthetic socket. The functional tests reported 
in this paper were conducted with the participant tethered to a tablet-based commercial ultrasound system that could 
not easily be transported. We expect to see improved real-world performance when using a system optimized for SMG 
control that allows the user to move freely. We also anticipate that an optimized system would enable users to wear 
an SMG sensor for prolonged periods of time, permitting additional study on the stability of grasp classification during 
daily activities. 

We envision a future with SMG as a viable option for upper limb prosthesis control, and we encourage research 
that examines the capacity of SMG to increase functional outcomes and satisfaction among prosthesis users. Future 
work will focus on systematically evaluating the functional benefits of SMG control, such as whether using SMG 
contributes to higher scores on standard clinical tests, improved quality of movement, greater patient-reported 
satisfaction, and reduced cognitive load. Although myoelectric control strategies continue to demonstrate remarkable 
clinical utility, we anticipate situations in which SMG control would be considerably advantageous. There is also 

MEC22



opportunity to examine hybrid approaches using both SMG and EMG to enable more intuitive control for users with 
upper limb loss.  
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Figure 3: Functional outcome measures achieved during testing (BBT = Box and Blocks Test; tBBT = 
Targeted Box and Blocks Test) 
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