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ABSTRACT 

Upper-limb amputees commonly cite difficulty of control as one of the main reasons why they abandon their prostheses. 
Combining myoelectric control with autonomous sensor-based control could improve prosthesis control. However, the 
cognitive and physical impact of shared control and semi-autonomous systems on users has yet to be fully explored. In this 
study we introduce a novel shared-control algorithm that blends proportional position control predicted from electromyography 
(EMG) with proportional position control predicted from an autonomous machine using infrared sensors embedded in the 
prosthetic hand’s fingers to detect the distance to objects. The user’s EMG control is damped in proportion to the machine’s 
prediction of an object’s position in relation to a given finger. The shared-control algorithm was validated using three intact 
individuals completing a holding task where they attempted to hold an object for as long as possible without dropping it. Shared 
control resulted in fewer object drops, 32% less cognitive demand, and 49% less physical effort (measured by EMG) relative 
to the participant’s EMG control alone. These results indicate that shared control can reduce the physiological burdens on the 
user as well as increase prosthetic control. 

INTRODUCTION 

Upper-limb amputees abandon prostheses at a high rate [1], [2], in part due to unintuitive and poor control [3]. One solution 
to improving prosthetic control is to automate the prosthesis using embedded sensors to aid in conforming the grasp to an object 
[4]–[7]. However, to date, autonomous prostheses have been designed to accomplish a specific task and are not necessarily 
adaptable to general use. Semiautonomous hands have been demonstrated to outperform human control when handling fragile 
objects [4] and can increase prosthesis contact area to a given object [6]. Although the benefits of shared control have been 
evaluated with respect to task performance, the impact of shared control on a user’s physiological state (i.e., cognitive and 
physical effort) has not yet been evaluated. 

In this study, we introduce a novel autonomous controller that predicts an object’s distance from the fingers using 
embedded proximity and pressure sensors in the fingertips. We also introduce a novel shared-control algorithm that attenuates 
a user’s EMG output based on the prediction of the autonomous controller. We validate the shared-control algorithm using a 
holding task, in which participants attempt to continuously hold an object while completing a secondary detection response 
task (DRT). We show that shared control improves grasp security and decreases the physical and cognitive burden on a user 
compared to that of EMG control alone. Making a hand more dexterous, while increasing its ease of use, may ultimately 
decrease prosthetic hand abandonment and increase patient quality of life. 

DESIGN 

Autonomous Controller 

 A left-handed TASKA hand (TASKA, Christchurch, New Zealand) was retrofitted with fingers containing pressure 
and infrared proximity sensors (Point Designs LLC, Lafayette, CO, USA) [4], [8]. A multilayer perceptron (MLP) was designed 
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with 10 hidden layers to predict 
object distance from the infrared and 
pressure sensors. Training data was 
collected by oscillating the thumb 
towards and away from white 3D-
printed objects in the shape of a 
cylinder, cube, and cone. The 
ground-truth distance from the object 
for the training data was computed by 
measuring the kinematic position of 
the finger upon initial contact with 
the object (i.e., when pressure was 
first recorded), and then retroactively 
using the difference between that 
kinematic position and the current 
position to determine the current 
distance to the object. Example 
training data can be seen in Fig. 1. 
For training the MLP, 70% of the 
total data was randomly selected as the training data, 15% was selected for validation data, and the remaining 15% was used 
for testing. During run-time, the kinematic prediction from the autonomous controller was computed as the sum of the current 
position of the thumb and the predicted distance to the object. 

METHODS 

Human Testing 

Three healthy intact participants (21.67±0.58 years old; 33% female) were recruited for this study. All the participants 
were right-hand dominant. None of the participants had prior experience with myoelectric prostheses. Informed consent and 
experiment protocols were carried out in accordance with the University of Utah Institutional Review Board. 

Signal Acquisition 

Surface EMG from the participants was collected using a custom EMG sleeve [9]. EMG was sampled at 1 kHz and filtered 
using the Summit Neural Interface Processor (Ripple Neuro Med LLC) as described in [10]. EMG features used for estimating 
motor intent consisted of the 300-ms smoothed mean absolute value (MAV) on 528 channels (32 single-ended channels and 
496 calculated differential pairs) calculated at 30 Hz, as described in [10]. The embedded fingertip sensor readings were 
sampled at 30 Hz and passed through a median filter with a time window of 10 samples. Sensor drift was removed from the 
pressure sensors using a high-pass filter that was toggled on and off by the sensor crossing a threshold. 

Shared Control 

The human position goal, 𝑢, was computed using a modified Kalman filter (MKF) [11]. The MKF was fit to surface EMG 
(sEMG) data collected during five preprogrammed trials of full-flexion pinch between the thumb and index fingers and five 
trials of full extension of the same digits. Both control techniques only affected one degree of freedom in the form of a pinch 
grip between the thumb and index finger. To form the pinch grip, the index finger was set to a constant position while the 
thumb was flexed from 0 (felly extended) to 1 (fully flexed). Control of the hand was shared between the human position goal 
from the MKF, denoted  𝑢, and the machine position goal as computed by the MLP,  𝑢. Both human and machine control 
are normalized to a range of zero to one. The shared goal,  𝑢௦, was then computed as the following: 

 𝑢௦ =  𝑢 +  𝑢(1 − |𝑢|)          (1) 

This effectively attenuates the human’s control of the hand in proportion to the remaining range of the digit. A minimum 
threshold was set such that the thumb would only move if the infrared sensor rose above a given value.  Once contact was 
detected, the machine predictions were frozen until the pinch was released by the human controller. An sEMG toggle was used 
to trigger the shared-control algorithm [4]. The sEMG toggle switched the user between shared control and human control 
based on the output of the MKF. For example, if the MKF predicted that the human was attempting to extend to a position 

 
Figure 1: Labelled image of sensorized prosthetic hand (Left) and a subset of the training data used to 
create the autonomous controller (Right). Training data was collected using a cube, cylinder, and cone. 
The thumb was programmed to approach each object 20 times. Each approach consisted of 
incrementally moving the thumb forward, then waiting approximately 3 s before moving the thumb 
forward again. After contact, the thumb retracted from the object in a similar fashion. The autonomous 
controller is more accurate when the object is closer. That is, the predicted distance (red) more closely 
aligns with the ground-truth measured distance (black) as the distance becomes smaller. 
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greater than 50% of the extension range, the output 
would be switched to the human-only control scheme. 
To return to the machine-control state the user had to 
flex 1% of the flexion range. This aided the 
participant in releasing the object without altering the 
evaluation of the shared controller’s performance 
during object grasping. 

Task & Performance Metrics 

The participants donned the prosthesis using a 
custom bypass socket [11]. The participants then 
completed a holding task in which they were 
instructed to use the prosthesis to pick up a white 3D-
printed cube and hold it for two minutes without 
dropping it. If the object was dropped the participant 
was instructed to pick it up as quickly as possible and 
continue the task. The number of times the cube was 
dropped during a trial was recorded as a measure of 
grip security. The participant completed the holding 
task for four trials using human control and shared 
control in a pseudo-randomized counter-balanced 
format. While completing the holding task, the 
participant also simultaneously completed a tactile 

detection-response task (DRT) to measure their cognitive load [12]. The DRT requires the participant to push a button in 
response to a small vibrating motor on their collar bone. Both the response rate (i.e., how often they respond to the vibratory 
stimuli) and response time (i.e., how long it takes to press the button after a vibratory stimuli) are used as direct measures of 
cognitive load. The EMG MAV on the 32 electrodes was also recorded during the hold task as an indicator of the physical 
effort (muscle activity) needed to complete the task. Data was aggregated across all participants and screened for normality. 
Pairwise comparisons between the human control and shared control were then performed using a paired t-test for parametric 
data or Wilcoxon rank-sum test for non-parametric data. All values are reported and shown as mean ± standard deviation. 

RESULTS 

Shared control decreases cognitive and physical demands while increasing grip security 

Combining human and machine control allowed the participants to hold the object more reliably than when only human 
control was used. Only one drop was recorded under shared control, whereas up to eight drops were recorded under human 
control, with a median of three drops per trial for human control (Fig. 2A). Shared control resulted in no significant difference 
in the response rate of the DRT compared to human control (63.19 ± 13.87% vs 63.58 ± 11.43%, respectively). However, 
participants had significantly faster response times to 
the DRT when using shared control, indicating less 
cognitive demand (0.719 ± 0.056 s vs 0.444 ± 0.022 
s, respectively; p < 0.001, Wilcoxon rank-sum test; 
Fig. 2B). Furthermore, participants had significantly 
lower EMG activity with shared control than with 
human control (24.10 ± 10.48 vs 47.13 ± 17.53; p < 
0.001, paired t-test; Fig. 2C).   

Error in human-control is dampened in shared-
control 

Using the shared-control algorithm, the 
participants were able to hold an object more reliably 
while using less physical and cognitive effort. 
Example traces of the human control, machine 
control, shared control, and contact position from a 
single participant are shown in Fig. 3. The thumb 

 
Figure 2: Task performance, cognitive effort, and physical effort required for the 
human control and shared control. A) Shared control improved grasp security as 
indicated by less total drops. B) Shared control also reduced cognitive demand, as 
evidenced by a significantly lower response time for the DRT (p < 0.001, Wilcoxon 
rank-sum test). C) Shared control also reduced physical effort, as shown by a 
significant decrease in the EMG MAV (p < 0.001, paired t-test). Bar plots show mean 
± standard deviation. Box plots show median, inter-quartile range, and most extreme 
non-outlier value. Red pluses denote outliers. 

 
Figure 3: Example traces of the machine control (blue), human control (red), and 
shared control (purple) from the first 20 seconds of a shared-control trial. The shared-
control signal is the result of calculating the goal using Eq. 1 using the human and 
machine control signals. The position at which the hand made contact with the object 
(i.e., pressure was detected) is shown by the green line, so any position goal above 
the green line increases the grip force while positions less than the green line indicate 
the grip releasing the object. Times when the human goal is below the green line 
represent times in which the participant would have dropped the object without the 
shared control. 
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made contact with the cube at a position of 0.3, and, although the machine did not give a perfect prediction, the thumb moves 
to a position near this goal. By starting closer to the object, and adding the two control techniques together, the shared algorithm 
is able to decrease the physical effort of the user. The human control also has a high degree of variability, and variations in the 
human goal below the point of object contact, would have resulted in multiple drops of the object. By scaling the human control 
based on the machine prediction, we effectively decreased the variability in the kinematic position. This in turn results in greater 
performance and less physical effort, which then allow the user to focus on other tasks. 

DISCUSSION 

In this study we demonstrated that sharing control between a human EMG decoder and an autonomous controller can 
benefit the user by decreasing their physical and mental effort while increasing their grip security on a given object. Decreasing 
the complexity and effort of use of upper-limb prostheses may ultimately lead to a reduction in prosthesis abandonment. Being 
able to hold an object securely without considerable mental or physical strain comes naturally to someone with an intact hand, 
but is still a challenge for users of upper-limb prostheses. 

In future iterations of this design, we intend to scale the human control logarithmically rather than linearly. Scaling the 
EMG decoder output in a logarithmic fashion follows a biomimetic paradigm and would grant users finer levels of control with 
smaller objects. We will also train the MLP predictions of object distance using continuous data as opposed to the discrete 
steps used for this work. The MLP estimates were found to overestimate the object distance when the digit was in motion. 
Providing a more accurate machine estimate would lead to a shared-control algorithm capable of handling fragile objects. We 
also intend to expand the shared-control approach presented here to multiple DOFs. We anticipate that shared control 
implemented across all the digits will further increase the benefits seen here when working with complex objects by reducing 
the variation in grasping force between digits.  

ACKNOWLEDGEMENTS 

This work was funded by NSF CHS Grants 1901236, 1901492, and NIH Award DP5OD029571. 

REFERENCES 

[1] E. A. Biddiss and T. T. Chau, “Upper limb prosthesis use and abandonment: A survey of the last 25 years,” Prosthet Orthot Int, vol. 31, no. 3, pp. 
236–257, Sep. 2007, doi: 10.1080/03093640600994581. 

[2] S. Salminger et al., “Current rates of prosthetic usage in upper-limb amputees - have innovations had an impact on device acceptance?,” Disabil 
Rehabil, pp. 1–12, Dec. 2020, doi: 10.1080/09638288.2020.1866684. 

[3] E. Biddiss and T. Chau, “Upper-Limb Prosthetics: Critical Factors in Device Abandonment,” American Journal of Physical Medicine & 
Rehabilitation, vol. 86, no. 12, pp. 977–987, Dec. 2007, doi: 10.1097/PHM.0b013e3181587f6c. 

[4] T. Hansen, M. Trout, J. Segil, D. Warren, and J. George, “A Bionic Hand for Semi-Autonomous  Fragile Object Manipulation via Proximity and 
Pressure Sensors,” 2021 43rd Annual International  Conference of the IEEE Engineering in Medicine and Biology Society, 2021. 

[5] C. Cipriani, M. Controzzi, and M. C. Carrozza, “Progress towards the development of the SmartHand transradial prosthesis,” in 2009 IEEE 
International Conference on Rehabilitation Robotics, Jun. 2009, pp. 682–687. doi: 10.1109/ICORR.2009.5209620. 

[6] K. Z. Zhuang et al., “Shared human–robot proportional control of a dexterous myoelectric prosthesis,” Nature Machine Intelligence, vol. 1, no. 9, 
Art. no. 9, Sep. 2019, doi: 10.1038/s42256-019-0093-5. 

[7] J. DeGol, A. Akhtar, B. Manja, and T. Bretl, “Automatic Grasp Selection using a Camera in a Hand Prosthesis,” Conf Proc IEEE Eng Med Biol 
Soc, vol. 2016, pp. 431–434, Aug. 2016, doi: 10.1109/EMBC.2016.7590732. 

[8] J. Segil, R. Patel, J. Klingner, R. F. ff Weir, and N. Correll, “Multi-modal prosthetic fingertip sensor with proximity, contact, and force localization 
capabilities,” Advances in Mechanical Engineering, vol. 11, no. 4, p. 1687814019844643, Apr. 2019, doi: 10.1177/1687814019844643. 

[9] J. George, A. Neibling, M. Paskett, and G. Clark, “Inexpensive surface electromyography sleeve with consistent electrode placement enables 
dexterous and stable prosthetic control through deep learning,” MEC20 Symposium, Jul. 2020, Accessed: Jul. 16, 2021. [Online]. Available: 
https://conferences.lib.unb.ca/index.php/mec/article/view/36 

[10] J. A. George, T. S. Davis, M. R. Brinton, and G. A. Clark, “Intuitive neuromyoelectric control of a dexterous bionic arm using a modified Kalman 
filter,” Journal of Neuroscience Methods, vol. 330, p. 108462, Jan. 2020, doi: 10.1016/j.jneumeth.2019.108462. 

[11] M. D. Paskett et al., “A Modular Transradial Bypass Socket for Surface Myoelectric Prosthetic Control in Non-Amputees,” IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, vol. 27, no. 10, pp. 2070–2076, Oct. 2019, doi: 10.1109/TNSRE.2019.2941109. 

[12] T. Čegovnik, K. Stojmenova, G. Jakus, and J. Sodnik, “An analysis of the suitability of a low-cost eye tracker for assessing the cognitive load of 
drivers,” Applied Ergonomics, vol. 68, pp. 1–11, Apr. 2018, doi: 10.1016/j.apergo.2017.10.011. 

MEC22




