
MOTOR UNIT SUBSET SELECTION FOR SCALABLE REAL-TIME 

INTERFACING  

 

Dennis Yeung1, Francesco Negro2, Ivan Vujaklija1 
1Department of Electrical Engineering and Automation, Aalto University, FI 

2Department of Clinical and Experimental Sciences, University of Brescia, IT 

 

 

ABSTRACT 

Current methods for motor unit (MU) based human-machine interfacing do not scale well with the expansion of 
output functionality. This is due to the high computational demands of the initial MU parameter extraction via 
decomposition of high-density surface electromyography recordings. We propose an alternative approach that relies 
on task-specific batch decomposition processes along with a MU subset selection step to address feature redundancy. 
Offline analyses were conducted using EMG and kinematics pertaining to 18 wrist/forearm motor tasks recorded from 
11 able-bodied subjects. The mutual information-based minimal Redundancy Maximal Relevancy (mRMR) feature 
selection framework was tested and compared to Maximal Relevancy (MR) and two arbitrary selection methods. 
Subset MUs were then used for joint kinematics estimation corresponding to those 18 motor tasks by three different 
regressors. The mRMR selection scheme was found to retain MUs with the highest predictive power. When the portion 
of tracked MUs was reduced to 25%, regression accuracy decreased by only 3.5%. 

INTRODUCTION 

The firing times of motor neurons are the most basic unit of neural drive responsible for instigating muscle force 
generation. Such information could be leveraged to facilitate more intuitive and dextrous human-machine interfacing 
(HMI). The application of blind source separation techniques on high-density surface electromyography (EMG) 
recordings has been previously used to estimate the motor unit (MU) firing times embedded within the surface signal 
[1], [2]. Such methods have been extended to online applications which permit real-time interfacing driven by the 
direct firing activity of MUs. So far, this has been demonstrated in control of up to 2 Degrees of Freedom (DoFs) [3], 
[4].  

Current methods for MU-based interfacing do not scale efficiently with the expansion of supported functionality 
due to the high computational demands of the initial decomposition phase. In particular, the gradient-based and fixed-
point iteration methods used to optimize separation vectors scale poorly with the significant increase in data that 
accompanies each supported function. We propose conducting this initial extraction of MUs in a task-wise manner 
with separate batch processes to leverage distributed computing resources and to reduce the overall initialization time 
of the interface. To address the resultant redundancy in extracted sources, a MU subset selection step is implemented 
using feature selection techniques. 

The feasibility of the proposed interfacing pipeline was analysed in cross-validation format using EMG from 18 
motor tasks pertaining to the single and pair-wise combined activations of three wrist/forearm DoFs. From the train 
data set, MUs were identified via task-wise batch decomposition and MU subset selection was performed. The 
minimal Redundancy Maximal Relevancy (mRMR) feature selection scheme proposed in [5] was tested along with 
Maximal Relevancy (MR) and two arbitrary schemes based on randomness and MU activity. From the test data set, 
the activities of subset MUs were extracted with an online decomposition algorithm and used for kinematics 
estimation. Results using three regression algorithms: linear regression (LR), multilayer perceptron (MLP) and kernel 
ridge regression (KRR) were obtained. Assessment of the selection criteria was made based on the changes to open-
loop estimation accuracy as subset sizes were reduced.  
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METHODS 

Subjects 

Eleven healthy subjects, seven male and four female, all right-handed, aged 26-34, participated in the experiment. 
The study was approved by the local ethical board of Aalto University and all participants gave their written informed 
consent in accordance with the Declaration of Helsinki. 

Experimental Protocol 

High density EMG was recorded from each subject’s dominant side with three 8x8 electrode matrices spaced 
evenly around the bulk of the forearm. The channels were sampled at 2048 Hz by a benchtop bioamplifier (OT 
Bioelettronica, IT). Wrist joint angles and rotation were recorded at a rate of 80 Hz with three wireless Inertial 
Measurement Units (IMUs) (Xsens Technologies B.V, NL) attached to the posterior sides of the upper-arm, mid-
forearm and hand. Subjects were seated upright with their recorded limb relaxed by their side. Three repetitions of 
single and pair-wise combinations of motions pertaining to wrist flexion/extension (FL/EX), radial/ulnar deviation 
(RD/UD) and forearm pronation/supination (PR/SU) were recorded with trapezoidal activation profiles of 2 s ramp 
time and 10 s plateau time resulting in a dataset of 18 motor tasks. Recordings and analyses were carried out using an 
in-house developed Matlab (MathWorks Inc, MA, USA) framework. Offline analyses were conducted in cross-
validation format where the training set comprised of two repetitions of each motor task while the test data was formed 
from the remaining repetitions. Initial MU extraction, subset selection, and estimator training were conducted with 
the train set while the pseudo-online decomposition algorithm was applied to the test set to simulate the real-time 
interfacing.    

Batch and Online Decomposition 

The batch decomposition methodology employed in this work follows that of [1] while the online decomposition 
algorithm is based on the methods proposed in [3], [6]. In brief, the batch algorithm sequentially estimates a set of 
separation vectors, 𝐁, that compensates for the action potentials of their respective MUs and de-mixes the source 
activities, 𝐒, from an extended EMG, �̃�, that has been centered and then whitened with 𝐖: 

𝐒𝑐 = 𝐁𝑐
′𝐖𝑐(�̃�𝑐 − E[�̃�𝑐(𝑘)]𝟏)

 (1) 

where 𝟏 is a vector of ones of appropriate size, subscript 𝑐 ∈ {1, … , 𝐶} denotes the enumerated coding of a motor task 
and 𝐶 = 18 in this work. Peak detection on each source signal, then k-means++ binary clustering of the peaks gives 
a set of spike cluster limits, Ψ = {(ℎ𝑖𝑛 , 𝑙𝑜𝑛), 𝑛 = 1, . . , 𝑁}. Following a refinement step, sources are vetted by their 
silhouette (SIL) score which is analogous to a pulse-to-noise ratio and lagged versions of extracted sources are 
discarded. The pseudo-online decomposition algorithm thus applies the pre-conditioning and separation vectors to 
unseen data for source extraction while stored clusters inform the estimation of spike times. The schematic for this 
process is given in Fig 1B which also shows the computation of the decomposed spike count feature vector, 𝐱(𝑡), from 
windowed EMG, 𝐙(𝑡). 

MU Subset Selection 

A full feature matrix is first constructed by extracting the activities of all identified MUs over the full training 
data set. This is achieved by applying the online decomposition algorithm to extract the activities of MUs initially 
identified from individual motor tasks over the entire repertoire of training movements (Fig. 1A). To formulate the 
selection methods, it is convenient to define the activity of each MU as a random variable within set 𝐹 =
{𝑥𝑛 , 𝑛 = 1, . . , 𝑁}. The subset selection step now identifies a subset, 𝑆, based on some optimality criterion and future 
deployment of the online decomposition algorithm would only need to extract the activities of MUs within S. 

Under the MR selection scheme, the MUs whose activities share the highest mutual information with the motor 
task annotation, ℓ, are prioritized: 

max
𝑆⊆𝐹

∑ I(𝑥𝑛; ℓ).

𝑥𝑛∈𝑆

 (2) 

where I(; ) returns the mutual information between its argument variables. 
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Figure 1: (A) Initialization process of the proposed MU-based interfacing. (B) Schematic for batch and 

online decomposition techniques showing the parameters that are transferred. 

The mRMR scheme sequentially compiles 𝑆 where, in each step, candidate MUs are also penalized by the mutual 
information they share with MUs that have already been selected. The criterion to satisfy at each step now writes as 

max
𝑥𝑛∈𝐹−𝑆

I(𝑥𝑛; ℓ)

1
|𝑆|

∑ I(𝑥𝑛; 𝑠)𝑠∈𝑆

. 
(3) 

For comparative purposes, two naive selection schemes were also tested. The first is to select MUs by random 
while the second method prioritized MUs that were most active during the training movements. 

Regression Algorithms 

In LR, a linear mapping between 𝑆 and kinematic labels (𝐲) is established by the Penrose-Moore pseudoinverse 
method. For MLP-based estimation, single hidden-layer feedforward networks using the tanh activation function are 
trained via the Levenberg-Marquardt backpropagation algorithm with each DoF estimated by a dedicated network 
while the optimal hidden-layer node counts are obtained via grid search. With KRR, a mapping is formed by the inner 
products between samples projected to a higher dimensional kernel feature space. The radial basis function is 
employed. Two hyperparameters, the ridge regularization scale and the kernel spread, are optimized via grid search. 

Statistical Analysis 

Decoding accuracy was gauged by the coefficient of determination (R2) between estimated kinematics and ground 
truth. Repeated-measures ANOVA followed by Bonferroni-corrected pairwise comparisons were used to detect 
statistically significant differences between the different selection scheme and subset size combinations tested for each 
regressor.   

RESULTS 

On average, 20.3 ± 8.8 viable MUs were extracted via batch decomposition from the two training repetitions of 
each motor task.  

Decoding performances from the different subset selection scheme and subset size combinations are shown in 
Fig. 2. Statistically significant differences were detected amongst the subset selection-size combinations for all 
decoding algorithms. Apart from the LR results, mutual information-based selection schemes (MR/mRMR) prevented 
significant performance drops when the number of MUs extracted for estimation were reduced by 50%. 

Table I shows the average R2 values yielded with subset sizes reduced to 25%. Overall, mRMR-selected MUs 
retained the highest predictive power and resulted in the lowest performance drops (-3.5%) while randomized selection 
performed the worst (-14.8%). 
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Figure 2: Violin plots of estimation performance of different regressors, MU subset selection methods, and MU 
subset sizes. Light shaded areas represent probability density functions estimated by kernel density estimation, 

while darker shaded blocks show the 1st-3rd quartile range. Corresponding medians are indicated by black notches. 
Statistically significant differences with corresponding full MU set are indicated by asterisks. 

 

Table 1: Regression-based decoding performance (R2) at MU subset size = 25% 
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Full set 

LR MLP KRR Average 

0.73±0.07 0.76±0.06 0.82±0.06 0.77±0.07 

Random 
0.58±0.11 0.67±0.09 0.71±0.08 0.65±0.11 

-20.6% -11.7% -12.6% -14.8% 

Max Activity 
0.6±0.10 0.68±0.09 0.74±0.08 0.67±0.11 

-18.5% -10.1% -9.7% -12.6% 

MR 
0.63±0.09 0.70±0.09 0.75±0.08 0.69±0.10 

-14.6% -7.1% -7.8% -9.7% 

mRMR 
0.69±0.08 0.75±0.08 0.79±0.07 0.74±0.09 

-6.8% -0.08% -3.0% -3.5% 
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