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ABSTRACT 

The long-term goal of this research is to restore intuitive and proportional motor control to stroke patients with 
an assistive exoskeleton. Stroke is the leading cause of disability in the United States, with 80% of stroke-related 
disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current 
electromyographic-(EMG)-controlled assistive exoskeletons do not allow for fine force regulation. That is, current 
control strategies provide only binary, all-or-nothing, control based on a linear threshold of EMG activity. In this case 
study with one hemiparetic stroke patient, we show that state-of-the-art EMG control algorithms can provide 
proportional control of a bionic arm despite weak and spastic muscle activity. The participant completed a virtual 
target-touching exercise with an EMG-controlled bionic arm by attempting to grasp (close) or extend (open) their 
hand. The participant completed the task under two conditions, with EMG from their paretic arm and with EMG from 
their healthy, contralateral arm. For grasping, there was no statistical difference in task performance for the paretic 
and healthy arms, but there was a significant decrease in the EMG signal-to-noise ratio for the paretic arm. For 
extension, there was a significant decrease in both task performance and EMG signal-to-noise ratio for the paretic 
arm. Despite these differences, the participant was still able to complete the target-touching task with the paretic arm. 
These preliminary results show it is possible, for at least some patients, to provide proportional control of assistive 
devices using weak and spastic EMG. Importantly, information regulating fine force output is still present in EMG 
despite a visually immobile arm due to hemiparesis. Future work will validate these findings with additional stroke 
patients with varying presentations of hemiparesis and move into controlling upper-limb exoskeletons. 

INTRODUCTION 

Stroke is the leading cause of disability in the United States, with more than 795,000 people suffering from a 
stroke each year. Eighty percent of stroke-related motor deficits are in the form of upper-limb hemiparesis [1]. 
Hemiparesis makes it difficult to complete activities of daily living and thereby reduces quality of life and autonomy. 
Upper-limb exoskeletons controlled by electromyography (EMG) have been shown to assist patients with hemiparesis 
in activities of daily living [2]. However clinical upper-limb exoskeletons typically use a binary, “all-or-nothing” 
control algorithm that makes it difficult to perform fine motor activities such as manipulating fragile objects. Previous 
studies investigating proportional EMG control from stroke patients have focused on force (torque) control of an 
elbow exoskeleton [3] and robot-assisted wrist movement [4]. However few studies have investigated the feasibility 
of proportional EMG control of the position of the hand for stroke patients. 

Proportional control of myoelectric prostheses has been achieved through a variety of different algorithms, 
including k-nearest neighbors [5], support vector machines [6], Kalman filters [7], convolutional neural networks 
(CNNs) [8], [9], long-short term memory networks [10], and recurrent CNNs [11]. In this case study, we explored if 
a Kalman filter could also provide proportional control of a myoelectric prosthesis for a single patient with 
hemiparesis. We show that proportional control can be readily achieved using this widely-used algorithm despite 
significantly lower EMG signal-to-noise ratio and a visually immobile arm. We also show that, for at least some 
movements, the quality of the proportional control can be similar to that from healthy EMG. 
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METHODS 

Human Subjects 

This case study involved a single human subject. Informed consent and experimental protocols were carried out 
in accordance with the University of Utah Institutional Review Board. The participant was male, 44 years of age, and 
experienced a stroke four years prior to the study. At the time of the study, the participant had severe spastic 
hemiparesis on the left side of his body. The participant scored a 1 on the Manual Muscle Test, indicating no visible 
movement of the arm but a palpable tendon prominence and flicker contraction. The participant scored a 3 on the 
Modified Ashworth Scale, indicating a considerable increase in muscle tone that made passive movement of the hand 
difficult.  

Signal Acquisition 

Surface EMG (sEMG) from the participant was collected using a symmetric bilateral pair of custom EMG sleeves 
[8], such that each electrode roughly targeted the same muscle group across sleeves. EMG was sampled at 1 kHz and 
filtered using the Summit Neural Interface processor (Ripple Neuro Med LLC) as described in [7]. EMG features used 
for estimating motor intent consisted of the 300-ms smoothed mean absolute value on 528 channels (32 single-ended 
channels and 496 calculated differential pairs) calculated at 30 Hz, as described in [7].  

EMG signal-to-noise ratio (SNR) was calculated by taking the mean absolute value of the EMG signal during 
movement and dividing it by the mean absolute value of the EMG signal during rest. EMG SNR was calculated for 
the 32 single-ended channels (i.e., one SNR value per each electrode for the sleeves on the right and left arms). EMG 
SNR was calculated separately for grasping (closing the hand) and extension (opening the hand). 

Experimental Setup 

The participant was instructed to mimic preprogramed movements of 
a virtual prosthetic arm (MSMS, John Hopkins Applied Physics Lab) with 
either their healthy or paretic arm. sEMG was recorded while the participant 
mimicked those movements (Fig. 1). Preprogramed movements included 
hand grasping (simultaneous flexion of D1-D5) and hand extension 
(simultaneous extension of D1-D5). Each movement consisted of a 0.7-s 
rise time, 3-s hold time, and a 0.7-s return to baseline, as described in [7], 
[9]. The participant completed ten trials of each movement. This exercise 
was completed separately for the healthy arm and the paretic arm.  

EMG Control Algorithm 

The EMG control algorithm used in this study was a modified Kalman 
Filter (MKF) [7]. The MKF provides an efficient recursive algorithm to 
optimally estimate the probability of hand movement when the likelihood 
model (i.e., the probability of the EMG activity given current hand position) 
and prior models (i.e., the state model of how position changes over time) 
are linear and Gaussian. In the implementation presented here, the MKF 
predicts the instantaneous position of the hand based on EMG activity of 
the arm at the current time point. The main difference between this study 
and [7] is that no threshold was applied to the output of the MKF. 

Virtual Target-Touching Task 

To evaluate proportional control of both arms, the participant completed a target-touching task controlling the 
virtual arm and attempting to move it into a target window. In this task the targets were placed at 50% of the maximum 
flexion and extension. Importantly, training data for the MKF was collected at 100% of the maximum flexion and 
extension, and thus, the task provides a measure of how well control extrapolates to novel intermediate positions. For 
each trial, the participant was instructed to stay within the target window for 5 seconds. The participant was instructed 
to relax between trials for 2 seconds for the healthy arm and 10 seconds for the paretic arm. The targets had a ±10% 
error tolerance, such that the participant received visual feedback indicating when they were within the target window. 

 
Figure 1: Experimental Setup. Participants 
were instructed to mimic the preprogramed 
movements of the virtual arm with their 
healthy arm or paretic arm. EMG activity was 
recorded using a symmetric bilateral pair of 
custom 32-electrode EMG sleeves. 
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The participant completed 20 trials of hand grasping and 20 trials of hand extension for both the healthy and paretic 
arms. 

The root mean square error (RMSE) was calculated between the target window and the participant’s kinematic 
output, such that values within the target window resulted in an RMSE of 0. The percent time within the target window 
(PTT) was calculated as the total time that the participant’s kinematic output was within the target window out of the 
total duration of the task (five seconds).  

Statistical Analysis 

SNR, RMSE and PTT data were tested for normality using the Anderson-Darling test of normality. Paired t-tests 
were then performed between the healthy and paretic for each performance metric.  

RESULTS 

Paretic EMG had Lower SNR for Both Hand Grasping and Hand Extension  

EMG activity during instructed hand grasping was visually similar between the paretic and healthy arms (Fig. 
2A). In contrast, EMG activity during instructed hand extension was substantially less for paretic arm compared to 
the healthy arm (Fig. 2B). For both hand grasping and hand extension, SNR was significantly less for the paretic arm 
compared to the healthy arm (Fig. 2C).   

Proportional Control Possible for Both Arms, but Worse for Paretic Hand Extension 

The participant was able to complete the virtual target-touching task with EMG control from both their healthy 
and paretic arms. Kinematic output was similar between the paretic and healthy arms during instructed hand grasping 
(Fig. 3A). The average kinematic output was also similar between the paretic and healthy arms during instructed hand 
extension, however, kinematic output was less precise for the paretic hand, as evidenced by a larger standard deviation 
(Fig. 3B). For hand grasping, the participant had no significant differences between their paretic and healthy arms for 
RMSE (paretic arm 12.2% worse; Fig. 3C) and PTT (paretic arm 2.6% better; Fig. 3D). For hand extension, the 
participant’s performance was significantly worse for their paretic arm compared to their healthy arm; RMSE was 
128% worse (** p<0.01, paired t-test) and PTT was 52.4% worse (** p<0.01, paired t-test).  

Importantly, despite significantly worse performance with the paretic arm for hand extension, the participant was 
still able to control the hand proportionally and complete the virtual target-touching task. The RMSE and PTT values 
reported here are similar to those found with amputees (RMSE means ~0.1; PTT means ~0.5 (Citterman et al., MEC 
2022)) and healthy participants (RMSE mean ~0.15, PTT between 0.14 and 0.43) [12]. Thus, even the worst control 
the participant experienced was equivalent to that of other healthy participants. The participant was particularly excited 
about their ability to finely control the virtual bionic arm, despite the fact that his hand did not visually move. In a 
spontaneous moment of joy, the participant took out his phone to record a video of the virtual hand gently opening 
and closing. 

  
Figure 2. EMG activity from paretic and healthy arms during instructed hand grasping and hand extension. A) The average EMG feature 
(mean absolute value) of the healthy arm (blue) and the paretic arm (red) during instructed hand grasping (black line). Data show mean and 
standard deviation. B) The average EMG feature of the arm during instructed hand extension. C) SNR of the paretic EMG was lower than 
that of the healthy EMG for both movements. Data show SNR from the 32 electrodes for both the EMG sleeves on the paretic and healthy 
arms. Data show mean and standard error of the mean. ** p<0.01, paired t-test, n=32 electrodes.  
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CONCLUSSION 

This case study with one participant shows 
promise in advancing and improving control for upper-
limb exoskeletons for use after stroke. We specifically 
show that even though there are significant differences 
between the EMG signal between the healthy and 
paretic arms, widely-used myoelectric control 
algorithms can still extract useful information related 
to fine force regulation and provide proportional 
control in real-time. We also show that for at least 
some movements, performance can be equivalent to 
that of healthy EMG. Future work will extend this 
study to more participants and validate real-time 
proportional control with an exoskeleton manipulating 
fragile objects. 
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Figure 3. Performance of the virtual target-touching task for the healthy 
arm (blue) and paretic arm (red).  A) Participant’s kinematic output 
when attempting to perform a partial hand grasp (50% output). Data 
show the mean and standard deviation of the kinematic output across 
the 20 trials of the task. The green area represents the target window 
that the participant was attempting to remain within. B) Participant’s 
kinematic output when attempting to perform partial hand extension 
(50% output). C) The RMSE between the participant’s kinematic 
output and the target window was significantly greater for the paretic 
arm for hand extension (i.e., the paretic arm had significantly worse 
performance). No significant difference was found for hand grasping. 
Data show the mean and standard error of the mean across the 20 trials 
of the task. D) Similarly, the PTT was significantly less for the paretic 
arm for hand extension (i.e., the paretic arm had significantly worse 
performance). No significant difference was found for hand grasping. 
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