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ABSTRACT 

The relatively recent commercialization of pattern 

recognition has occurred simultaneously with the 

proliferation of Targeted Muscle Reinnervation (TMR).  

Reports on applications of pattern recognition have generally 

been its application on proximal amputation post-TMR 

procedures or on transradial amputations in the absence of 

TMR.  This case series highlights two successful applications 

of pattern recognition to patients with high level amputations 

who had not undergone TMR.  In both cases, the users 

experience enhanced prosthetic control with reduce 

frustration and cognitive burden of prosthesis use.  Pattern 

recognition appears to be a viable control strategy in high 

level upper limb amputation without TMR procedures. 

INTRODUCTION 

Direct control systems have been the traditional standard 

for myoelectric control of upper limb prostheses.  In dual-site 

direct control a pair of surface electrodes are positioned over 

a set of antagonistic muscles with distinct EMG signals from 

these muscles providing threshold-based, proportional 

control of opposing prosthetic movements.  However, the 

muscular actions of the controlling EMG sites are often 

physiologically inappropriate and counterintuitive with 

respect to the desired prosthetic movements [1].  This is more 

pronounced at high-level amputations where the muscles of 

the upper arm and shoulder girdle are recruited to control 

hand prehension and wrist rotation.  Further, with direct 

control systems for high-level amputations the number Of 

EMG control inputs for prosthetic movements are 

insufficient, often requiring the user to generate specialized 

EMG signals to cycle between joint segments of the 

prosthesis [1]. 

In contrast to direct control, pattern recognition control 

reads EMG information from throughout the residual limb.  

Prosthetic control is provided through the recognition or 

correct classification of collective muscle patterns obtained 

from throughout the limb.  This allows for direct control of 

multiple prosthetic movement patterns. 

The commercialization of pattern recognition has 

occurred simultaneously with the proliferation of TMR, an 

innovative surgical procedure designed to increase the 

number of independent EMG sites available upon a residual 

limb.  Publications on the application of pattern recognition 

in prostheses for high-level amputation have generally been 

confined to individuals who had undergone TMR procedures 

[2-5].  This cases series will highlight two successful 

applications of pattern recognition for high-level amputations 

that have not been revised using TMR techniques.  Written 

informed consent was obtained from both case subjects. 

SHOULDER DISARTICULATION CASE 

DV presented with a right shoulder disarticulation 

amputation (Figure 1).  He was initially fit with a passive 

prosthesis to restore an aesthetically acceptable appearance 

in community activities.   

  

Figure 1:  Right Shoulder disarticulation 

A year later he was provided with a second prosthesis.  

The EMG signals on DV’s chest wall were so strong that they 

effectively drowned out the more modest EMG signals that 

could be obtained from his upper back.  As a result, the 

control strategy of this first electric prosthesis was a single-

site direct control. 

More specifically, the EMG signals derived from his 

chest wall were used to control the sequential movement of 

his elbow, wrist and hand.  EMG signals exceeding the 1st 
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level threshold provided control input to the joint under active 

control using an alternating strategy in which a brief latency 

period between contractions allowed control to switch to 

movement in the opposite direction (I.e., from an elbow 

flexion to an elbow extension command). Brief spikes 

exceeding a 2nd level threshold acted as the sequential 

switching signal between joints. 

DV wore this system regularly and became quite adept 

at its use, but frequently commented on the tedious nature of 

its control which could become frustrating in the execution of 

finer motor movements. 

Several years later, soft tissue revisions to the limb 

required the replacement of this prosthesis.  At that time 

pattern recognition was assessed as a possible means of 

enhancing prosthetic control.  During this assessment it was 

discovered that while the signals were dwarfed by the more 

powerful signals of the chest wall, discernible EMG signals 

could be obtained from the infraspinatus, supraspinatus and 

latissimus dorsi.  While these signals were inadequate to 

exceed the threshold requirements of direct control, and could 

not be adequately separated from EMG activity of the 

pectoralis major, they were sufficient to inform the nuanced 

patterns required in pattern recognition. 

A dynamic test socket was constructed with a single pair 

of anterior electrodes and 3 pairs of posterior electrodes 

located over the targeted muscle bellies (Figure 2).  Over 

several weeks of use, the DV was able to consistently 

generate distinct signals for elbow flexion and extension, 

wrist pronation and supination and hand opening and closing. 

 

Figure 2:  Dynamic test socket with 8 electrodes positioned 

over targeted muscle sites 

This control strategy was preserved in the fabrication of 

the definitive prosthesis, inclusive of an Espire Elbow, 

Motion Control wrist rotator and BeBionc hand (Figure 3).  

Passive grip selection using the contralateral hand provided 

the patient access to 8 distinct grip patterns. 

 

Figure 3:  Definitive prosthesis inclusive of pattern 

recognition control of an Espire Elbow, MC wrist rotator 

and BeBionic Hand. 

While DV continues to prefer his passive prosthesis for 

much of his community activities, he wears the more 

advanced arm regularly to accomplish basic ADLs around 

the house with a specific interest in meal preparation.  He is 

extremely pleased with the enhanced control and reduced 

frustration in operating the system. 

SHORT TRANSHUMERAL CASE 

KA presented as a legacy user of a range of upper limb 

prostheses following his short transhumeral amputation 

secondary to an IED blast sustained in combat (Figure 4).   

         

Figure 4: Short transhumeral amputation secondary to IED 

blast injuries 

At the time of KA’s presentation to our clinic, he was 

using a hybrid prosthesis with a body-powered elbow, 

passive control of pronation and supination and dual-site 

direct control of a BeBionic hand.  He presented with ample 
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EMG signal from his residual triceps, but extremely weak 

EMG from his residual bicep.  He was able to cycle between 

3 targeted grips using an “open-open” switching signal, but 

his ability to consistently close the hand was poor.  He 

expressed frustration with both his consistency of operation 

and the cognitive burden of prosthetic control. 

In response to these deficits, pattern recognition was 

explored as an alternate means of myoelectric control.  Eight 

electrodes were positioned over the anterior, medial and 

posterior aspects of the socket (Figure 5).  These produced an 

extensive EMG palate that ultimately generated discrete 

control of active pronation and supination, hand opening and 

3 discrete closing signals for his TASKA hand including 

general grasp, flexi-tool and a custom grip that allows him to 

hold his tablet while working as an environmentalist in a 

mine.  

 

Figure 5:  Placement of 4 pairs of electrodes to inform the 

patient’s pattern recognition control scheme. 

The patient’s definitive hybrid prosthesis was inclusive 

of a suction socket with a body powered hybrid elbow and 

myoelectric control of a powered wrist rotator and a heavy 

duty multiarticulate TASK hand (Figure 6).  The patient 

reports daily use of this prosthesis with specific application 

in his work setting. 

 

Figure 6:  Definitive hybrid prosthesis 

CONCLUSION 

Pattern recognition in the control of prostheses for high 

level amputations has largely been described in patients who 

have undergone TMR to expand the strength and availability 

of EMG control signals.  In this case series we describe two 

high level patients who experienced substantial 

improvements in their control of their electric prostheses with 

the introduction of pattern recognition without the benefit of 

TMR.  The ability of  pattern recognition to recognize subtle 

distinctions in EMG patterns at proximal amputation levels 

appears to be sensitive enough to provide many discrete 

signal inputs even in the absence of TMR. 
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